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 The constitutive models on sectional level can meet 

both computational accuracy and efficiency, and 

hence have great potential for nonlinear analyses 

of frame structures. However, currently available 

sectional constitutive models usually assume a 

constant axial force and therefore cannot account 

for axial force and bending moment coupling 

flexibly. In this paper, a sectional constitutive 

model is proposed in the framework of classical 

plastic theory. The proposed model features 

kinematic/isotropic hardening. It can well account 

for axial flexure interaction, and can be used to 

describe distributed plasticity along beam-column 

members in comparison with a plastic hinge 

model. The numerical simulations of a cantilever 

column and a steel frame structure showed that the 

proposed sectional constitutive model is more 

accurate than a plastic hinge model and more 

efficient than a fiber model. 
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1 Introduction  
 

Constitutive models are the basis for elastoplastic 

analyses of structures and/or components. As for 

beam-column elements, there are three levels of 

constitutive models [1]: member level [2], sectional 

level and material level [3], as shown in Fig. 1. The 

constitutive models on member level such as 

moment-rotation relation are used for concentrated 

plasticity. The other two models can be used for 

distributed plasticity. Among them the constitutive 

models on sectional level can meet both 

computational accuracy and efficiency, and thus are 

extensively studied [4-6]. However, the current 

sectional model is usually specified by a moment-

curvature relation with fixed axial force, and it 

cannot account for axial force and bending moment 

coupling when the structural member is subject to 

varying axial force. 

Yield surface of stress resultants offers a proper tool 

for considering axial and flexure interaction. A 

great research interest has been taken in such yield 

surface in the literature. Starting from the 1970s, 

Morris and Fenves [7], Nigam [8], Wen and 

Farhoomand [9] proposed a model for frame 

element that determines the elastoplastic state at the 

element ends using yield surface. Later in 1980s, 

Orbison [10] built a new yield surface for such a 

plastic hinge model, Powell and Chen [11] proposed 

a generalized plastic hinge model based on classical 

plastic theory. In 1990s, yield surface was employed 

in refined plastic hinge models [12], Shu and Shen 
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[13] used yield surface for element ends state 

determination and verified it by a test. Chan and 

Chui [14] proposed a full plastic yield function for I 

and/or H cross-section and used it for plastic hinge 

elements. After 2000, yield surface has still been 

attractive. Iu et al. [15] employed a refined plastic 

hinge approach based on sectional yield surface to 

model the material non-linearity by strain-hardening 

of composite framed structures. Recent work using 

yield surface has been presented by Biglari et al. 

[16] for quasi-hinge beam element and Roncevic et 

al. [17] for establishing critical load of frame 

structures. However, in these plastic hinge models, 

the lumped plasticity assumption is not necessarily 

accurate [11], in quasi-hinge models, the length of 

the hinge which is specified by experience highly 

affects the simulation accuracy. Besides, some 

models even assume that plastic hinges only yield in 

bending with no inelastic axial deformation, which 

is not theoretically correct. 

To account for axial force and bending moment 

coupling and to balance both computational 

accuracy and efficiency, a sectional constitutive 

model with mixed hardening is proposed in the 

framework of classical plastic theory. It can be used 

to describe distributed plasticity along beam-column 

members. The numerical implementation of the 

proposed model is introduced to determine the 

section state. Some numerical simulations are 

carried out to illustrate the accuracy and efficiency 

of the proposed model. 
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Figure 1. The three levels of restoring force model. 
 

2 Sectional constitutive model with mixed 

hardening 

 
The classical plastic theory is borrowed to derive 

the sectional constitutive model in this paper. We 

constrain discussion within the plane problem for 

simplicity, however, generalizing this case to three 

dimensions should not be a problem.  
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Figure 2. Forces and deformations at the element 

and section.  
 

For a specified section in a beam-column element, 

see Fig. 2, let T

a[ , ] e  represent sectional 

deformation, in which
a  and    are axial deformation 

and curvature, respectively, and T[ , ]N Ms  

represent sectional force, in which  and N M  are 

sectional axial force and bending moment, 

respectively. Then e and s are equivalent to the 

plane strain and stress of the classical plastic theory, 

respectively. To evaluate the sectional constitutive 

law, the assumptions are made as follows: (1) the 

plane section which initially has a normal to neutral 

axis remains plane and normal compared to the axis 

after deformation; (2) section yielding is defined as 

the state in which the stress at the whole cross-

section attains yielding stress, and the state before 

such defined section yielding is assumed to be 

elastic, i.e., the transition from initial yielding to 

full yielding is neglected. 

