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Models for estimating uniaxial compressive strength and elastic modulus

The most significant methods for estimating the uniaxial compressive strength 
and Young’s modulus of intact rock material, formulated in the scope of numerous 
previous studies, are briefly presented in the paper. The proposal for classification 
of these methods, according to which they can generally be divided into simple and 
complex methods, is also presented. Simple methods include various diagrams and 
tables and the use of simple regression equations, while complex methods comprise 
the use of multiple regression equations, fuzzy logic models, neural networks, 
evolutionary programming, and regression trees.
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Pregledni rad
Zlatko Briševac, Petar Hrženjak, Renato Buljan

Modeli za procjenu jednoosne tlačne čvrstoće i modula elastičnosti

U ovom radu ukratko je izložen pregled najznačajnijih metoda za procjenu jednoosne 
tlačne čvrstoće i Yangovog modula elastičnosti intaktnog stijenskog materijala koje 
su nastale u okviru mnogobrojnih istraživanja. Iznesen je prijedlog podjele metoda 
prema kojemu se one u osnovi mogu podijeliti na jednostavne i složene metode. 
Jednostavne metode uključuju različite dijagrame i tablice te primjenu jednadžbi 
jednostruke regresije, a složene metode uključuju primjene jednadžbi višestruke 
regresije, modela neizrazite logike, neuronskih mreža, evolucijskog programiranja i 
regresijskog stabla. 

Ključne riječi:
procjena, jednoosna tlačna čvrstoća, Yangov modul elastičnosti, intaktni stijenski materijal

Übersichtsarbeit
Zlatko Briševac, Petar Hrženjak, Renato Buljan

Modelle zur Bewertung der einachsigen Druckfestigkeit und des 
Elastizitätsmoduls

In dieser Arbeit wird ein Überblick der wichtigsten Methoden zur Bewertung der 
einachsigen Druckfestigkeit und Young’s Elastizitätsmodul, die im Rahmen zahlreicher 
Untersuchungen entstanden sind, bei intaktem Felsmaterial gegeben. Es wird ein 
Vorschlag zur Aufteilung in einfache und komplexe Methoden gegeben. Einfache 
Methoden umfassen verschiedene Diagramme und Tabellen, sowie die Anwendung von 
Einzelregressionsgleichungen. Komplexe Methoden beziehen sich auf die Anwendung 
von Mehrfachregressionsgleichungen, Modelle der Fuzzy-Logik, neuronale Netze, 
evolutionäre Programmierung und Regressionsbäume.

Schlüsselwörter:
Bewerung, einachsige Druckfestigkeit, Young’s Elastizitätsmodul, intaktes Felsmaterial
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1. Introduction

Various investigations are normally carried out both in the 
scope of construction projects, and for making other technical 
interventions in the rock mass. These investigations routinely 
include realization of laboratory tests aimed at determining 
physicomechanical properties of intact rock material. At that, 
and in addition to the density of materials, one of the most often 
defined properties is the uniaxial compressive strength (UCS), 
and the Young’s modulus of elasticity (E). However, it often 
occurs that samples of the dimensions required for laboratory 
testing can not be extracted from such materials. That is 
why the need arose already at early stages of development 
of rock mechanics to determine the correlation of various 
physicomechanical properties of materials, so that one property 
can be estimated based of the value of another one. These 
interdependencies have proven to be very useful in preliminary 
stages of the planning and design activities. Many researchers 
have studied the possibility for estimating the UCS and E 
values based on values of other material properties. Although 
simple interdependencies were used in the beginning, current 
estimation methods are proving to be increasingly complex.

2. Estimate models

2.1. Tables and diagrams

In simplest cases, the UCS estimation can be made according 
to an index test based on the method recommended by the 
International Society for Rock Mechanics, as presented in Table 
1. This table also contains useful additions made by Marinos 
and Hoek [1]. In this case, the estimate is made using portable 
equipment (nail, knife, geological hammer) and an appropriate 

description is given as shown in Table 1. The strength index 
determined by point load test can assist in this estimate.

