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ABSTRACT 

Mathematical model of an unmanned aerial vehicle with four propulsors (quadcopter) is indispensable in 

quadcopter movement simulation and later modelling of the control algorithm. Mathematical model is, at 

the same time, the first step in comprehending the mathematical principles and physical laws which are 

applied to the quadcopter system. The objective is to define the mathematical model which will describe 

the quadcopter behavior with satisfactory accuracy and which can be, with certain modifications, 

applicable for the similar configurations of multirotor aerial vehicles. At the beginning of mathematical 

model derivation, coordinate systems are defined and explained. By using those coordinate systems, 

relations between parameters defined in the earth coordinate system and in the body coordinate system are 

defined. Further, the quadcopter kinematic is described which enables setting those relations. Also, 

quadcopter dynamics is used to introduce forces and torques to the model through usage of Newton-Euler 

method. Final derived equation is Newton’s second law in the matrix notation. For the sake of model 

simplification, hybrid coordinate system is defined, and quadcopter dynamic equations derived with the 

respect to it. Those equations are implemented in the simulation. Results of behavior of quadcopter 

mathematical model are graphically shown for four cases. For each of the cases the propellers revolutions 

per minute (RPM) are set in a way that results in the occurrence of the controllable variables which causes 

one of four basic quadcopter movements in space. 
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INTRODUCTION 

Quadcopter (or quadrotor) is an unmanned aerial vehicle with four propulsors that are 

enabling vertical takeoff and landing. It has six degrees of freedom – 6 DOF and four 

controllable variables which makes it an underactuated and dynamically unstable system. 

Number of controllable variables is equal to the number of propulsors which affect position 

and attitude of quadcopter in space. Quadcopter cannot move translationally without the 

finite rotation around one of the axes, i.e. without the inclination of quadcopter. To achieve 

the inclination it is necessary to change the torque with respect to the one of the axes. In order 

to do so, it is necessary to increase or decrease the thrust on one or two propulsors. If the 

change of thrust happens on just one propulsors, that could cause instability in torque around 

the ZB axis of rotation. To achieve stable flight, it is necessary to combine several high 

accuracy sensors with fast and robust control algorithm. 

Only moving parts on quadcopter are propellers on propulsors and which are fixed in a 

propulsors axis. Quadcopter can have cross (+) configuration (XB and YB axes are oriented in 

the directions of propulsors), or it can have X configuration (XB and YB axes are oriented in 

the directions between the propulsors). For further mathematical modelling, + configuration 

is assumed. Quadcopter frame is a symmetric, light and thin construction that mechanically 

connects propulsors. Propulsor motor and propeller are directly connected, with all the 

propulsors axes being fixed and parallel. Propeller rotation causes airflow in the negative 

direction of the ZB axis which results in thrust in the positive direction of the ZB axis. 

Quadcopter frame is assumed to be rigid. The only thing that has direct influence on the 

quadcopter movement are each motor’s RPM. 

 
Figure 1. Quadcopter structure. 

MATHEMATICAL MODELLING OF QUADCOPTER 

Mathematical model describes quadcopter movement and behavior with the respect to the 

input values of the model and external influences on quadcopter. Mathematical model can be 

observed as a function that is mapping inputs on outputs. By using mathematical model, it is 

possible to predict position and attitude of quadcopter by knowing the four angular velocities 

of propellers, i.e. it enables computer simulation of quadcopter behavior in different 

conditions. Computer simulation is relatively simple, cheap and harmless method for control 

algorithm verification. More detailed mathematical model describes quadcopter behavior 

more accurately, but it also requires more computer resources which leads to longer 

simulation time or even to inability to successfully complete the simulation. Depending on 
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the requirements, it is necessary to find compromise between model complexity and 

accuracy. For the purpose of mathematical model, quadcopter movement is directly dependent 

on angle velocities of the propellers. Quadcopter frame with propulsors are the only elements 

that will come into the consideration in this mathematical model. Quadcopter structure along 

with the body frame and corresponding angular velocities are shown in Figure 1. 

QUADCOPTER COORDINATE SYSTEMS 

To get the mathematical model, it is necessary to define two coordinate systems: 

 Earth fixed frame (E-frame, ℱE) 

 Body fixed frame (B-frame, ℱB) 

Some quadcopter physical properties are measured in ℱE (roll, pitch and yaw angles, angular 

velocities), while some properties are measured in ℱB (linear accelerations). 

