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Artificial intelligence (AI) systems have opened a new horizon to analyze wa-
ter engineering and environmental problems in recent decades. In this study per-
formances of ordinary kriging (OK) as a linear geostatistical estimator and two 
intelligent methods including artificial neural networks (ANN) and adaptive neu-
ro-fuzzy inference system (ANFIS) are investigated. For this purpose, geographi-
cal coordinates of 120 observation wells that located in Tabriz plain, north-west of 
Iran, were defined as inputs and groundwater electrical conductivities (EC) were 
set as output of models. Eighty percent of data were randomly selected to train 
and develop mentioned models and twenty percent of data used for testing and 
validating. Finally, the outputs of models were compared with the corresponding 
measured values in observation wells. Results indicated that ANFIS model pro-
vided the best accuracy among models with the root mean squared error (RMSE) 
value of 1.69 dS.m–1 and correlation coefficient (R) of 0.84. The RMSE values in 
ANN and OK were calculated 1.97 and 2.14 dS.m–1 and the R values were deter-
mined 0.79 and 0.76, respectively. According to the results, the ANFIS method 
predicted EC precisely and can be advised for modeling groundwater salinity.

Keywords: artificial intelligence, ordinary kriging, electrical conductivity, Tabriz 
plain, groundwater

1. Introduction

Groundwater is the main resource for crops irrigation, drinking water and 
industry demands in the arid and semiarid regions. Irrigation with poor quality 
water can change the physical and chemical properties of the soils and conse-
quently cause soil salinity and crops yield reduction (Ramsis et al., 1999). 
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Although at the first glance it seems that environmental effects on groundwater 
are less than on the surface water, studies have proved that quantity and quality 
of groundwater are also affected by environmental factors as much as surface wa-
ter resources (duNing et al., 2007). In some cases these effects are even more se-
vere and permanent (Chandrasekharan et al., 2008). Another important issue in 
relation with these issues is the spatial variation of groundwater quality. Thus, 
groundwater quality cannot be assumed constant in the whole aquifer (Sun et al., 
2009). determination of the groundwater salinity of an aquifer is a time-consum-
ing and expensive process. Therefore the estimation of groundwater salinity is 
very important at unsampled locations. Recent advances in the non-classical 
methods have increased tendency to use spatial statistics or geostatistics for bet-
ter understanding of spatial changes. Opposed to deterministic statistical meth-
ods, the theoretical basis of geostatistics is assumes that the data and observa-
tions are not random but spatially correlated (Chandrasekharan et al., 2008). 
Geostatistical analyses have a key role in sustainable management of groundwa-
ter by identifying patterns and quantities at unsampled locations and providing 
estimated input parameters at regular grid points from random measurement lo-
cations (Kumar, 2007). Also, the geostatistics is useful method for handling spa-
tially distributed data, such as soil (Cemek et al., 2007; Gokalp et al., 2010) and 
groundwater contaminations (Arslan, 2012; Nas and Berktay, 2010). Kriging as 
one of the geostatistical methods is completely random linear model that is devel-
oped based on probability theory. It includes different approaches: simple kriging, 
ordinary kriging, discjunctive kriging, universal kriging and indicator kriging.

The difference between kriging and other interpolation methods like inverse 
distance weighted (Idw) is that kriging uses the variance of the estimated val-
ues (Buttner et al., 1998). Kriging has been broadly used in geology, hydrology, 
environmental monitoring, atmospheric sciences and pedology for interpolation 
of spatial data (McBratney et al., 1982; Stein, 1999; poon et al., 2000; Gringarten 
and deutsch, 2001; Jost and et al., 2005; Kholghi and hosseini, 2009; Oliver and 
webster, 2014; Jeihouni et al., 2015).

Based on yimit et al., (2011), kriging method has been used for mapping sa-
linity of groundwater resources in China. In another research, Theodossiou and 
latinopoulos (2007) used kriging to estimate the level of groundwater in 
Anthemountas Basin of northern Greece. hooshmand et al., (2011) used kriging 
and co-kriging to estimate the absorption of sodium and chloride in groundwater 
of Bukan (north-west of Iran). despite of a high uncertainty in geostatistical 
models such as, ordinary kriging (OK) at unsampled locations, they are common 
methods for groundwater salinity mapping (hossain et al., 2007).

Soft computing (SC) is developing methodology, which aims to exploit toler-
ance for vagueness, uncertainty, and partial truth to attain robustness, and 
traceability (Kabiri-Samania et al., 2011). Expert systems and artificial intelli-
gence algorithms are relatively new subset of SC methods. Artificial neural 
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network (ANN) models are able to solve highly nonlinear problems (Khashei-
Siuki and Sarbazi, 2013). In the last two decades the application of ANNs in the 
field of hydrology and water resources has been documented in many papers 
(Flood and Kartam, 1994; Gupta et al., 2000; Kazemi and hosseini, 2011; 
yesilnacar and Sahinkaya, 2012; pektaş and doğan, 2015).