Figure 1.  UCS as related to porosity and velocity of ultrasonic waves 
for limestones, [2] 

Diagrams can also be quite useful in situations requiring rapid 
decision making. The diagram showing interdependence 
between the density, porosity and velocity of ultrasound waves 

Grade Description UCS IS(50) Field identification Rock types

R6 Extremely 
strong rock >250 > 10 Specimen can only be pull apart by a geological 

hammer
fresh basalt, chert, diabase, 
gneiss, granite, and quartzite

R5 Very strong 
rock 100 - 200 4 - 10 Specimen requires many blows of geological hammer 

to fracture it.

amphibiolite, sandstone, 
basalt, gabbro, gneiss, 
granodiorite, limestone, 
marble, rhyolite, and tuff

R4 Strong rock 50 - 100 2 - 4 Specimen requires more than one blow by geological 
hammer to fracture it.

limestone, marble, sandstone, 
and schist

R3 Medium 
strong rock 25 - 50 1 - 2

Cannot be scraped or peeled with a pocket knife; 
specimen can be fractured with a single firm blow of a 
geological hammer.

phyllite, schist, siltstone

R2 Weak rock 5 - 25 -
Can be peeled by a pocket knife with difficulty; shallow 
indentations made by firm blow with a point of 
geological hammer.

chalk, rock salt, claystone, marl, 
siltstone, schist

R1 Weak rok 1 - 5 - Crumbles under firm blows with point of geological 
hammer; can be peeled by pocket knife

highly weathered or altered 
rock, schist

R0 Extremely 
weak rock 0,25 - 1 - Indented by thumbnail. stiff fault gouge

UCS – uniaxial compressive strength [MPa]; IS(50) – strength index [MPa]

Table 1. Determination of uniaxial compressive strength by hand held accessories
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(Figure 1), presented by Price [2], can be used to make a rough 
estimate of the UCS value of limestone material.
The best known diagram for the relationship between E and 
UCS is the one presented by Deere and Miller [3] (Figure 2).

Figure 2 UCS to E ratio, [3]

Figure 3. Schmidt hardness and UCS ratio, [4] 

The diagram published in Miller’s dissertation [4] (Figure 3) can 
be used to estimate the UCS value of intact rock based on the 
Schmidt hardness (SRH) and unit weight of rock, regardless of 
rock type that is being tested.

2.2. Simple regression equations

Simple regression equations comprise relations defined for the 
estimation of UCS and E values as dependent variables based 
on the tested value of another property that constitutes an 
independent variable. Various equations for estimating UCS 
and E values have been defined by regression analysis based 
on results obtained by testing physicomechanical properties 
of intact rock materials. Thus, for instance, Table 2 shows 
equations presented by various authors for some rock types, 
where UCS and E values are estimated based on a known 
porosity value.

Table 2. Uniaxial regression equations with porosity

Table 3. Simple regression equations with strength index 

Equation Type of rock Authors

UCS = 183 - 16,55 n granite Turgul and Zarif, 1999. [5]

UCS = 74,4 e -0,04 n sandstone Palchik, 1999. [6]

E = 10,10 - 0,109 n porous rocks Leite and Ferland, 2001. [7]

UCS = 210,1 e-0,821 n

E = 37,9 e– 0,863 n
shale, claystone, 
siltstone Lashkaripour, 2002. [8]

UCS = 273,1 e -0,076 n porous chalk Palchik and Hatzor, 2004. [9] 

UCS = 195,0 e -0,21 n sandstone Tugrul, 2004. [10]
UCS - unconfined compressive strength [MPa]; E - elastic modulus [GPa]; 
n - porosity [%]

Equation Type of rock Authors

UCS = 15,3 IS(50) + 16,3 all rocks D’Andrea, and ost., 
1964. [11]

UCS = 16 IS(50)
sedimentary 
rocks

Read et all., 1980. 
[12]

UCS = (20 to 25) IS(50) all rocks ISRM, 1985. [13]

UCS = (od 14,5 do 27) IS(50) limestone Romana, 1999. 
[14]

UCS = 24,4 IS(50) hard rocks Quane and Russel, 
2003. [15]UCS = 3,86 IS(50)

2 + 5,65 IS(50) weak rocks

UCS = 7,3 IS(50)
1,71 limestone, 

sandstone, marl

Tsiambaos and 
Sabatakakis, 2004. 
[16]