ℱE is the inertial right-handed coordinate system where positive direction of 𝑍E axis is in the 

direction from the earth. Quadcopter position 𝛏 and attitude 𝛈 are defined in ℱE. 

ℱB is fixed on quadcopter body. Positive direction of the 𝑋B axis goes through the propulsor 1 

which is located on the front side of quadcopter. Positive direction of the 𝑌B axis goes through 

the propulsor 4 which is located on the left side of quadcopter. The 𝑍B axis is perpendicular to 

𝑋B  and 𝑌B  axes and its positive direction is in the direction of propulsors thrust forces. 

Assumption is that the origin of ℱB coincides with the center of gravity of the quadcopter. 

Linear velocities 𝐯B, angular velocities 𝛚B, forces 𝐟B and torques 𝛕B are defined in ℱB. 

 

Figure 2. Earth and body frames. 

Quadcopter position is defined with vector 𝛏 between origins of ℱE and ℱB (Fig. 2) 

 𝛏 = [𝑋 𝑌 𝑍]T. (1) 

Quadcopter attitude 𝛈 is defined with the orientation of ℱB with the respect to the ℱE. The 

orientation is defined with three consecutive rotations around the ℱE  coordinate axes.  

Roll-pitch-yaw order is applied 

 𝛈 = [𝛟 𝛉 𝛙]𝐓. (2) 

Motion equations are more suitable to formulate with the respect to the ℱB  for several 

reasons: system inertia matrix is time-invariant, equations simplification because of 

quadcopter frame symmetry, sensors measurements are easily converted to ℱB and control 

variables equations simplification. 
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QUADCOPTER KINEMATICS 

Kinematics of a rigid body with 6 DOF is given with 

 𝛆̇ = 𝐉 𝛎, (3) 

where 𝛆̇ is generalized velocity vector in ℱB, 𝛎 is generalized velocity vector in ℱB, and 𝐉 is 

generalized rotation and transformation matrix. 𝛆  consists of quadcopter position 𝛏  and 

attitude 𝛈 

 𝛆 = [𝛏 𝛈]T = [𝑋 𝑌 𝑍 𝜙 𝜃 𝜓]T. (4) 

Generalized velocity vector in ℱB is defined the same way 

 𝛎 = [𝐯𝐁 𝛚𝐁]T = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟]T. (5) 

Generalized rotation and transformation matrix transfers velocities from ℱB to ℱE which is a 
more natural way of quadcopter motion observation. It consists of four submatrices 

 𝐉 = [
𝐑 𝟎3×3

𝟎3×3 𝐓
]. (6) 

𝐑 is the rotation matrix 

 𝐑 = [

cos𝜓 cos𝜃 cos𝜓 sin𝜃 sin𝜙 − sin𝜓 cos𝜙 cos𝜓 sin𝜃 cos𝜙 + sin𝜓 sin𝜙
sin𝜓 cos𝜃 sin𝜓 sin𝜃 sin𝜙 + cos𝜓 cos𝜙 sin𝜓 sin𝜃 cos𝜙 − cos𝜓 sin𝜙

−sin𝜃 cos𝜃 sin𝜙 cos𝜃 cos𝜙
]. (7) 

Because of the need to transform measured values from one coordinate system to another, the 
rotation matrix is introduced, which by matrix multiplication, transfers linear velocity vector 

from one coordinate system to another. Matrix 𝐑 is the orthogonal matrix. 

Angles and angular velocities are measured in ℱE. Matrix 𝐓 is the transformation matrix that 

transfers angular velocities from ℱB to ℱE 

 𝐓 = [

1 sin𝜙 tan𝜃 cos𝜙 tan𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙/cos𝜃 cos𝜙/cos𝜃

]. (8) 

To transfer angular velocities from ℱE to ℱB, angular velocity vector in ℱE has to be matrix 
multiplied by inverse of the transformation matrix. 

QUADCOPTER DYNAMICS: NEWTON-EULER METHOD 

Quadcopter dynamics is described by differential equations that were derived by using the 
Newton-Euler method. Dynamics of a rigid 6 DOF body takes into consideration the mass m 
and the inertia of the body I. By applying the assumption that the quadcopter frame has 
symmetrical structure where four propulsors carriers are in line with XB and YB axes, i.e. the 

principal inertia axes coincides with the ℱB  coordinate axes, inertia matrix becomes the 

diagonal matrix where 𝐼xx = 𝐼yy 

 𝐈 = [

𝐼xx 0 0
0 𝐼yy 0

0 0 𝐼zz

]. (9) 

