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This paper presented a parallel hybrid electric vehicle (HEV) equipped with a hybrid energy storage system.
To handle complex energy flow in the powertrain system of this HEV, a fuzzy-based energy management strategy
was established. A chaotic multi-objective genetic algorithm, which optimizes the parameters of fuzzy member-
ship functions, was also proposed to improve fuel economy and HC, CO, and NOx emissions. The main target
of this algorithm is to escape from local optima and obtain high quality trade-off solutions. Chaotic initializa-
tion operator, chaotic crossover and mutation operators, chaotic disturbance operator, and chaotic local search
operator were integrated into non-dominated sorting genetic algorithm II (NSGA-II) to form this new algorithm
named chaotic NSGA-II (C-NSGA-II). Simulation results and comparisons demonstrated that chaotic operators
can enhance searching ability for optimal solutions. In conclusion, C-NSGA-II is suitable for solving HEV energy
management optimization problem.
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Neizrazita strategija optimizacije potrošnje energije za paralelno hibridno električno vozilo korištenjem
kaotičnog nedominirajućeg genetskog algoritma sortiranja. Ovaj rad prikazuje paralelno hibridno električno
vozilo (HEV) opremljeno hibridnim spremnikom energije. Kako bi se omogućila funkcionalnost pogonskog sklopa
ovakvog HEV-a korištena je strategija raspolaganja energijom zasnovana na neizrazitoj logici. Tako�er, prikazan
je više kriterijski genetski algoritam kaosa za optimiranje parametara neizrazite funkcije povezanih s ekonom-
skim pokazateljem te pokazateljima emisije HC-a, CO-a i NOx-a. Osnovni cilj algoritma je omogućiti izlazak iz
lokalnih optimuma i uspostavljanjem kompromisa omogućiti dosezanje boljih rješenja. Kaotični inicijalizacijski
operator, kaotično križanje i operator mutacije, kaotični operator poremećaja i kaotični operator lokalnog pre-
traživanje uključeni su u nedominirajući genetski algoritam sortiranja II (NSGA-II) u svrhu formulacije novog
problema nazvanog kaotični NSGA-II (C-NSGA-II). Simulacijski rezultati i usporedbe prikazuju kako kaotični op-
erator može povećati uspješnost traženja optimalnog rješenja. Zaključno, C-NSGA-II je primjeren za rješavanje
problema raspolaganja energijom u HEV-u.

Ključne riječi: operator kaosa, neizrazita logika, hibridna električna vozila, više kriterijska optimizacija,
NSGA-II

1 INTRODUCTION
With the increase of air pollution and energy consump-

tion, energy conservation and environment protection have
become major issues in the automotive industry [1–2]. Un-
like conventional internal combustion engine (ICE) ve-
hicles, hybrid electric vehicles (HEVs) can improve fuel
economy and reduce exhaust emissions [3]. Combining
ICE and an electric motor (EM) in an HEV powertrain
system provides EM assistance and ensures that the ICE
functions more effectively, thereby improving fuel econ-
omy [4].

However, because of HEV’s complex powertrain sys-

tem, an effective energy management strategy (EMS) must
be explored to meet its control requirement. Fuzzy logic
control has been widely used in different industries [5–7].
In recent decades, some researchers introduced fuzzy logic
control in developing EMS for HEV [8–11]. Fuzzy logic
control methods have been effectively adopted in its con-
trol domain. Nevertheless, membership functions (MFs)
and fuzzy rules are normally designed based on engineer-
ing intuition, and achieving global optimization in such a
way is difficult [12]. Thus, an appropriate optimization
algorithm should be used to improve the performance of
fuzzy logic controllers (FLCs).

Online ISSN 1848-3380, Print ISSN 0005-1144
ATKAFF 56(2), 149–163(2015)

149 AUTOMATIKA 56(2015) 2, 149–163



Fuzzy Energy Management Optimization for a Parallel Hybrid Electric Vehicle... J. Liang, J. Zhang, H. Zhang, C. Yin

In general, many researchers attempted to optimize fuel
economy of HEV as a singular objective [13–15]. Other
researchers attempt to optimize more objectives such as
fuel economy and emissions, which are actually conflict-
ing. Traditionally, a multi-objective optimization problem
(MOP) is converted into a single-objective optimization
problem by assigning weight values to each optimization
objective [16–17]. However, allocating suitable weight
values is difficult, especially when the objectives are con-
flicting. Thus, the traditional method is intrinsically lim-
ited when exploring the real trade-off relationship between
objectives.

In this paper, we attempt to handle a MOP in the HEV
domain: improving fuel economy and reducing hydro-
carbon (HC), carbon monoxide (CO), and nitrous oxide
(NOx) emissions. The four objectives are conflicting in
some cases [12,18]. The challenge for the control strat-
egy is to simultaneously balance these objectives for good
fuel economy and low emissions. No fixed evaluation stan-
dard has been established to determine the best solution.
Therefore, good trade-off solutions are considered optima
in view of multi-objective optimization [19].