 

2.1 Sectional yield surface 
 

Sectional yield surface specifies the yielding 

criterion of a section. There are plenty of literatures 

on construction of the yield surface considering 

axial force and moment interaction for different 

types of cross-sections [10,.14,.16,.18,.19], written 

by a lot of researchers, among them being Chan and 

Chui [14] who assumed that the inner area 

enclosing the center of the section takes the axial 

load and the remaining outer part resists the 
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moment to determine the yield surface of I or H 

section (see Fig. 3), and this concept is adopted 

herein. Therefore, yield surface can be obtained as: 
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where ( ) s is the sectional yield function, 

f w/A A  , in which fA denotes the area of one 

flange, wA denotes the area of web, and yN is the 

axial yield force, pM is the moment plastic strength 

in the absence of axial loads, they are expressed as: 
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in which yf is the yield stress of the material. 

The above formulation does not account for 

hardening. For combined kinematic/isotropic 

hardening, Eq. (1) becomes: 
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where p p
a h se(1 )c k  ( )F e k e  is a sectional back 

force vector, which contains two components, i.e., 

a a a[ , ]TN MF FF . p p
y y0 h sec i   ( )F e F k e  denotes a 

sectional yield force vector, which contains two 

components, i.e., y y y[ , ]TN MF FF ; p
e is a plastic 

deformation vector, sek is an elastic stiffness matrix, 

and kh is a kinematic hardening coefficient, ih is an 

isotropic hardening coefficient; [0,1]c ; if c = 1, it 

is isotropic hardening, if c = 0, it is kinematic 

hardening, if (0,1)c , it is mixed hardening. 
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Figure 3.  H-Section and internal force analysis. 

 

2.2 Relation between sectional force and 

deformation 

 

According to classical plasticity theory, the 

sectional generalized force results only from the 

elastic part of the deformation, and the relation is 

expressed in incremental form as: 

 
p

sed (d d )  s k e e ,                              (4) 
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0

0

EA

EI

 
  
 

k  is the elastic stiffness matrix 

at the specified section. E is the material elastic 

modulus, A is the area of the cross-section, and I is 

the moment of inertia of the cross-section. 

According to Drucker postulate, when the material 

is in associative flow state, plastic deformation goes 

along the outward normal direction of yield surface. 

 
pd d e G ,                                  (5) 

 

where /  sG  is the outward normal direction of 

yield surface, and d  is the magnitude of plastic 

deformation increment, which will be determined 

and discussed in 3.2. 

The kinematic and isotropic hardening law is 

expressed in Eqs. (6) and (7). The back force 

increment in cross-section is proportional to the 

plastic deformation increment, and it can be written 

as: 

 
p

a h sed dk F k e .                            (6) 

 

The yield force increment of the cross-section is 

proportional to the absolute value of plastic 

deformation increment, and it can be expressed as: 

 
p

y h sed di F k e .                            (7) 
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To determine the path of sectional force, Kuhn-

Tucher loading/unloading (complementarities) 

condition is used:  

 

a yd ( , , ) 0   s F F .                     (8) 

 

3 Section state determination and 

constitutive relation integration 

 
For a given integration section in distributed 

plasticity models [Error! Bookmark not defined.], 

the numerical implementation method for the 

proposed sectional constitutive model is mainly 

discussed with the help of the schematic of cross-

section force space and force path, (see Fig. 4, 

where M denotes the sectional bending moment, 

while N denotes the sectional axial force). 

 

3.1 Section state determination 

 

In time incremental step or iterative step, when 

proceeding from thj  step to ( 1)thj   
step, the state 

determination of a specified section is to obtain the 

sectional force and update sectional stiffness matrix 

with the known information at thj  step and section 

deformation at ( 1)thj   
step from the analysis on 

the structural and element levels. The main steps of 

section state determination are listed as follows. 

 1)  To compute the trial force.  The predicted force 

increment Δs  is calculated on elastic assumption, 

and the ( 1)thj  step trial force 1j trial
s  is obtained 

by adding Δs  to j
s : 

 

s eΔ Δs k e ,                                (9) 

 
1j j trial

= +Δs s s .                           (10) 

 

2)  To determine the section elastic/plastic state.  

Substituting the trial force 1j trial
s into yield 

function 1
a y

j trial j j （ , , ）s F F  of the section, the scale 

factor r (see Fig. 4) and the new state 1j State  can 

be obtained from  1
a y

j trial j j （ , , ）s F F  and jState : 

When jState =0，in other words, the last state of 

the section is elastic： 

a) if 1
a y 0j trial j j （ , , ）s F F , then the current 

state is also elastic, let 1j State = 0 and 1r  . 

b) if 1
a y 0j trial j j  （ , , ）s F F , the current state 

changes to plasticity, let 1j State =1 and compute 

the scale factor r . 