Quadcopter dynamics is described by 

 [
𝑚𝐈3×3 𝟎33

𝟎3×3 𝐈
] [ 𝐯̇

B

𝛚̇B] + [
𝛚𝐁 × (𝑚 𝐯B)

𝛚𝐁 × (𝐈 𝛚B)
] = [𝐟

B

𝛕B], (10) 

where 𝐈3×3 is the identity matrix of size 3  3 (different from I), 𝐯̇B is the linear acceleration 

vector, 𝛚̇B is the angular acceleration vector, 𝐟B is the force vector acting on quadcopter, 𝛕B 

is the torque vector acting on quadcopter, all with the respect to the ℱB. 
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Generalized force vector 𝛌 

 𝛌 = [𝐟B 𝛕B]T = [𝐹x 𝐹y 𝐹z 𝜏x 𝜏y 𝜏z]T. (11) 

Now, equation (10) can be written in the form of 

 𝐌B 𝛎̇ + 𝐂B(𝛎) 𝛎 = 𝛌, (12) 

where 𝛎̇ is the generalized acceleration vector, 𝐌B is the system inertia matrix, 𝐂B(𝛎) is the 

Coriolis-centripetal matrix, all with the respect to the ℱB. 

System inertia matrix is diagonal matrix comprised from quadrotor mass and moments of 

inertia with the respect to the coordinate axes of ℱB. Because the quadcopter dynamics is 

described in ℱB , it is important to introduce the Coriolis-centripetal matrix to the model 

which will upgrade the model with centripetal force that is acting on the rotational body and 

also with the Coriolis effect which affects moving body in rotational frame. Equation (12) 

generally applies to all rigid bodies to which the made assumptions can be applied (symmetry 

and same origin for ℱB and COG). 

Force vector 𝛌 can be divided into three components: gravitational vector, gyroscopic torque 

vector and movement vector. 

Gravitational vector 

The first component of 𝛌 is gravitational vector which introduces the gravitational force to 

the model. It only affects the linear components of the model, and not the angular. In ℱE, the 

gravitational force always has the direction in the negative direction of 𝑍E , if the ℱ𝐸 

coordinate axes are set in a way previously described. Considering that dynamics is described 

in ℱB, it is necessary to transfer gravitational vector from ℱE to ℱB by matrix multiplication 

with 𝐑. Due to quadcopter movement, ZB is not always parallel with 𝑍E axis. In that case, 

only a certain component of gravity vector will act in the direction of ZB, depending of the 

roll and pitch angles (𝜙 and 𝜃) 

 𝐠B(𝛆) = [
𝐟G
B

𝟎3×1
] = [

𝐑T 𝐟G
E

𝟎3×1
] =

[
 
 
 
 
 

𝑚𝑔 sin𝜃
−𝑚𝑔 cos𝜃 sin𝜙
−𝑚𝑔 cos𝜃 cos𝜙

0
0
0 ]

 
 
 
 
 

, (13) 

where 𝐟G
B is the gravitational vector with respect to ℱB, and 𝐟G

E is the gravitational vector with 

respect to ℱE. 

Gyroscopic torque vector 

Gyroscopic torque vector introduces the gyroscopic effect to the model. It manifests itself in 

a form of a rotation around unwanted axis, which is perpendicular to the axis of the propulsor 

and the axis around which the wanted rotation is being achieved 

 𝐨B(𝛎) 𝛚 = [

𝟎3×1

−∑ 𝐽𝑇𝑃
4
𝑘=1 (𝛚B × [

0
0
1
]) (−1)𝑘 𝜔𝑘

]. (14) 

Movement vector 

Movement vector introduces thrust force of propulsors 𝑈1 and torques around coordinate axes 

ℱB: 𝑈2, 𝑈3 and 𝑈4. Number of controllable variables is equal to the number of propulsors 
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 𝐮B(𝛚) = [0 0 𝑈1 𝑈2 𝑈3 𝑈4]
T = [0 0 𝐹𝑍

𝜏𝜙 𝜏𝜃 𝜏𝜓]T. (15) 

Four basic movements enable the quadcopter to reach defined altitude and attitude. This is 

the only vector that can be directly influenced, which together with previously named vectors 

influence to quadcopter accelerations. 

Movement vector is influenced through propellers angular velocity 𝜔𝑖, which is, naturally, 

influenced by propulsors RPM. 

 
Figure 3. Linear and angular accelerations with the respect to the ℱB. 