ANNs are computational techniques based on theories of the massive inter-
connection with neurons or nodes and parallel processing. They have been rec-
ommended for solving scientific problems (Salas et al., 2000). ANNs can be used 
if available data are sufficient for modeling complex systems.

According to previous studies, ANNs are useful for assessing changes in 
groundwater level (lallahem et al., 2005). ANN performed very well in modeling 
the groundwater in Kaki City of India (Krishna et al., 2008). Chowdhury et al. 
(2010) applied OK and ANN methods for zoning of groundwater arsenic contami-
nation and concluded that the neural network had better results than OK. 
yesilnacar et al. (2008) employed ANN to predict the nitrate concentration of 
groundwater in Turkey and showed that ANN has satisfactory results for model-
ing groundwater nitrate. 

Adaptive neuro-fuzzy inference systems (ANFIS) are noteworthy because 
they can learn the basic relations from numerical data, although the fuzzy rules 
can provide a clear linguistic description for the working of the model. Fuzzy sys-
tems present the possibility of integrating logical information processing with 
the noteworthy mathematical properties of general function approximators 
(Setnes et al., 1998). The main advantage of fuzzy logic is representing its knowl-
edge using simple IF-Then rules.

Many studies have discussed the hybrid technique by combining both ANN 
and fuzzy inference system (FIS) approaches due to ANNs non-linear structure 
and variables uncertainty in FIS model (Cheng and lee, 1999; hasebe and 
Nagayama, 2002; Kazemi and hosseini, 2011). Alvisi et al. (2006) predicted the 
water table by employing fuzzy logic and ANN methods.

Affandi and watanabe (2007) developed ANFIS and ANN based on the 
levenberg-Marquardt (lM) training algorithm to predict the daily fluctuation of 
groundwater level. They did not find significant differences between the two ap-
proaches, and they concluded that soft computing algorithms can predict the 
groundwater daily level with high accuracy.

Tutmez et al. (2006) used ANFIS for modeling groundwater electrical con-
ductivity (EC) from groundwater compositions. They showed that ANFIS with a 
few data has better capability to model EC than regression based conventional 
methods. Kholghi and hosseini (2009) compared both ANFIS and OK to esti-
mate groundwater level and they found that ANFIS is more efficient than OK. 
Kazemi and hosseini (2011) studied OK, ANN and ANFIS for interpolating 
heavy metals in the Caspian Sea and they reported that ANFIS is the model 
with the lowest simulation error.
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In Iran, a large percent of irrigated fields is affected by the groundwater 
quality. The main goal of this study is to compare applications of different meth-
ods including OK, the best linear unbiased estimator, ANN as a learning method 
that can be generalized to non-linear spatial model at unsampled locations, and 
ANFIS, as a combination of neural networks and fuzzy logic, for EC spatial 
estimation.

2. Materials and methods

2.1. Study area

Tabriz plain aquifer is located in north-west of Iran, with an approximate 
area of 2100 km2. This plain lies between latitude 37° 53´ to 38° 12´ N and longi-
tude 45° 55´ to 46° 45´ E. The climate of the area is semi arid and average annual 
precipitation is 228 mm. Groundwater quality data of 120 observation wells in 
this aquifer (Fig. 1), which has been collected by the Ministry of Energy of Iran 
from 20th August to 18th September 2013, were used in the present research.

Figure 1. Study area and sample wells distribution.

2.2. Interpolation methods

This study focused on three specific spatial interpolation methods including 
OK, ANN and ANFIS. The longitude and latitude of wells defined inputs and EC 
set an output for each method. In all models 80% of the data set was used for 
model training, while 20% of data was used for testing and validating of the pre-
dicted results. Brief explanations of each method are presented in following 
sections.
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2.2.1. Ordinary kriging

Geostatistics is a branch of statistics focusing on spatial or spatiotemporal 
datasets. The theoretical basis of geostatistics has been described by Isaaks and 
Srivastava (1989) in details. The core of geostatistics is the variogram, which ex-
presses the spatial dependence between near observations (Isaaks and 
Srivastava, 1989). The variogram can be defined as one-half the variance of the 
difference between the attribute values at all points separated by lag distance (h) 
as follows:
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N is the number of pairs of observations separated by the distance h, where 
Z(xi) is the regional variable value at point i, Z(xi

 + h) is the regional variable val-
ue of other points separated from xi, by a discrete distance h; xi are the georefer-
enced positions where Z(xi) values are measured, and γ(h) is the estimated or 
“experimental” semi-variance value for all pairs at a lag distance h (Isaaks and 
Srivastava, 1989). 

Kriging is a method for linear optimum appropriate interpolation with a 
minimum mean squared error and it is the best linear unbiased estimator. The 
general equation of the kriging method is as follows:
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In order to achieve unbiased estimations in OK the following set of equations 
should be solved simultaneously (Ahmadi and Sedghamiz, 2007; uyan and Cay, 
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where Z(x0) is the kriging estimated value at location x0, Z(xi) is the known value 
at location xi, λi is the weight associated with the data, μ is the lag range coeffi-
cient, and γ( xi, xj ) is the value of variogram corresponding to vector with origin in 
xi and extremity in xj.