Non-dominated sorting genetic algorithm II (NSGA-
II) is an efficient evolutionary algorithm that can solve a
multi-objective problem [20]. NSGA-II was presented by
Deb in 2002 and has been successfully applied to opti-
mize reactive power dispatch problems [21], automatic test
task scheduling problems [22], propulsion system of ma-
rine vessels [23], and other optimization problems. This
method can effectively obtain improved spreading solu-
tions. However, because the amount of new individu-
als created may be limited, it may lack diversity and be
trapped in local optima [24]. In addition, HEV is a com-
plex mechanical and electrical combination system. There-
fore, the optimization for an HEV’s EMS should be care-
fully chosen and designed.

As a complex nonlinear dynamics behavior, chaos is
a general phenomenon in nature. It has several specific
characteristics, such as stochasticity and ergodicity [25].
As a result of these properties, chaos search is more ca-
pable of hill climbing and escaping local optima than ran-
dom search. Thus, some researchers have combined chaos
search with optimization algorithms to obtain better per-
formance. For instance, Guo et al. [26] applied chaos opti-
mization in the initial population and final optima solution
local search. Mahdiyeh [27] introduced chaotic sequence
into particle swarm optimization to improve global search-
ing capability and escape premature convergence to local
minima for a power system stabilizer design. Although
researchers have studied approaches that combined chaos
with evolutionary algorithms in various fields, the research
on combing chaotic operators with NSGA-II has not been
well addressed [22, 24, 26] and will be explored in detail

in this study. Meanwhile, it is also the first time that adopt-
ing the NSGA-II combined with chaotic operators in the
domain of HEV as in this study.

In this paper, we introduce chaotic initialization opera-
tor, chaotic crossover and mutation operators, chaotic dis-
turbance operator, and chaotic local search operator into
NSGA-II to enhance the performance of the original al-
gorithm. The modified chaotic NSGA-II (C-NSGA-II) is
used to find better trade-off solutions for fuel economy and
emissions for a parallel HEV equipped with a hybrid en-
ergy storage system (HESS). A fuzzy-based EMS was pre-
viously established for this HEV. Thus, the C-NSGA-II can
be used to search the best MF parameters in FLCs. The re-
mainder of this paper is organized as follows: Section 2 de-
scribes the powertrain architecture of the target HEV, Sec-
tion 3 presents the fuzzy EMS of this HEV, Section 4 intro-
duces the basic concepts of MOP, and Section 5 presents
the MOP for the target HEV, including problem formula-
tion, description of objectives, and chromosome coding.
Section 6 describes C-NSGA-II in detail, while Section 7
presents simulation results and performance comparison.
Section 8 presents the conclusion and future research di-
rections.

2 POWERTRAIN ARCHITECTURE AND
ENERGY MANAGEMENT STRATEGY

The parallel hybrid electric vehicle (HEV) studied in
this paper is mainly aimed at mid-range and low-end vehi-
cle markets. The kinetic performance of this parallel HEV
is shown in Table 1 [28].

Table 1. Kinetic performance of target parallel HEV
Item Value

Maximum velocity (km/h) ≥ 80

0 km/h to 50 km/h acceleration time (s) ≤ 20

Gradeability (%) ≥ 20

The powertrain architecture of this HEV is presented
in Fig. 1. A double-cylinder internal combustion engine
(ICE) with small displacement is integrated at the front
drive axle. A small permanent magnet brushless direct cur-
rent electric motor (EM) is used at the rear drive axle. The
energy storage system (ESS) used in this HEV is a bat-
tery/ultracapacitor (UC)-based hybrid energy storage sys-
tem (HESS). The HESS is composed of a battery pack,
a UC pack, and a bi-directional DC/DC converter. The
UC pack connects with the battery pack through the bi-
directional DC/DC converter.

In practice, battery-only ESSs have been widely
adopted in commercially available HEVs. However, the
relatively low power density of batteries hinders them from
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Fig. 1. Architecture of parallel HEV’s powertrain

performing well to meet the high electric power require-
ments of HEVs in some modes, such as pure electric ac-
celeration and regenerative braking (RB) [29]. UCs have
lower energy density and higher power density than bat-
teries. Their specific features enable energy to be stored
and released without chemical reaction. Thus, the en-
ergy can be absorbed and released immediately with low
losses. Therefore, UC is capable of meeting the instanta-
neous high power demand of EM. Based on the different
features of batteries and UCs, a battery/UC-based HESS
can be constructed. In HESS, the battery meets only the
average electrical power requirement during HEV driving.
On the other hand, UC is used to compensate for fluctu-
ations in electrical power demand. The combination of
the two electrical sources can mitigate battery workload,
which will improve the working efficiency of the battery
and extend its life expectancy. Moreover, the high power
density of UCs makes HESS more effective in absorbing
regenerative power during vehicle braking. Thus, HESS
can be used to obtain better energy efficiency than tra-
ditional ESS. The specifications of the parallel HEV are
listed in Table 2.