UCS = 24,8 IS(50) - 39,6 rocks with n < 1 % Kahraman and ost., 
2005. [17]UCS = 10,2 IS(50) + 23,4 rocks with n > 1 %

UCS = 10,58 IS(50)
1,14 all rocks

Tsallas and ost., 
2009. [18]

UCS = 10,46 IS(50)
1,12 sedimentary 

rocks

UCS = 6,65 IS(50)
1,34 igneous rocks

UCS = 18,15 IS(50)
metamorphic 
rocks

UCS - unconfined compressive strength ([MPa]; IS(50) - strength index [MPa]
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The determination of strength index IS(50) by point load test is 
an index test that has been developing from the very start for 
the very purpose of estimating the UCS value, so that there 
are many papers in which the corresponding equations are 
published. The most significant equations for estimating the 
UCS value of various rocks similar to those found in Croatia are 
presented in Table 3.
It should be noted with regard to Table 3 that exponential 
equations are more accurate than linear-form equations for 
almost all rock types, except for metamorphic rocks where 
linear equation has proven to be slightly more accurate [18].
Other than the strength index, the hardness of materials 
determined by Schmidt hammer has also often been used in 
these estimations. For instance, the UCS and E values can be 
successfully estimated based on Schmidt hardness. Some 
examples of equations developed for this purpose are presented 
in Table 4. Local experience in the UCS and E estimation [19], 
gained during intensive motorway infrastructure development 
in Croatia, when 518 boreholes over 7000 m in total length 
were analysed, reveal that the dependence between the UCS 
and Schmidt hardness greatly deviates in [4, 20, 21] from 
correlations presented in this paper.

Table 4. Simple regression equations with Schmidt hardness

Table 5. Simple regression equations with P-wave velocities

In addition, the study of velocity of passage of ultrasonic 
p-waves (vP) through samples of various materials has enabled 
establishment of various ratios, and hence also of simple 
regression equations that are shown in Table 5.
Simple regression equations that were used to estimate the 
UCS and E values were linear and nonlinear in form. It was 
established that better estimates were obtained with nonlinear 
forms such as general power equations or exponential 
equations. It should be noted that simple regression models 
are often evaluated in research papers through correlation 
coefficients and/or coefficients of determination. Almost 
ideal values have been obtained by some authors, and so the 
coefficients of determination for E and UCS amount to as much 
as 0.99 [21] and 0.98 [22], respectively. This can however be 
misleading as the use of more rigorous estimation methods 
such as the adjusted R2, root mean square error (RMSE), 
Akaike information criterion, or cross-validation, would 
certainly show that the models are in fact not so ideal. Practical 
usability of a model where complex sample preparation is 
required for the independent variable determination, such as 
in VP determination, is questionable.

2.3. Multiple regression equations

The multiple linear regression is generally presented with 
equation (1):

Y = β0 + β1X1 + β2X2 + ... + βkXk + ε (1)

where is:
Y - dependent variable
X1, X2, …, Xk - independent variables
βi  - denotes contribution of the independent variable Xi

ε - random error [27].

The linear form of the multiple regression equation completely 
dominates in models for estimation of the UCS and E values. 
Similarly, multiple regression models are predominantly 
developed for comparison with models based on other methods. 
Models presented below are the models made for rock material 
similar to that prevailing in Croatia, and the UCS estimation is 
given in MPa, while E is determined in GPa.
Thus Alvarez Grimaa and Babuška [28] prepared a multiple 
regression model (2) based on test results for materials 
classified as sandstones, limestones, dolomites, granites, and 
granodiorites. The multiple regression model is presented as 
follows:

UCS = – 246,804 + 0,386 Ls + 39,268 ρ – 1,307 n (2)

where is:
Ls - hardness defined with the Equotip hardness tester
ρ - density [kg/m3]
n - porosity [%].