When jState =1，in other words, the last state of 

the section is plastic： 

a) if 1
a y 0j trial j j （ , , ）s F F , then the current 

state changes to elasticity, let 1j State = 0 and r = 1. 

b) if 1
a y 0j trial j j  （ , , ）s F F  then the current 

state is also plastic, let 1j State = 1 and r = 0. 

3)  To calculate force increment.  Calculating the 

force increment Δs corresponding to deformation 

increment Δe . The deformation increment Δe  is 

divided into two parts, r Δe  and (1 )r Δe . The 

former results in a pure elastic response, while the 

latter results in an elastic-plastic one [20]. Hence, 

the force increment may be integrated as: 
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4)  To update correlated quantities. 

 
1j j
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 Loop (9) to (12) step for each integration section.  
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Figure 4. The schematic of yield surface and force 

path in force space. 

 

3.2 Constitutive relation integration 

 

Herein, the force increment 2Δs arising from 

2 (1 )r Δ Δe e  is mainly discussed. The tangential 

prediction and radial return algorithm [21] based on 

explicit integration are used to solve Eq. (11). 

1) Tangential prediction: 
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where p
2Δe  is the plastic deformation increment 

corresponding to 2Δe . 

Assuming the general yield surface of a section,  
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According to the consistency condition, the total 

differential form of the yield function [22] is:  
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Substitute Eqs. (4-7) into Eq. 15: 
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where 1 a/  G F , 2 y/  G F . 

The scalar d  which is the magnitude of plastic 

deformation increment may be expressed as: 

                         d /L H  ,                          (17) 

 

where L  is the loading criterion function defined as: 

 

 T dseL  G k e ,                      (18a) 

 

and H  is a positive scalar that can be expressed as: 

 
T T T

se h 1 se h 2 seH k i   =G k G G k G G k G .     (18b) 

 

Thus, the incremental form relation of sectional 

force and deformation at plastic stage is expressed 

as: 

se sp sepd ( ) d d    s k k e k e ,            (19) 

where sp se se( / H  T
)k k GG k is sectional plastic 

stiffness matri, sepk  is sectional elastoplastic 

stiffness matrix. Then Eq. (19) is changed into finite 

incremental form and written corresponding to Eq. 

(13): 

 

2 se sp 2 sep 2( )    Δ Δ Δs k k e k e .           (20) 

 

2) Radial return algorithm 

In Eq. (20), the explicit Eulerian method is 

employed; sepk  is the tangential stiffness of point C 

(see Fig. 4), thus, 2Δs  is in the tangential direction of 

point C. Since the yield surface is outer convex, 
1j+ 's (point D) is always outside of the yield surface. 

In order to meet the consistent conditions, it is 

necessary to bring the force point to the yield 

surface, such as 1j
s  (point E).  

 Such a correction is often achieved by adding a 

correction vector to the force vector in the direction 

normal to the yield surface. 

 

 a  s G ,                               (21) 

 

where a is a small scalar to be determined such that 

the yield condition is satisfied at the corrected force 

state: 

 
1 1

a y a y, , , ,j j a    + +（ ' ）=（ ' ）=0s s F F s G F F .     (22) 

 

To solve the nonlinear equation of the scalar a, 

herein, the Taylor series expansion is used and all 
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higher-order terms than the linear ones are 

neglected, the scalar a is obtained as: 

 
1

a y

T

, ,j

a




+（ ' ）s F F

G G
.                       (23) 

 

Finally, the corrected force vector can be expressed 

as: 

  
1 1 'j j a   =s s G .                         (24) 

 

4 Numerical examples  
 

Two numerical examples including a static cyclic 

analysis and a dynamic analysis are carried out to 

investigate the performance of the proposed 

sectional constitutive model with mixed hardening.  

 

4.1  Static analysis 

 

Taking H-section steel cantilever column as an 

example, the geometrical dimension and load 

information are shown in Fig. 5. The steel is Q 235 

with yield stress of 235 MPa, and the section type is 

WH 250×250 [23]. The ratio of axial force to 

sectional yield force is 0.60. The lateral 

displacement loading history shown in Fig. 6 is 

applied at the top of the cantilever column. 
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Figure 5. Static cycle analysis of a cantilever 

column. 
 