3 ENERGY MANAGEMENT STRATEGY

To address the complex power distribution in HEV, a
fuzzy-based EMS is developed. HEV may run in several
modes, namely, pure electric mode (PEM), parallel mode
(PM), and braking mode (BM). Mode selection is mainly
based on pedal position and vehicle speed. If the acceler-
ator pedal is pressed, HEV will run in PEM or PM. When
the vehicle speed is higher than a threshold, PEM will
change to PM, and ICE will start. Some constraints are
in place to protect the battery and UC. When the battery’s
state of charge (BSOC) falls below 20% or the UC’s state
of charge (USOC) falls below 50%, the PEM mode will au-
tomatically change to PM. On the other hand, if the brake
pedal is pressed, HEV will run in BM. As shown in Fig.
2, each mode has a related fuzzy logic controller (FLC)
that handles power distribution. Three FLCs are used in
this study, namely, PEM FLC, PM FLC, and regenerative

Table 2. Specifications of the parallel HEV
Vehicle and
components Parameter Value

Vehicle

Curb/gross weight (kg) 850/1150

Tire rolling radius (m) 0.28

Frontal area (m2) 1.91

Aerodynamic drag
coefficient 0.34

Rolling resistance
coefficient 0.009

ICE

Idle/maximum
speed (rpm) 1400/8000

Maximum torque (Nm) 18.7/5500

Maximum power (kW) 12.7/7000

Displacement (l) 0.25

Electric
motor

Peak power (kW) 14

Continuous power (kW) 7

Peak torque (Nm) 70

LiFePO4
Battery

Capacity (Ah) 40

Equivalent series
resistance (Ω) 0.052

Nominal operating
voltage (V) 72

Ultra
capacitor

Capacitance (F) 165

Nominal operating
voltage (V) 48.6

Emax (Wh/kg) 3.81

Pmax (W/kg) 7900

braking (RB) FLC. The ICE torque, EM torque, battery
power, and UC power can be assigned and sent to each
corresponding HEV component by the EMS.

3.1 Pure Electric Mode Fuzzy Logic Controller

PEM FLC is specifically designed for electrical power
distribution for HESS in the PEM. Figure 3 shows a block
diagram of the PEM FLC. The inputs of this FLC are
the P_EM (Required electrical power of EM based on the
current driving power requirement and also the EM effi-
ciency), BSOC, and USOC.

The output of PEM FLC is indicated as Pro_UC, which
means the proportion of P_EM is supplied by the UC,
while the rest of P_EM is supplied by the battery. The bat-
tery has the advantage in energy density, whereas the UC
has the advantage in power density. Based on their differ-
ent features, a proper PEM FLC is established. The battery
provides total electrical power if USOC is low. Otherwise,
P_EM is met by both battery and UC. The power distri-
bution between the battery and UC is determined by their
SOC status and operation power condition of EM. The rule
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Fig. 2. EMS topology

Fig. 3. Block diagram of PEM FLC

base of PEM FLC is shown in Fig. 4. The MFs of each
input and output of this FLC and of two other FLCs are
shown and discussed in Section 5.

3.2 Parallel Mode Fuzzy Logic Controller
PM is a "full" mode in which both ICE and EM to work

together for this HEV. Figure 5 presents the block diagram
of the proposed PM FLC, which has three inputs and one
output. The inputs are ICE speed, accelerator pedal posi-
tion (K), and BSOC. The output is the Tice which repre-
sents the torque percentage of the maximum engine torque
at current rotational speed. Specifically, the value 0.5 of
Tice indicates the highest efficiency operation torque of
ICE, which will change according to ICE speed.

The energy stored in the battery is significantly larger
than that in the UC. Therefore, PM FLC focuses on reg-
ulating the BSOC level by adjusting the ICE operation

Fig. 4. Rule base of PEM FLC

Fig. 5. Block diagram of PM FLC

torque. The PM FLC intends to control the ICE operat-
ing at a comparatively high efficiency. However, to main-
tain the BSOC at a normal range, the torque command of
the ICE can be tuned. If the BSOC is high enough, the
ICE power decreases and EM provides more power. If the
BSOC is low, the ICE will output more power to charge the
battery. Given that the PM FLC only distributes power be-
tween ICE and EM, power management of HESS requires
cooperation among PM FLC and other FLCs. When PM
FLC outputs a positive power command to EM, the HESS
has to output power for EM-assisted driving. Then, the
PEM FLC is called to distribute the output power between
the battery and the UC. When the EM regenerates power to
charge HESS, RB FLC (as presented in Section 3.3) meets
the regenerative power distribution requirement. The rule
base of PM FLC is presented in Fig. 6.