Equation Type of rock Authors

UCS = 4,29 SRH – 67,52
E = 1,94 SRH – 33,93 33 limestone types Sachpazis, 1990 

[20]

UCS = 2,21e(0,07 SRH)

E = 0,00013 SRH3,09

chalk, two 
limestone types, 
sandstone, marble, 
syenite, granite

Katz and ost., 
2000. [21]

UCS = e(0,818+0,059SRH)

E = e(1,146+0,054 SRH) gypsum Yilmaz and Sendir, 
2002. [22]

UCS = 0,0028 SRH 2,584

E = 0,0987 SRH 1,5545

travertine, 
limestone, 
dolomitic limestone 
and schist

Yagiz, 2009. [23]

UCS - uniaxial compressive strength [MPa]; E - elastic modulus [GPa]; 
SRH - Schmidth hardness

Equation Type of rock Authors

UCS = 9,95 vP 1,21
dolomite, sandstone, 
marl, limestone, 
diabase, serpentinite

Kahraman, 2001. 
[24]

UCS = 31,5 vP – 63,7
E = 10,67 vP – 18,71

dolomite, marble 
and limestone

Yasar and Erdogan, 
2004. [25]

E = 2,06 vP
2,78 limestone, marble 

and sandstone
Moradian and 
Behnia, 2009. [26]

UCS - uniaxial compressive strength [MPa]; E - elastic modulus [GPa]; 
vP - P-wave velocity [km/s]
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A similar model (3) created by testing the same rock types was 
developed by Meulenkamp and Alvarez Grima [29]. This model 
is presented with the following equation:

UCS = 0,25 Ls + 28,14 ρ – 0,75 n – 15,47 GS – 21,55 RT (3)

where is:
Ls - hardness defined with the Equotip hardness tester
ρ - density [kg/m3]
n - porosity [%].
GS - grain size
RT - rock type.

Gokceoglu and Zorlu [30] prepared multiple regression models 
(4) and (5) for weak, fractured, and thin-bedded rocks that are 
represented with the following expressions:

UCS = – 225 + 0,0065 vP + 1,468 BPI + 4,094 IS(50) + 2,418 TS            (4)

E =  – 0,038 + 0,003 vP + 0,892 BPI + 3,568 IS(50)  (5)

where is:
vP -ultrasonic velocity of P-waves [m/s]
BPI - block punch strength index [MPa]
IS(50) - strength index defined by the point load test [MPa]
TS - tensile strength [MPa]

Karakus and Tutmez [31] developed the UCS estimation model 
(6) based on the testing of marble, limestone and dacite 
originating from Malatya and Elazig regions in Turkey. This 
model is represented as follows: 

UCS = - 35,9 + 0,89 SRH + 13,1 IS(50) – 1,68 vP (6)

where is:
SRH - Schmidt hardness
IS(50)  - strength index defined by the point load test [MPa]
vP - velocity of ultrasound waves [km/s].

Kahraman et al [32] developed the models (7) and (8) for tectonic 
breccias. These models are represented with the following 
expressions: 

UCS = – 35,09 – 0,33 VBP + 35,38 vS  (7)

E = – 103,88 – 0,16 VBP + 39,65 ρ + 4,2 vP + 4,33 vS (8)

where is:
VBP - the volume percent of fragments [%]
ρ - density [kg/m3]
vS - velocity of ultrasonic S-waves [km/s]
vP - velocity of ultrasonic P-waves [km/s].

Yilmaz and Yuksek developed the models (9) and (10) for natural 
gypsum [33]

UCS = – 23,859 + 0,48 SRH + 1,863 IS(50) + 0,248 w + 7,972 vP         (9)

E = 36,315 + 0,64 SRH + 2,254 IS(50)+ 0,935 w + 12,838 vP (10)

where is:
SRH - Schmidt hardness
IS(50)  - strength index defined by the point load test [MPa]
w  - water content [%]
vP  -velocity of ultrasonic P-waves [km/s].

Based on the analysis of limestones, marbles, and dolomites 
from Iran, Heidari et al [34] developed a nonlinear multiple 
regression model (11) for the estimation of E value. This model 
is represented with the following expression:

log E = – 0,85448 + 0,91326 log UCS + 0,03198 log n 
 + 0,16123 log vp – 0,22327 log ρ (11)

where is:
UCS -uniaxial compressive strength [MPa]
n - porosity [%].
vp  - velocity of ultrasonic Pp-waves [km/s]
ρ - density [kg/m3].