Three models are considered: the first is the 

sectional constitutive model proposed in 2.2 of this 

paper denoted as Section, the second is fiber 

element denoted as Fiber, and the third is plastic 

hinge model denoted as Hinge. All these three cases 

are programmed with MATLAB [24] while the 

second case is also analyzed with OpenSEES [25] 

for comparison accuracy. The kinematic hardening 

coefficient kh and isotropic-hardening coefficient ih 

are both 3/97 for the sectional and fiber models.  
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Figure 6. Horizontal displacement commands at 

the top node. 

 

But only kinematic hardening is considered for the 

plastic hinge model which is composed of perfect-

plastic hinge and elastic beam/column in parallel, 

and the equivalent kinematic hardening coefficient 

herein is also 3/97. For the fiber model, the section 

is divided into 14 patches, two for each flange and 

ten for the web. The flexibility formulation is 

employed on the element level for the analyses with 

sectional model and fiber model, and the Gauss-

Lobatto integration algorithm is adopted with five 

integration sections. For the plastic hinge model, the 

plasticity is concentrated on the bottom of the 

column, and the rest of the column is assumed to be 

elastic. The Newton-Raphson algorithm is used for 

iteration of structural analysis and energy error 

tolerance is 10-6. 

The base shear force versus top horizontal 

displacement of the cantilever column is shown in 

Fig. 7. The moment-curvature relation of the bottom  

section is shown in Fig. 8. The internal force path 

and yield surface of the bottom section is shown in 

Fig. 9. 
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Figure 7. Bottom shear force vs top horizontal displacement of the cantilever column. 

 

It can be seen from Fig. 7 that the structural 

responses with proposed sectional model agree very 

well with those obtained with fiber model of 

OpenSEES. But the response obtained from plastic 

hinge with kinematic hardening is apparently 

different from those of the other two, which indicate 

that the accuracy of the proposed approach is much 

higher than the one achieved with the plastic hinge 

model. 

From Figures 8 and 9, it can be observed that (1) the 

plastic bending moment capacity is reduced in the 

presence of axial force, indicating that the sectional 

model can well account for axial force and bending 

moment coupling; (2) with the accumulation of 

plastic deformation, yield surface moves with 

kinematic hardening and expands with isotropic 

hardening, indicating that the hardening is well 

handled with the proposed sectional model.  

In Fig. 8, the moment-curvature relation at the 

bottom section of the cantilever obtained from the 

sectional model is a little different from that 

obtained from fiber model with OpenSEES. The 

reason is that the yield criteria employed in the two 

cases are different: the former adopts full section 

plasticity, while the latter corresponds to fiber yield. 

However, the difference exists only on section level, 

whereas the structural responses are nearly the same 

for the two models as seen in Fig. 7.
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Figure 8. Moment-curvature relation of the bottom section. 

 



48 Y.S. Chen et al.: A novel sectional constitutive model… 
______________________________________________________________________________________________________________________ 

 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

S
ec

ti
o

n
 a

x
ia

l 
fo

rc
e 

ra
ti

o
 N

/N
y

Section moment ratio M/M
p

 

 

Section

FiberInitial yield

surface

Subsequent

yield surface

 

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

S
ec

ti
o

n
 a

x
ia

l 
fo

rc
e 

ra
ti

o
 N

/N
y

Section moment ratio M/M
p

 

 

Section

Fiber
Initial

yield surface

Subsequent

yield surface

 

(a) Kinematic hardening (b) Isotropic hardening 

 

Figure 9. Internal force path and yield surface of the bottom integration. 

 

Table 1. Time consumption comparison of section model and fiber model 

 

Cases Section model, tA (s) Fiber model, tB (s) tB /tA 

Kinematic Hardening 18.81 51.55 (MATLAB) 2.74 

Isotropic Hardening 7.34 17.73 (MATLAB) 2.41 

Cumputer: Pentium IV Processor, CPU 2.8 GHz, RAM 2.0 G. 

 

The time consumptions of the section and fiber 

models with programs both written in MATLAB are 

compared and the results are listed in Table 1. The 

computation is carried out using the same computer 

with Pentium IV Processor of 2.80 GHz, and RAM 

of 2.5 GB. From Table 1., it is seen that the 

computational efficiency of the sectional model is 

around 150% higher than of the fiber model. 

 

4.2 Dynamic analysis 

 

The structure, as shown in Fig. 10 (a), is a four-

story steel frame with three spans in the long 

direction and two spans in the short direction. The 

plane frame at the axis 2 is chosen for dynamic 

analysis subjected to earthquake. The information 

on dimension, section type, member numbering and 

vertical load numbering of the frame is shown in 

Fig. 10 (b); the dimension of different section is 

listed in Table 2.  