3.3 Regenerative Braking Fuzzy Logic Controller

RB FLC handles the regenerative braking condition.
The block diagram of this FLC is shown in Fig. 7. The
two inputs of RB FLC are BSOC and USOC, and the out-
put is Pro_UC. RB FLC mainly distributes the regenerative
power between the battery and the UC. With its high power
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Fig. 6. Rule base of PM FLC

density and dynamic performance, UC should be charged
first by the large current when HEV breaks in a hard tran-
sient state. When USOC is low, UC receives more RB
power. When USOC is high, the battery acquires more RB
power. Figure 8 shows the rule base of RB FLC.

Fig. 7. Block diagram of RB FLC

Fig. 8. Rule base of RB FLC

4 MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

This paper proposes a multi-objective optimization al-
gorithm based on Non-dominated sorting genetic algo-
rithm II (NSGA-II) and chaotic theory for fuzzy energy
management optimization in HEV. Before explaining this
algorithm in detail, the multi-objective optimization prob-
lem (MOP) should be introduced briefly [30].

An MOP can be described as follows:

minimise F (x) = (f1 (x) , f2 (x) , ..., fM (x))
T

subject to x ∈ Ω
(1)

where Ω is the decision (variable) space, F : Ω → Rm

consists of m real-valued objective functions, and Rm is
called the objective space. Normally, the objectives in
(1) are conflicting, and perhaps no x can simultaneously
minimize all the objectives. However, trade-off solutions
that attempt to balance different objectives can be obtained.
The best solutions can be called Pareto optimal set and can
be defined as follows [31]:

Definition 1 (Pareto dominance) A feasible decision
vector xa is said to dominate another feasible vector xb
(denoted by xa ≺ xb) if the following two conditions are
satisfied:

(i) xa is no worse than xb in all objectives

∀i = 1, 2, . . . ,m fi(xa) ≤ fi(xb). (2)

(ii) xa is strictly better than xb in at least one objective

∃i = 1, 2, . . . ,m fi(xa) ≺ fi(xb). (3)

If there is no solution xa that dominates xb then xb is a
Pareto optimal solution.

Definition 2 (Pareto Optimal Set) For a given MOP,
the Pareto optimal set, PS, is defined as

PS := {x ∈ F |¬∃x∗ ∈ F, x∗ ≺ x} . (4)

Definition 3 (Pareto Front) For a given MOP and
Pareto optimal set, Pareto front, PF , is defined as

PF := {f(x)|x ∈ PS} . (5)

5 PROBLEM FORMULATION OF FUZZY
ENERGY MANAGEMENT OPTIMIZATION

5.1 Formulation of tuning the FLCs as an optimiza-
tion problem

The fuzzy logic controllers (FLCs) described in Section
3 were designed according to expert knowledge and intu-
ition. Therefore, the original FLCs’ parameters do not nec-
essarily lead to an optimal result, and they need further op-
timization. The membership function (MF) parameters in
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these FLCs can be tuned to find better solutions for HEV’s
fuel economy and emissions. In this study, we set four
objectives that are equivalent fuel consumption (EFC) and
the HC, CO, and NOx emissions from the target HEV over
an entire Economic Commission of Europe (ECE) driving
cycle, as shown in Fig.9.
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Fig. 9. Economic Commission of Europe driving cycle

During the driving, the HEV will not only consume the
fuel by running ICE but also consume the electrical energy
in HESS by using EM. Thus, the total energy consumption
should include both the fuel consumption and the electri-
cal energy consumption. Assuming the ICE can drive EM
to generate power for charging HESS back to its initial
electrical energy level, there is a relationship between the
HESS’s equivalent fuel consumption (EFCHESS) and the
HESS electrical energy consumption, as shown in equation
(6) [28]:

EFCHESS =
3600EHESS

DfQfηgen
(6)

whereEHESS is the consumed HESS energy,Df is the den-
sity of fuel, and Qf is the low heat value of gasoline. The
generator-set efficiency ηgen is assumed as 30% on aver-
age. The total EFC includes both actual fuel consumption
and EFCHESS.

These four objectives may be conflicting. Thus, mini-
mizing all of them simultaneously could be difficult. How-
ever, their Pareto optimal sets can be found by using the
C-NSGA-II. The objectives are as follows:

Objective functions (to be minimized):
f1(Z) =

∫ TD

0
VFREFC dt

f2(Z) =
∫ TD

0
MFRHC dt

f3(Z) =
∫ TD

0
MFRCO dt

f4(Z) =
∫ TD

0
MFRNOx dt

(7)

where TD is the time duration of the ECE driving cycle,
and Z is a vector that contains all parameters that need to
be tuned, VFR is the volume flow rate of EFC and MFR is
the mass flow rate for three emissions: HC, CO and NOx.

5.2 Coding the parameters of MFs

In FLCs, the decision variables of MFs are critical is-
sues for the optimization process. These variables are
coded into chromosomes that evolved from C-NSGA-II.
When the variable number increases, the length of the
chromosome also increases. A lengthening chromosome
will require a larger population size and more generations
to achieve a satisfactory solution, which would increase
the computational time cost. To address this difficulty, the
minimum amounts of variables that can fully define MFs
are used.