Using the most influential petrographic properties of materials, 
Manouchehrian et al developed the model (12) for estimating 
the UCS of sandstone [35]. The model is represented with the 
following expression:

UCS = 38 – 352,26 n – 5,3 Cfc + 10,6 Cf + 93,15 Mp (12)

where is:
n - porosity [%].
Cfc  - ferrous carbonate binder percentage [%]
Cf  - percentage of iron oxide in cement [%]
Mp  - percentage of mica [%].

Equations for estimating the UCS (13) and E (14) values which 
use, as independent variables, the frequently determined 
physicomechanical properties, were developed based on 
testing conducted on 29 types of carbonate rock materials from 
19 localities in the Republic of Croatia. 

UCS = - 222 + 0,0535 ρ + 0,7801 n + 13,76 IS(50) 

 + 1,752 SHRL + 0, 0061 vp 

E = - 182 + 0,0619 ρ + 0,7228 n - 0,459 IS(50) 

 + 0,5907 SHRL + 0,0073 vp

where is:
ρ - density [kg/m3]
n - porosity [%].
IS(50)  - strength index defined by the point load test [MPa]
SRH  -Schmidt hardness
vP  - velocity of ultrasonic P-waves [m/s].

(13)

(14)
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The equations (15) and (16) were developed for the mudstone 
and wackestone type limestones originating from Croatia [37].

UCS = -106,2093 – 0,04868 ρ + 11,5110 IS(50) + 0,052 vP (15)

UCS = -240,0109 + 1,5087 n + 11,5916 IS(50)+ 0,0522 vP (16)

where is:
ρ  - density [kg/m3]
n  - porosity [%]
IS(50)  - strength index defined by the point load test [MPa]
vP  - velocity of ultrasonic P-waves [m/s].

It can be seen from the above presented multiple regression models 
that researchers mostly used physicomechanical properties as 
independent variables, while petrographic properties of rock 
material were less often used. It is interesting to note that the 
density and porosity are used together as independent variables 
in the models (2), (3), (11), (13), and (14) although, due to great 
physical connection of these properties, it can not be claimed that 
these variables are independent from one another, as is required by 
the mathematical model of multiple regression.

2.4. Models based on fuzzy logic analysis

In the traditional "crisp" logic, a rational claim can be either true or 
false. According to fuzzy logic, no claim is fully true or fully false, but 
rather a "level of truthfulness" can be attributed to it. Rules have 
been set for using this logic, and these rules are a generalisation 
of normal Boolean algebra [38]. Although fuzzy logic was initially 
used in social sciences, it is now increasingly used in technical 
sciences as well, e.g. in risk management on construction projects 
[39], but also in various evaluations. Most significant and the most 
often used models based on fuzzy logic and fuzzy reasoning are 
the Mamdani and Sugeno models.
Based on Mamdani model, Gokceoglu and Zorlu developed a model 
for estimation of USC and E values based on the input values 
similar to those used in models (4) and (5) [30]. The same type of 
fuzzy model was used by Karakus and Tutmez for development of 
the UCS estimation model. The investigation was made for nine 
different rock types and for a total of 305 samples. The input data 
for the model were laboratory testing results as in model (6) [31]. By 
comparing fuzzy model with the multiple regression model, these 
researchers concluded that a better UCS estimation is obtained 
by using the fuzzy model [30, 31]. Alvarez and Babuska developed 
the UCS estimation model using theoretical premises from Takagi-
Sugeno model based on results of testing involving 226 intact 
rock material samples classified as sandstones, limestones, 
dolomites, granites and granodiorites. Input data were the same as 
independent variables from equation (2). Estimation results were 
compared with the multiple regression modelling results, and also 
with the results obtained via neural network that was established 
using the same input data. It was concluded that better estimation 
was obtained by fuzzy model compared to multiple regression 
model, while the neural network provided better estimation 

than fuzzy model for low and high UCS values [28]. Subsequent 
development of programming techniques resulted in the situation 
in which fuzzy models were not often developed on their own, but 
rather the fuzzy logic became a part of other methods, e.g. in neural 
networks.