Controllable variable 𝑈1, i.e. propulsors thrust force 𝐹𝑍, is directed in the positive direction of 

ZB axis. By increasing or decreasing propellers angular velocities by the same amount, thrust 

force 𝐹𝑍 is also increasing or decreasing, enabling the quadcopter movement along the ZB axis 

or hovering. If the quadcopter is on horizontal position (roll and pitch angles are equal to 0), 

Z axes of ℱB and ℱE coincide. If the quadcopter is not in horizontal position, the thrust force 

creates vertical and horizontal linear accelerations in ℱE. Controllable variable 𝑈1 equation is 

 𝑈1 = 𝐹Z = ∑ 𝑓𝑖
4
𝑖=1 = 𝑏 ∑ 𝜔𝑖

24
𝑖=1 = 𝑏 (𝜔1

2 + 𝜔2
2 + 𝜔3

2 + 𝜔4
2), (16) 

where 𝜔𝑖 is angular speed of the propeller 𝑖, and 𝑏 is the thrust coefficient (measurement unit Ns
2
) 

which can be calculated according the equation 

 𝑏 = 𝐶T 𝜌 𝐴 𝑟2, (17) 

where 𝐶T is thrust factor, 𝜌 is air density, 𝐴 is the area of propeller disk and 𝑟 is the propeller radius. 

Controllable variable 𝑈2 is the roll torque 𝜏ϕ around XB axis. By increasing the 4
th

 propeller 

angular velocity and decreasing 2
nd

 propeller angular velocity, positive quadcopter rotation 

with respect to the XB axis is achieved, which causes the linear quadcopter movement in the 

negative direction of the YB axis. Differences in the angular velocities are determined in a way 

which does not change vertical thrust, i.e. during the quadcopter rotation around XB axis, there 

cannot be any unwanted changes of the quadcopter altitude. Controllable variable 𝑈2 equation is 

 𝑈2 = 𝜏ϕ = 𝑏 𝑙 (𝜔4
2 − 𝜔2

2), (18) 

where 𝑙 is the distance between the quadcopters Center Of Gravity (COG) and propulsors axis. 

Controllable variable 𝑈3 is the pitch torque 𝜏θ around YB axis. By increasing the 3
rd

 propeller 

angular velocity and decreasing 1
st
 propeller angular velocity, positive quadcopter rotation 

with the respect to the YB axis is achieved, which causes the linear quadcopter movement in 

the positive direction of the XB axis. Similar to the 𝑈2 controllable variable, the differences in 

the angular velocities are determined in a way which does not change vertical thrust, i.e. 

during the quadcopter rotation around YB axis, there cannot be any unwanted changes of the 

quadcopter altitude. Controllable variable 𝑈3 equation is 
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 𝑈3 = 𝜏θ = 𝑏 𝑙 (𝜔3
2 − 𝜔1

2). (19) 

Controllable variable 𝑈4  is the yaw torque 𝜏ψ  around ZB axis. By increasing the angular 

velocity of a pair of propellers (on 2
nd

 and 4
th

 propulsor) and by decreasing the angular 

velocity of a pair of propellers (on 1
st
 and 3

rd
 propulsor), positive rotation with respect to the ZB 

axis is achieved thanks to the fact that one pair of propellers (on 2
nd

 and 4
th

 propulsor) is 

rotating clockwise, while other pair of propellers (on 1
st
 and 3

rd
 propulsor) is rotating 

counterclockwise. Created resulting moments causes unbalance in the sum of moments with 

respect to ZB, which is the cause of rotation. Differences in the angular velocities are 

determined in a way which does not change vertical thrust. Controllable variable 𝑈4 equation is 

 𝑈4 = 𝜏ψ = 𝑑 (−𝜔1
2 + 𝜔2

2 − 𝜔3
2 + 𝜔4

2), (20) 

where 𝑑 is the drag coefficient which can be calculated according the equation 

 𝑑 = 𝐶P 𝜌 𝐴 𝑟3, (21) 

where 𝐶P is the power factor. 