The default FLCs and their tunable MFs are shown in
Fig. 10. A total of seven input or output variables are
adopted in our three FLCs; these variables are ICE speed,
K, BSOC, Tice, P_req, USOC, and Pro_UC. Triangular
MFs and trapezoidal MFs are used in these variables.

To limit the number of variables that define MFs, sev-
eral fixed values are chosen. As shown in Fig. 10(a), the
center of the triangular MF "Normal" is fixed at 0.4 be-
cause it is the normalized highest efficiency speed region
of the ICE. The inside corners of trapezoidal MFs "Low"
and "High" are also fixed at 0.4 to guarantee adequate over-
lap of MFs. Three variables, namely, Z1, Z2, and Z3, are
adopted in Fig. 10(a), and bounds of these variables are
limited such that the corresponding MFs can remain com-
patible with the meaning of their labels. A symmetrical
triangle pattern for the MF "Normal" to limit the numbers
of variables in chromosome is adopted. Similar concepts
are applied to other variables. K, Tice, P_req, Pro_UC
have triangular MFs "Normal" which are all fixed at 0.5,
and BSOC and USOC have their own particular "Normal"
MF values. These values are 0.65 for BSOC and 0.75 for
USOC, which originated from the highest and reasonable
efficiency working region for battery and UC. As depicted
in Fig. 10, 20 variables are coded into a chromosome by
using real value coding scheme. A 21st variable, Z21 is
also used to decide the switching speed for mode switch-
ing from PEM to PM. According to the corresponding ICE
working speed, we limit the Z21 that varies from 7.5 to 12
(km/h). Its default value is 10. The 21 variables are coded
as follows:

Z = (Z1, Z2, ..., Z21) . (8)
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Fig. 10. Membership functions of three default FLCs (a) ICE Speed, (b) K, (c) BSOC, (d) Tice, (e) P_req, (f) USOC, (g)
Pro_UC

Constraints of these variables are as follows:



0 < Z1 < 0.4, 0.4 < Z2 < 1, 0 < Z3 < 0.4,
0 < Z4 < 0.5, 0.5 < Z5 < 1, 0 < Z6 < 0.5,
0.3 < Z7 < Z8 < 0.65, 0.65 < Z9 < 0.8,
0 < Z10 < 0.5, 0.5 < Z11 < 1, 0 < Z12 < 0.5,
0 < Z13 < 0.5, 0.5 < Z14 < 1, 0 < Z15 < 0.5,
0.5 < Z16 < 0.75, 0.75 < Z17 < 1,
0 < Z18 < 0.5, 0.5 < Z19 < 1, 0 < Z20 < 0.5,
7.5 < Z21 < 12.




(9)
Thus, MOP in this study has four objectives and 21

variables. The C-NSGA-II that handles this MOP is pre-
sented in the next section in detail.

6 CHAOTIC NON-DOMINATED SORTING
GENETIC ALGORITHM-II

In this study, we develop a hybrid evolutionary algo-
rithm by combining the chaotic method and NSGA-II. In a
chaotic system, a small change of the initial condition will

lead to a completely different future behavior. These fea-
tures of the chaotic system are called ergodic and stochas-
tic [25]. As a result of these features, combining chaotic
method and evolutionary algorithm will dictate some spe-
cial properties such as increasing solutions’ diversity and
escaping from local optima [24].

We adopted a logistic map in this study, which is a one-
dimensional chaotic map popularized by biologist Robert
Mary in 1976 [32]. This map can be defined as follows
[33]:

xi+1 = µxi (1− xi) , xi ∈ (0, 1), i = 1, 2, ... (10)

where xi is the value of chaotic variable x at the ith
iteration, and µ is the so-called bifurcation parameter of
the system (µ ∈ [0, 4]), which is equal to 4 in this study.
The initial value of x0 is generated randomly between 0
and 1, with x0 /∈ {0.25, 0.5, 0.75}.

The chaotic logistic map generates the chaotic se-
quences that are embedded in NSGA-II to form a new hy-
brid algorithm. However, the main framework of NSGA-II
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is maintained, which is briefly introduced as follows [16,
20]:

(1) The parent population, including N individuals, is
initialized, and this population is sorted based on the non-
domination level.

(2) Crossover and mutation operators on the parent
population are used to create an offspring population.

(3) The parent and offspring populations are combined,
and all the individuals are ranked based on their non-
domination level.

(4) The top N individuals are chosen as the new par-
ent population, and the lower-ranking individuals are aban-
doned.

(5) Steps (2) to (4) are repeated until the stop criterion
is satisfied.

As the iteration continues, the new individuals gradu-
ally move toward PS.