2.5. Estimation by neural networks

Neural networks consist of the systems of input and output 
values constituting nodes or neurons and the links or synapses 
between them, through which attempts are made to artificially 
simulate the way the human brain functions. In most cases, 
neural networks are not realised as hardware systems but rather 
as software programs, i.e. using the programming code. Neural 
networks are not programmed as algorithms with accurately 
determined relationships, but rather as algorithms capable of 
learning through examples. They are presented with examples 
and solutions to these examples, and algorithms can then 
automatically generate empirical rules. Before such algorithms 
can be used for estimating certain values, computer programs 
have to be "trained" on as set of known and required values 
[38]. Neural networks are increasingly used for solving various 
problems and tasks in many areas and so, for instance, they are 
used in civil engineering in the design of timber structures [40], in 
water management [41], determination of liquefaction potential 
[42], design of railway embankments [43], etc.
The possibility of estimating UCS and E values using neural networks 
was analysed during study of carbonate rocks from 19 localities in 
the Republic of Croatia, from which a total of 425 samples were 
taken and tested in laboratory to determine their density, porosity, 
strength index, Schmidt hardness, UCS, and E. Thirteen multiple 
regression models and 65 neural networks type MLP (multilayer 
perceptron) and RBF (radial basis function) were developed in the 
program package Statistica 10. An extensive scientific literature was 
analysed in the scope of this research [36]. Due to a great number of 
neural network types presented by various authors, there are several 
possible ways for classifying neural networks for various areas 
of application. The authors of this paper consider, based on their 
experience, that the most appropriate is the simplified modification 
of the Gupta and Rao classification [44] (Figure 4), which primarily 
starts from the analysis of artificial neural networks used in the 
estimation of UCS and E values, which is presented in paper [36].

Figure 4. Classification of neural networks
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Meulenkamp and Alvarez developed the UCS estimation model 
based on the feedforward neural network in which the output 
error back propagation algorithm was used for training. Input 
values used in this model are similar to those used in model 
(3). The network was "trained" using the Levenberg-Marquardt 
algorithm [29]. Sonmeza et al described the use of artificial 
neural networks in the estimation of E value for different rock 
types, based on the input values of UCS and material density 
[45]. Kahraman et al used neural networks in the estimation of 
the UCS and E values for tectonic breccias. In the UCS estimation 
model, the neural network was structured as 2-3-1 (number of 
inputs, number of neurons in the hidden layer, output value). The 
network input was formed of the volume part of fragments and 
the velocities of ultrasonic S-waves. The network of the model 
developed for estimating the E value was structured as 4-3-1, 
and the input was formed of: volume part of fragments, density, 
velocity of ultrasonic S-waves, velocity of ultrasonic P-waves, 
roundness of fragments, and the average grain size factor [32]. 
The use of fuzzy neural networks in the estimation of UCS and 
E for natural gypsum was described by Yilmaz and Yuksek. Input 
parameters for the model were the following values obtained 
by laboratory testing: Schmidt hardness, strength index based 
on point load test, water content, and velocity of ultrasonic 
P-waves. The network was formed using the ANFIS systems 
and the program packages Matlab Version 7.1 and SPSS 10.0. 
After comparison of results, these authors concluded that the 
best results in the estimation of UCS and E values for gypsum 
rocks were obtained by the fuzzy type of ANFIS neural networks, 
and by the model with the feedforward type of neural networks, 
while results were the worst when the multiple regression 
model was used [33]. Heidari et al described the use of the MLP 
and RBF structured neural networks in the estimation of the E 
value for limestones, dolomites and marls from the Lorestan 
area in Iran. The following properties were input parameters 
for the model: density, porosity, velocity of ultrasonic P-waves, 
and uniaxial compressive strength. Better results were obtained 
by the model based on MLP architectures and the Levenberg-
Marquardt algorithm [34]. Based on the study of travertine 
originating from Iran, Dehghan et al developed models for the 
estimation of UCS and E values. Laboratory values of porosity, 
strength index, velocity of ultrasonic P-waves, and Schimdt 
hardness were used as input data. Models were developed 
using the principle of generalised regression neural networks 
(GRNN) and MLP networks trained using the output error back 
propagartion algorithm [46]. Using the set of 95 tests made 
for various rock types, Singh et al developed the fuzzy neural 
model (ANFIS) for estimating the modulus of elasticity, where 
input parameters were the strength index determined by point 
load test, density of materials, and water absorption [47]. 
Manouchehrian et al developed an artificial neural network 
model for estimating the uniaxial compressive strength of 
sandstone using petrographic properties [35].
Multiple regression models and neural networks were 
compared in publications [29, 32-36, 46], and it was concluded 