The lumped masses on exterior and interior columns 

at the roof are 5 t and 10 t, respectively; they are 10 

t and 20 t at the other floors. To reflect the effects 

of axial force more significantly, the vertical load 

induced by the weight of the structure is increased 

two times as normal. Hence, the vertical loads on 

the beam-column joints are 1/2/3
exP = 200 kN and 

4
exP = 100 kN for exterior columns, and 1/2/3

inP = 400 

kN and 4
inP = 200 kN for interior columns. The 

Rayleigh damping matrix is determined based on a 

damping ratio of 0.02 for the first two modes of the 

structure. In this analysis, plasticity is assumed only 

on the columns and their modeling is the same as in 

the last subsection, while the beams are represented 

with elastic beam elements.  
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(a) Planform of the prototype steel frame 
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(b) Dimensions and loads of the plane frame 

 

Figure 10. Plane steel frame structure to be studied. 

 

Table 2. The section dimension and features of welded steel H-section 

 

Member 

type 

Section type dimensions (mm) Area (A) 

(cm2) 

Moment of area (Iz) 

(cm4)  d bf tw tf 

Column 

WH 400×400 400 400 8 14 142.0 45170 

WH 350×350 350 350 8 12 110.0 26310 

WH 300×300 300 300 8 12 94.1 16340 

Beam 
WH 500×300 450 300 8 16 133.0 63080 

WH 400×250 400 250 8 12 90.1 26130 

The earthquake record El Centro (NS 1940) is used 

as horizontal excitation with peak ground 

acceleration of 310 cm/s2. The α-Operator splitting 

[26] algorithm is employed for time integration, and 

integration interval is 0.02 s. 

In Fig. 11, the global response are compared among 

the there models. The time history of roof horizontal 

displacement in section model is very close to that 

in fiber model as shown in Fig. 11 (a). Besides, the 

max inter-story drift angle of each floor in sectional 

model approximates to that in fiber model as shown 

in Fig. 11 (b). All these illustrate that the proposed 

sectional constitutive law is acceptable in 

computational accuracy. In contrast, the errors with 

plastic hinge are easily observed, although it 

basically agrees with the fiber model.
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(a) Time history of roof horizontal displacement (b) Max inter-story drift angle of each floor  

 

Figure 11. Global response of the frame structure. 
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Figure 12. Local response of column 111 at bottom section.  
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Figure 13. Local response comparison at bottom section of column 112.  
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(a) Bottom section of column 111 (b) Bottom section of column 112 

 

 Figure 14. Time history of force/deformation and section state at the bottom section.  

 

Figures 12-14 show the local responses of Columns 

111 and 112 at the bottom section. The moment-

curvature responses are shown in Figures 12 (a) and 

13 (a), where it is seen that, although the local 

responses with the two approaches do not agree so 

well as the global responses, the error of the 

sectional model appears acceptable. Figures 12 b 

and 13 (b) show the internal force paths and yield 

surfaces. Two subsequent yield surfaces for each 

column are plotted so as to correspond to the 

positive and negative maximum bending moments. 

From Figures 12 (b) and 13 (b), it is seen that the 

axial force of the middle column keeps nearly 

constant while that of side column varies from 

about 300 kN to 1200 kN, which reflects the 

additional axial force onto the side column caused 

by overturning. 

Fig. 14 compares the time histories of section forces 

and axial deformation of the two models and also 

gives the section state of the sectional model. It is 

clearly seen that the responses of the sectional 

model agrees quite well with those of the fiber 

model in the presence of variable axial force. From 

the time history of state indicator with the sectional 

model, we see that the section enters plastic state 

when the axial deformation is relatively 

significantly increased. In addition, the axial force 

of the middle column becomes oscillatory as the 

section switches between plastic and elastic states. 

These phenomena are confirmed by the analysis 

with fiber model using OpenSEES as shown in Fig. 

14. 

The time consumption of dynamic analysis with the 

two models both written in MATLAB is also 

recorded. The computation environment is the same 

as that in the last subsection. The computational 

time for the sectional model is 20.76 s, while the 

fiber model is 65.48 s; the efficiency of the former 

is about two times higher than the latter. 

 

5 Conclusion 
 

A novel sectional constitutive model with mixed-

hardening is proposed for beam-column element in 

the framework of classical plasticity theory. The 

sectional model features kinematic/isotropic-

hardening. It can account for axial force and 

bending moment coupling, and can be used for 

distributed plasticity beam-column models. The 

model is validated by numerical examples of static 

cyclic analysis of a cantilever column and dynamic 

analysis of a steel frame structure. The numerical 

results show that the proposed sectional model has 

higher accuracy than a plastic hinge model and 

higher computational efficiency than a fiber model. 
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