Based on the NSGA-II framework, some new chaotic
operators are embedded into the former algorithm to im-
prove performance. These operators are presented as fol-
lows:

A. Chaotic initialization operator

The initial population with N individuals is generated
by using command "rand(·)" in the original NSGA-II. The
chaotic logistic map is used instead for the generation of
the initial population in this study. If j is the serial number
of variables, then the chaotic variable xji has to be trans-
formed to the interval of the corresponding optimization
variable Zji , as shown in the following:

Zji = aj +
(
bj − aj

)
xji . (11)

where aj and bj are the lower and upper bounds of the
optimization variableZj , respectively. Adopting the above
method in 21 variables in N individuals generates the initial
population.

B. Chaotic crossover and mutation operator

The original NSGA-II randomly generates a number rc
to decide whether the crossover operation should be exe-
cuted. If the rcis smaller than the crossover probabilitypc,
the simulated binary crossover (SBX) will be executed. We
used another crossover operator called differential evolu-
tion (DE) [34]. The performances of the DE operator and
SBX are compared; the former consistently outperformed
the latter [35]. DE crossover operator goes through each
parent of the population as the index primary parent, and
for each primary parent it also chooses another three auxil-
iary parents which are randomly selected from the current
population and mutually different and different from the
index primary parent. By taking four (one primary and
three auxiliary) parents DE crossover operator can create

one offspring by using equation (12) [36]. The index pri-
mary parent is set as pi, and the auxiliary parents are set as
a1, a2 and a3. The number of variables M in a chromo-
some is equal to 21 as described in section 5, and jr is a
random number (uniformly distributed) between 1 and M .
DE operator uses two tuning parameters, namely, F = 0.5
and CR = 0.9. Here, uj is a uniformly distributed ran-
dom number in [0, 1], the offspring solution is os, and the
subscript j denotes the jth variable. Then, os is given as
follows: cases

osj=

{
(a3)j + CR((a1)j − (a2)j) if uj ≺ F or j = jr

(pi)j otherwise
(12)

Each offspring has a corresponding index primary par-
ent. Thus, the size of offspring population is the same as
that of the parent population.

The offspring is mutated before evaluation by using the
polynomial mutation operator from the original NSGA-
II. A randomly generated number rm is used to decide
whether the mutation operation should be executed. If rm
is smaller than the mutation probability pm (pm = 0.2 in
this case), polynomial mutation will be applied. Here, xj
and x

′
j are set as the value of variable j before and after

the mutation, respectively. Meanwhile, rj is set as a uni-
formly distributed random number in [0, 1] and ηm = 20
is the distribution index for mutation. Then, x

′
j is given as

follows:

δq =

{
(2rj)

1/(ηm+1) − 1 , if rj ≺ 0.5

1− (2× (1− rj))1/(ηm+1) , otherwise
x

′
j = xj + (bj − aj)× δq

(13)
If x

′
j is higher than the upper bound bj or lower than

the lower bound aj , its value will be limited at the bound-
aries. Here, uj and rj are created by a chaotic logistic
map according to (10) instead of through random genera-
tion "rand()".

C. Chaotic disturbance operator
As the iteration process continues, the original NSGA-

II may lack diversity, and some solutions may be trapped
in the local optima. To increase the diversity of solutions,
chaotic disturbance operator is adopted in C-NSGA-II. At
every generation, after the crossover and mutation opera-
tion on the parent population, chaotic new individuals of
10% of the parent population are created by chaotic lo-
gistic map as in equation (11). These new individuals are
added to the evaluation and non-dominated ranked process.
The N number individuals of the next new generation are
selected from the parent population, offspring population,
and chaotic new individuals. Thus, each generation popu-
lation’s diversity increases, and some local optima trapped
situations can be avoided.
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Table 3. Application of chaotic operators

Operators
NSGA-

II
C-NSGA-

II-1
C-NSGA-

II-2
Chaotic

initialization × X X
Chaotic

crossover × X X
Chaotic
mutation × X X
Chaotic

disturbance × × X
Chaotic

local search × × X

D. Chaotic local search operator

One more chaotic operator remains for the C-NSGA-
II. After selecting the new individuals for the next genera-
tion, chaotic local search (CLS) operator will be executed
on the top 10% elite individuals. The basic idea of CLS
is searching the hypercube neighborhood of elite individu-
als, which ensures that solutions can escape from local op-
tima and that better individuals that move toward PS can
be found [33]. For each elite individual, CLS solutions can
be calculated by using the following equation:

xjc = xje + λg × (bj − aj)× (2× Lk − 1). (14)

where Lk is the chaotic vector produced by logistic map.
Twenty logistic map chaotic solutions from each elite in-
dividual are acquired at a time. The jth variable xjc in the
newly created chaotic solution can be calculated from the
original variable xje and the variable boundary constraints
are still efficient. Here, λg is set as 1/current generation.
Thus, the neighborhood searching space will decrease as
the generation increases. The 20 chaotic solutions are com-
pared with the corresponding elite individual. If a bet-
ter solution is found, the elite individual will be replaced.
Searching the neighborhood of elite individuals can dis-
cover better solutions. Then, solutions of C-NSGA-II will
move faster toward PS than the original NSGA-II.