that better estimations are made by neural networks. The 
comparison was based on correlation coefficients involving 
measured and estimated UCS and E values, and the root 
mean square error (RMSE). In addition, the MLP architecture 
proved better than the RBF [35, 36] and the generalised 
model [46].

2.6. Estimation based on evolutionary programming

Genetic algorithms are inspired by the Darwin’s theory 
of natural selection and they even use the corresponding 
terminology. Here the problems are solved in several 
steps. In this algorithm, "genes" are various programming 
instructions. The program that gets more correct results 
for a number of specified sets obtains a better grade [38]. 
Baykasoglu et al applied advanced evolutionary programming 
techniques, namely the multi expression programming (MEP), 
gene expression programming (GEP), and linear genetic 
programming (LGP), in order to estimate the UCS of soft 
limestones in the region of Gaziantep in Turkey. The LGP 
model of evolutionary programming has proven to be the most 
efficient of these estimation tools [48]. Ozbeka et al described 
the use of the GEP model for estimating the UCS of basalt and 
tuff, and demonstrated that a good correspondence exists 
between experimentally determined data and results obtained 
through estimation [49]. Based on genetic programming, Beiki 
et al developed models for estimating the UCS and E values 
of carbonate rocks by testing samples collected at the Asmari 
Formation in Iran [50].
In the future, an increasing number of papers is expected to 
focus on the comparison of evolutionary programming models 
with other complex models. For the time being, evolutionary 
programming models have proven to be better than multiple 
regression models.

2.7. Estimation based on regression tree

The regression tree method, also known as the Decision Tree, 
enables estimation of numerical variables. It is used to create 
models that are simple to use and interpret. The parts of the 
tree are subsets formed of an input set of data according the 
values of one of predictor variables, so that individual predictor 
variables are approximately constant in each individual subset. 
The regression tree branches out depending on questions that 
can be answered with "yes" or "no" and the set of adjusted 
values of the variable that is being estimated. Each question 
establishes whether the predictor meets the requirement. 
Depending on answers to one question, either the next 
question is put or it is established that the adjusted value 
of the answer (variable being estimated) has been achieved. 
The process stops once the stop criterion has been achieved 
[51]. The regression tree method has been applied by Tiryaki 
for estimating the UCS of intact rock material extracted by 
mechanical excavation. Here, the predictor variables applied 
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are the density, NCB cone indent, and scleroscope hardness. 
He developed the model by testing forty-four samples that 
had a wide range of rock strength values, from very soft to 
very hard [52]. One of principal problems with regression trees 
is that the branching out and calibration of the tree is greatly 
dependent on the data that are used to develop the model. In 
other words, if the data are randomly divided into two parts, 
the results may differ considerably for the same input set.
Various regression tree development procedures aimed at 
increasing the model accuracy have been developed over 
time. Some of these methods are the bagging method and the 
random forest method. In the bagging methods, attempts are 
made to reduce variability of estimation results by generating 
a great number of samples from the initial set via sampling 
with replacement, which is followed by building model on each 
sample and calculating the average of individual estimations. 
The bagging can greatly improve the estimation accuracy, 
but the problem occurs in case a very strong i.e. dominating 
predictor variable appears, and then the models look similar to 
one another. This problem is avoided in random forests where a 
great number of trees is created based on samples chosen from 
the initial training set by random selection with repetition but, at 
every branching, the subset of predictors is randomly selected, 
and a relevant one is then chosen at the branching out step 
[53]. The models based on regression trees were developed for 
estimating the UCS values for the mudstone and wackestone 
type limestones from Croatia, and it was established that the 
best model was the one in which the random forest method was 
used for improving the estimation. At that, predictor variables 
were: density, effective porosity, strength index, Schmidt 
hardness, and velocity of ultrasonic P-waves [37].
As the regression tree is just being introduced in the UCS 
estimation, the contribution of this method will better be 
appreciated only through papers that are yet to be written. A 
positive aspect is that regression tree can make use of input 
predictors dependent on each other, and that there are no 
limitations that are present in multiple regression models.