Considering aerodynamic effects, it follows that forces and moments are proportional to the 

squared angular velocities of the propellers. Movement vector 𝐮B(𝛚) is represented by the 

product of movement matrix 𝐄B  and the vector of the squared angular velocities of the 

propellers 𝛚2 

 𝐮B(𝛚) = 𝐄B 𝛚2 =

[
 
 
 
 
 

0
0
𝑏
0

−𝑏𝑙
−𝑑

0
0
𝑏

−𝑏 𝑙
0
𝑑

0
0
𝑏
0
𝑏𝑙
−𝑑

0
0
𝑏
𝑏 𝑙
0
𝑑 ]

 
 
 
 
 

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

. (22) 

Generalized force vector 𝛌 is represented by previously described components, from which it 

follows 

 𝐌B 𝛎̇ + 𝐂B(𝛎) 𝛎 = 𝐠B(𝛆) + 𝐨B(𝛎) 𝛚 + 𝐄B 𝛚2, (23) 

what, basically, is Newton’s second law of motion. To calculate the accelerations with 

respect to ℱB equation (23) has to be rearranged 

 𝛎̇ = 𝐌B
−1[−𝐂B(𝛎) 𝛎 + 𝐠B(𝛏) + 𝐨B(𝛎) 𝛚 + 𝐄B 𝛚2]. (24) 

The system inertia matrix inverse is multiplied by the sum of all the forces and torques, 

relevant to the mathematical model, acting on the quadcopter. 

NEWTON-EULER EQUATIONS IN HYBRID COORDINATE SYSTEM (𝓕𝐇) 

Quadcopter dynamics equation (24) is written with respect to ℱB. It can be useful to rewrite 

the dynamics equations with respect to ℱH which is comprised from the linear accelerations 

equations with respect to ℱE and angular accelerations equations with respect to ℱB. In such 

coordinate system, it is relatively easy to show the dynamics of the linear accelerations in the 

combination with regulation. It is especially suitable for showing the vertical position in ℱE. 

Generalized velocity vector with respect to ℱH 

 𝛇 = [𝛏̇ 𝛚B]T = [𝑋̇ 𝑌̇ 𝑍̇ 𝑝 𝑞 𝑟]T. (25) 

Quadrotor dynamics with respect to ℱH in matrix form 

 𝐌𝐇 𝛇̇ + 𝐂𝐁(𝛇) 𝛇 = 𝐠𝐇(𝛆) + 𝐨𝐇(𝛇) 𝛚 + 𝐄𝐇 𝛚𝟐, (26) 

where 𝛇̇ is the generalized acceleration vector with respect to ℱH. System inertia matrix is 

defined in a similar way to the one defined with respect to ℱB. Coriolis-centripetal matrix 

defined with respect to ℱH excludes members that affects linear accelerations (because they 



Mathematical modelling of unmanned aerial vehicles with four rotors 

95 

are defined with respect to ℱE, and not in the rotational ℱB). Gravitational vector is defined 

with respect to ℱE , so the gravitational force is influencing only the component in the 

direction of the 𝑍E axis. Gyroscopic effects that occurs as the result of propellers rotation are 

the same as in the mathematical model with respect to ℱB. Movement vector defined with 

respect to ℱH is different than the one defined in ℱB. Controllable variable 𝑈1 influences all 

three linear accelerations equation through the rotation matrix 𝐑. 

By modifying the equation (26), generalized acceleration vector with respect to ℱH can be 

calculated 

 𝛇̇ = 𝐌H
−1[−𝐂H(𝛇) 𝛇 + 𝐆H + 𝐎H(𝛇) 𝛀 + 𝐄H 𝛀2]. (27) 

There are many effects that were not included in the derivation of this mathematical model 

because of the rise of the model complexity and because they have little significance to the 

model accuracy. 

SIMULATION RESULTS 

The behavior of the outputs of the mathematical model is dependent on the input values. 

Even though the mathematical model deals with angular velocities as one of the variables,  

the input values are chosen to be the RPM of the propulsors propellers (𝑛 = 30 𝜔 π⁄ ) 

because that is the more natural way of setting the propeller rotation. The output values are 

chosen to be the position coordinates and quadrotor attitude. 

 

Based on the given and calculated values which are needed for calculating the output values, 

input values can be given for which the quadcopter will behave in the expected way. 

Table 1. Mathematical model input parameters. 

Case 
RPM [rev/min] 

n1 n2 n3 n4 

1
st
 3 760 3 760 3 760 3 760 

2
nd

 3 760 3 759 3 760 3 761 

3
rd

 3 759 3 760 3 761 3 760 

4
th

 3 759 3 761 3 759 3 761 

In all four cases the state of constant altitude is wanted to be achieved. In order to achieve 

that state, controllable variable 𝑈1 has to be the same value as the gravitational force. In cases 

2, 3 and 4 some change in quadcopter altitude occurs because of the change of thrust force 

component value in the direction of the 𝑍E axis due to the change in either roll or pitch angle. 

Also, the model does not have implemented control algorithm which would compensate for 

the quadcopter attitude changes. In the first case, only 𝑈1 is different from 0. In the rest of the 

cases, 𝑈1 stays approximately constant, while other variables change their values. 