7 SIMULATION RESULTS AND DISCUSSION

7.1 Simulation Environment and Performance
Metrics

The performance of the proposed C-NSGA-II is com-
pared with that of the original NSGA-II for the optimiza-
tion of fuzzy logic controllers. To compare the efficien-
cies of different chaotic operators, two stages of C-NSGA-
II are adopted, which are separately named C-NSGA-II-1
and C-NSGA-II-2. The application of the chaotic opera-
tors in different algorithms is detailed in Table 3.

For MOP, both convergence to PSand maintenance of
solution diversity should be considered. Two metrics that
refer to these two aspects are used.

1. Coverage of two sets [37]
Let X

′
, X

′′ ⊆ X be two sets of non-dominated solu-
tions. The function C maps the ordered pair (X

′
, X

′′
)

to the interval [0, 1]:

C(X
′
, X

′′
) :=

|{x′′ ∈ X ′′
;∃x′ ∈ X ′

: x
′ ≥ x′′}|

|X ′′ | .

(15)
The value C(X

′
, X

′′
) = 1 means that all the solu-

tions in X
′′

are dominated or equal to solutions in
X

′
. By contrast, C(X

′
, X

′′
) = 0 means no so-

lution in X
′′

is dominated or equal to solution in
X

′
. The value of C(X

′
, X

′′
) is not necessarily equal

to, 1 − C(X
′′
, X

′
). Thus, both C(X

′
, X

′′
) and

C(X
′′
, X

′
) have to be considered.

2. Spacing [38]
Metric spacing S is used to measure the range vari-
ance of neighboring vectors in the obtained solutions.
It is defined as follows:

S =

√√√√ 1

|X ′ | − 1

|X′ |∑

i=1

(
_
d−di)2 (16)

di = min
j

{
p∑

k=1

|fk(xi)− fk(xj)|
}

;xi, xj ∈ X
′

(17)
where i, j = 1, 2, ..., |X ′ |,

_
d is the average value of

all di, and p is the number of objective functions. A
smaller value of spacing means that the solutions are
more uniformly distributed.

Both NSGA-II and C-NSGA-II are implemented in M
language in Matlab/Simulink environment. These algo-
rithms can call the vehicle model established in Simulink
[28] to run the ECE driving cycle and obtain the EFC and
emission data as the objective values. We adopt N = 100
individuals to form the initial population and set the termi-
nating condition as 50 generations. Any solution that can
not satisfy the kinetic constraints of the target HEV will
be eliminated and replaced by a chaotic-based new one.
All simulations are executed in Matlab 7.12.0 (R2011a) on
an Intel(R) Core(TM)2 T5450 1.66 GHz PC with 2.5 GB
RAM.

7.2 Simulation Results

In this study, the four objectives are the accumulated
output values of the target HEV model in an ECE driving
cycle: EFC and HC, CO, and NOx emissions. Figure 11
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Fig. 11. Simulation results of non-dominated solutions of NSGA-II, C-NSGA-II-1, and C-NSGA-II-2 (a) EFC-HC, (b)
EFC-CO, (c) EFC-NOx, (d) HC-CO, (e) HC-NOx, (f) CO-NOx

presents the results of six two-objective combinations from
these four objectives. As shown in Figs. 11 (a), 11(b), and
11(c), C-NSGA-II-2 can find more concentrate dots espe-
cially in EFC axis at the same emission level than NSGA-
II and C-NSGA-II-1, while the other two have much scat-
tered dots which have higher values in the EFC axis. In

Fig. 11(d), HC and CO have similar variable trends: when
the solution has a small HC value, the CO value is also
small. In contrast, as shown in Figs. 11(e) and 11(f), NOx
value changes in an opposite trend from HC and CO. Thus,
when one solution outperforms in one or two objects, it
may have poor performances in other objects. This phe-
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nomenon can also be observed in the top of Figs.11 (a) and
11(b), the dots which have the best EFC values perform
poorly in the HC axis. Similarly, as shown in Figs. 11(e)
and 11(f), the dots which have the best HC or CO values
present worse values in NOx axis. This finding indicates
that the four objectives are conflicting in some cases, and a
solution with all four minimum objective values cannot be
found.
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Fig. 12. Simulation results of non-dominated solutions of
NSGA-II, C-NSGA-II-1, and C-NSGA-II-2 with EFC and
normalized emissions

As shown in Fig. 12, the three emission values are nor-
malized based on the minimum emission values found. To-
gether, the solutions of the three algorithms are presented.
C-NSGA-II-2 can obviously find better and more concen-
trated solutions than the other two. However, determining
which between NSGA-II and C-NSGA-II-1 performs bet-
ter based only on this figure is difficult. Table 4 presents a
comparison of these three algorithms’ performance by us-
ing two metrics. Larger coverage value of C (B,A) than
C (A,B) means C-NSGA-II-1 has more solutions, which
dominate the ones in NSGA-II than converse. This result
means that the additional chaotic initialization, crossover,
and mutation operators can improve the performance of the
original NSGA-II. C-NSGA-II-2 outperforms both NSGA-
II and C-NSGA-II-1 on C metric, which indicates that
chaotic disturbance and local search operators can enhance
searching ability for better solutions. On the other hand, a
smaller spacing metric means better solution distribution.
The results in Table 4 show that C-NSGA-II-1 performs
best in the solution’s distribution. All results are averaged
over 10 runs.