3. Discussion

Based on papers published by other authors, and according to 
papers published by the authors of this study, including the 
paper [36] dealing with the UCS and E estimations, and paper 
[37] dealing with regression trees, the authors of this subject 
review wish to emphasize that most estimations were made in 
order to determine the UCS value, and then the E value, while 
other features are much less represented. The simplest way 
to classify the methods for estimating the UCS and E values 
is by complexity of procedure and the technology used in the 
estimation process. Consequently, the estimation methods 
can be divided into simple and complex ones (Figure 5).
The UCS or E values are estimated using simple methods via 
diagrams, tables or based on one type of index testing. On the 
other hand, complex methods make use of several types of 

test results, which serve as the basis for estimation. Complex 
computer programs are needed for implementation of these 
methods.

Figure 5.  Classification of methods for estimating physicomechanical 
properties of intact rock material 

The UCS and E estimations of intact rock material based on 
various diagrams, and in case of field identification by handheld 
accessories, provide rough and general values only, and these 
estimations are greatly influenced by subjective impressions 
of the assessor.
Simple regression equations provide relatively good estimation 
results, but are dependent on the type of rock for which they 
have been developed and, even within the same rock type, 
they are not able to cover all property variations. All this has 
resulted in a great number of equations published in literature, 
out of which not all can be used, as some are based on tests 
that have been modified in the meantime. In addition, when 
these equations are used, care must be taken about the range 
of values, both with regard to the value being estimated, and 
to the value on the basis of which the estimation is made.
The comparison of complex UCS and E estimation methods, as 
developed by numerous researches, shows a certain hierarchy 
as to success of estimation. Thus, for instance, multiple 
regression models present the biggest error compared to other 
complex-method models. However, these models are much 
simpler for practical application as they do not require the 
use of complex computer programs. In addition, the modelling 
using fuzzy logic provides better results in combination with 
neural networks, compared to the exclusive use of fuzzy 
models. Models based on neural networks have so far proven 
to be the most useful tool for the UCS and E estimation. The 
evolutionary programming models, and the models based on 
regression tree, have a considerable potential with regard to 
their estimation capabilities. They have so far proven to be 
better than multiple regression models.
Although complex estimation models exhibit more favourable 
success parameters compared to simpler models, these 
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simpler methods should not be neglected as estimations are 
actually made at preliminary design stages. This primarily 
concerns development of simple regression equations as 
they are simple to use and are also sufficiently accurate for 
preliminary stages of design. Although complex methods 
for estimating the UCS and E are still not widely used in 
engineering practice as they are developed only by researchers 
in their research projects, an increasing presence of modelling 
based on complex methods may be expected in the future due 
to an increasing availability of commercial program packages 
(Statistica, Matlab) that enable development of complex 
models. As researchers are increasingly programming their 
own applications for such estimations, they will very probably 
become available through Internet for testing purposes, which 
will enable even wider application of complex estimation 
methods. In complex modelling, one should be guided by 
practical engineering values and avoid the use of input 
parameters that are difficult to obtain, as their determination 
requires complicated preparation of samples.

4. Conclusion

This paper confirms that the real need for estimation of 
physicomechanical properties of materials, especially in specific 
preliminary phases of engineering design, does not imply 
replacement of testing, but rather that these estimations serve 
as an extension and verification of some specific data.
Simpler modelling methods should not be neglected in future 
modelling activities, which namely concerns simple regression 
equations as they are easy to use and are accurate enough in 
the preliminary stages of design.
As for complex methods, a particular care should be taken to 
avoid the use of input parameters in form of physicomechanical 
properties as their determination requires a complex 
preparation of samples. It would be advisable to use the values 
of density, porosity, strength index, and Schmidt hardness, and 
to compare them with other material properties that can easily 
be determined, such as the textural and structural description 
of intact rock material.
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