Figure 4. Quadcopter mathematical model inputs and outputs.
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In the first case the hovering mode is simulated (Fig. 5), for which all four propellers had the 

same RPM. It can be seen that 𝑈1  is equal to the gravitational force. The rest of the 

controllable variables are equal to 0. 

Also, it can be seen that the quadcopter position (Fig. 6 is showing 𝑍E  coordinate) and 

attitude is without change, i.e. the quadcopter is in the hovering mode. 

Controllable variable 𝑈2 value is very small, but still it causes the change in the quadcopter 

attitude. 𝑈3 and 𝑈4 are equal to 0. 

Next, the second case checks quadcopter behavior due to the change of 𝑈2 value (Fig. 7). 

Due to the 𝑈2, the change in roll angle 𝜙 value occurs, as well as the change in 𝑌E coordinate. 

Change of the 𝑍E coordinate is previously explained. 

In the third case, behavior due to the change of 𝑈3 value (Fig. 10) is tested. 

Just like 𝑈2, controllable variable 𝑈3 value is also very small, but still it causes the change in 

the quadcopter attitude. In this case, 𝑈2 and 𝑈4 are equal to 0. 

Due to the 𝑈3, the change in pitch angle 𝜃 value occurs, as well as the change in 𝑋E coordinate. 

In the last case, the behavior due to the change of 𝑈4 value (Fig. 10) is checked. 

 

Figure 5. Controllable variable 𝑈1 . Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. 

 

Figure 6. Quadcopter 𝑍E  coordinate. Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. 
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Figure 7. Controllable variable 𝑈2 . Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. 

 

Figure 8. Quadcopter 𝜙 angle. Solid, medium dashed, short dashed and dash-dotted curves 

represent case 1, 2, 3 and 4, respectively. Dotted curve represents polynomial approximation 

(y = 1,2373 x
2
 + 4 e

-0,5x
 – 1,0 e

-0,5
) for case 2. 

 

Figure 9. Quadcopter 𝑌𝐸  coordinate. Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. Dotted curve represents polynomial 

approximation (y = –0,1706x
3
 + 0,5234 x

2
 –0,5295 x + 0,0928) for case 2. 
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Figure 10. Controllable variable 𝑈3. Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. 

 

Figure 11. Quadcopter 𝜃 angle. Solid, medium dashed, short dashed and dash-dotted curves 

represent case 1, 2, 3 and 4, respectively. Dotted curve represents polynomial approximation 

(y = 1,2097 x
2
 –0,0859 x + 0,0127) for case 3. 

 

Figure 12. Quadcopter 𝑋E coordinate. Solid, medium dashed, short dashed and dash-dotted 

curves represent case 1, 2, 3 and 4, respectively. Dotted curve represents polynomial 

approximation (y = 0,1687x
3
 –0,5381x

2
 + 0,5628x –0,1059) for case 3. 
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Figure 13. Controllable variable 𝑈4. Solid, medium dashed, short dashed and dash-dotted 
curves represent case 1, 2, 3 and 4, respectively. 

 

Figure 14. Quadcopter 𝜓 angle. Solid, medium dashed, short dashed and dash-dotted curves 
represent case 1, 2, 3 and 4. Dotted curve represents polynomial approximation 
(y = 0,2211x

2
 + 3e

–0,5 x
 –6e

–0,6
) for case 4. 

Again, controllable variable 𝑈4 value, in this case, is very small, but still it causes the change 

in the quadcopter attitude. In this case, 𝑈2 and 𝑈3 are equal to 0. 

Due to the 𝑈4, the change in yaw angle 𝜓 value occurs, i.e. the quadcopter is rotating with 
respect to ZB. 

CONCLUSIONS 

In this article, the complexity of the quadcopter mathematical model derivation is shown. The 
influences of various parameters on quadcopter behavior are modelled from the aspects of 
physics and mathematics. This mathematical model does not include influential parameters 
that would complicate model without the significant improvement of the model accuracy. 

Quadcopter behavior for different RPMs is shown by simulation. Simulation results show the 
roll, pitch and yaw angles as a function of time. As it can be seen, the function is of the 2

nd
 

order, which is expected considering that controllable variables are a function of squared 

angular velocities. Also, position in ℱB is shown as a function of time. 

Further work will include mathematical model improvements by modelling the brushless DC 
electric motor (BLDC) and the propeller, including the effects of air as a medium, modelling 
the ground effect and possible disturbances. 
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