C-NSGA-II-2 can find a series of Pareto trade-off so-
lutions. Therefore, vehicle control engineers can use their
own criteria to select a solution that meets their goals. The

Table 4. Comparison among NSGA-II, C-NSGA-II-1, and
C-NSGA-II-2

Algorithms
Coverage of
two sets (C) Spacing (S)

NSGA-II (A)
C (A,B) = 0.832
C (A,C) = 0.735 0.0275

C-NSGA-II-1 (B)
C (B,A) = 0.902
C (B,C) = 0.778 0.0221

C-NSGA-II-2 (C)
C (C,A) = 0.847
C (C,B) = 0.873 0.0282

Table 5. Comparison among four objectives found by the
desirable solution and the default solution

Objectives
Default
solution

Desirable
solution Reduction

EFC (L/100km) 5.13 4.46 13.07%
HC (g/km) 0.356 0.334 6.29%
CO (g/km) 1.822 1.630 10.52%

NOx (g/km) 0.198 0.164 17.12%

following equation was used to find the desirable solution:

G = 0.7× FC+

0.3× normalizedEmissions(HC + CO + NOx)

(18)

Table 5 shows a comparison of four objective values
found by using the desirable solution (obtained by finding
minimum G) and the default solution.

As shown in Table 5, the new desirable solution found
by C-NSGA-II-2 outperforms the default solution in all
four objective values. This result means that if the parame-
ters of this solution are adopted in the HEV controller’s de-
sign, better performance can be achieved in terms of both
EFC and emissions. The MFs of three optimized FLCs
from this solution are presented in Fig. 13. The optimal
switching speed is Z21 = 7.5 (km/h) in this solution.

A comparison between Figs. 13 and 10 indicates that
the optimal solution’s parameters obtained by using C-
NSGA-II-2 are quite different from the default ones. Note
that the optimal objects (including fuel economy and emis-
sions) are conflicted with each other; the forms of MFs
are changed to regulate the working points of the power
components according to the specific optimization crite-
rion. Thus, if the selected criterion is changed, such as
the weighting factors of Eq. (17) are changed, another so-
lution could emerge, and the optimal parameters will also
change. This finding demonstrates that control engineers
can select their desirable solutions from the population of
trade-off solutions based on different criteria.
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Fig. 13. Membership functions of three optimized FLCs (a) ICE Speed, (b) K, (c) BSOC, (d) Tice, (e) P_req, (f) USOC,
and (g) Pro_UC

Simulation results show that chaotic operators can en-
hance the searching ability of the original NSGA-II, and
better solutions can be found by C-NSGA-II. C-NSGA-II
can improve the FLCs of target HEV. Therefore, better per-
formance of the target HEV can be expected.

8 CONCLUSION

A fuzzy logic-based EMS is developed for proper man-
agement of power distribution in a parallel HEV, which
is equipped with a battery/UC-based HESS. Fuzzy system
parameters are optimized by using a new genetic algorithm
to reduce fuel consumption and three emissions (HC, CO,
and NOx) over the ECE driving cycle.

Simultaneously reducing fuel consumption and emis-
sions is a typical multi-objective optimization problem,
and many local optima could be present. In this study,
chaotic operators, including chaotic initialization, chaotic
crossover, chaotic mutation, chaotic disturbance, and
chaotic local search, are introduced into NSGA-II. The
new algorithm, which is named C-NSGA-II, and the orig-
inal NSGA-II are adopted in the optimization of fuzzy
logic controllers, and their performances are compared. C-
NSGA-II-1, which is the first stage of C-NSGA-II, has bet-

ter searching ability than NSGA-II. Meanwhile, C-NSGA-
II-2, which is the second stage of C-NSGA-II, consistently
outperforms the first two algorithms. This result indicates
that chaotic initialization, chaotic crossover, and mutation
operators can enhance the performance of NSGA-II. In ad-
dition, chaotic disturbance and local search operators can
further improve local searching ability to find better solu-
tions. The ergodicity and pseudo-randomness of chaos can
help C-NSGA-II to efficiently address the multi-objective
optimization problem in the HEV domain. Adopting C-
NSGA-II can create an optimal fuzzy-based EMS, which
outperforms the default EMS in terms of fuel consumption
and emissions.

Future work will use the tuning process of the fuzzy
EMS in different driving cycles, and more optimal results
will be obtained. Based on those results, an algorithm
that can recognize current driving situations and utilize the
optimal results will be developed for an optimal onboard
EMS.
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