Kriging method has the best results when the data are normally distributed. 
Consequently, the dataset distribution was transformed to normal by applying 
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lognormal transformation. Histograms of the training dataset before and after 
applying the lognormal transformation are shown in Fig. 2. Semivariogram mod-
els were tested by geostatistical analyst in ArcGIS software to find the best fitted 
model to dataset.

а)

b)

Figure 2. The histograms of training dataset a) before lognormal transformation, b) after lognormal 
transformation.
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2.2.2. Artificial neural networks

The ANN is designed based on a simulation of the human brain. It is made of 
simple processing units referred to as neurons. ANN is based on theories of the 
massive interconnection with neurons and parallel processes, where model can 
learn and accept an input and present related output. By providing sufficient 
training data, ANNs can achieve a high degree of accuracy and learn most com-
plex relationships between input and output data. ANN is able to learn and gen-
eralize from experimental data although they are noisy, defective or have non-
linear pattern. unlike linear models, ANNs do not apply any limitations on 
statistical characteristics in the modeling process.

ANNs are useful in the cases where there is no idea about the complexity and 
structure of input and output data. Among ANN models, the ANN with back 
propagation (Bp) training algorithm (a multi-layer feedforward network trained 
according to error back propagation algorithm) is one of the most widely applied 
neural network model (li et al., 2012). The aim of this algorithm is to decrease 
total error (Chen et al., 2006).

In this study, an ANN with Multi-layer perceptron (Mlp) including four 
layers was used (Fig. 3). Network model trained by momentum optimization al-
gorithm and TanhAxon as transfer function were selected. This structure was 
selected based on trial and error. Two hidden layers were used to adjust the neu-
rons weights to achieve the desired output. For network model, longitude and 
latitude as the input and EC as the output were defined.

Figure 3. The structure of ANN used in this study.

2.2.3. Adaptive neuro-fuzzy inference system

ANFIS, introduced by Jang (1993), is an enhanced tool and data-driven mod-
eling technique for specifying the behavior of vaguely defined complex dynamical 
systems (Kisi, 2005; dastorani et al., 2010). The structure of adaptive network is 
based on fuzzy If-Then rules, fuzzy inference and neural networks (Cheng and 
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lee, 1999). ANFIS is a powerful universal approximation tool for vague and 
fuzzy systems (lee 2000). The fundamental structure of a FIS consists of five 
functional blocks and two conceptual parts including a FIS that make three parts 
(a rule base, a database, a reasoning mechanism). These blocks are shown sche-
matically in Fig. 4., and an adaptive network has a multilayer feed forward net-
work structure (Nayak et al., 2004).

Figure 4. Fuzzy interface system (Jang, 1993).

For the simplicity, it is assumed that the FIS under consideration has two 
inputs (x and y), longitude and latitude, and one output (Z) is EC. The architec-
ture of ANFIS consists of five layers (Fig. 5), and the functions corresponding to 
nodes of the same layer are similar. Each input has two rules (A1 and A2, B1 and 
B2) in the first layer (input nodes), which can generate two rules in the second 
layer (rule nodes). A brief sketch of the operations of the five layers is given in the 
following (Jang, 1993):

Figure 5. ANFIS architecture.
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Layer 1: input nodes
Every node i in this layer is used to perform a membership function:

 O A xi i
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where x is the input to node i, and Ai are linguistic labels characterized by appro-
priate membership function  mAi; {ai, bi, ci} is the parameter set.

Layer 2: rule nodes
In this layer, every node is a circle node labeled Π which multiplies the in-

coming signals and sends the product out (6): 
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Layer 3: average nodes 
The i-th node’s output in this layer is the ratio of the i-th node’s output from 

the previous layer to the total 
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Layer 4: consequent nodes
In this layer, the first-order Sugeno fuzzy model is considered as a fuzzy in-

ference system:

 O w f w p x q y ri i i i i i i
4 = = + +( )  (8)

where {pi, qi, ri} is the parameter set in the consequent part of the first-order 
Sugeno fuzzy model.

Layer 5: output nodes
A single node computes the overall output by summing all incoming signals. 

Consequently, the defuzzification process transforms each rule’s fuzzy results 
into a crisp output in this layer (9).
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The network training was based on supervised learning. The aim was to 
train adaptive networks to be able to approximate unknown functions given by 
training data set and then find exact values of the parameters. unique charac-
teristics of ANFIS are its hybrid-learning algorithm, the gradient descent meth-
od and the least-squares method, to optimize the function parameters. In this 
study the trapezoid-shaped membership function (trapmf) with membership 
function (MF) numbers of [5 4] were used using hybrid optimal model. The MF 
type and number of MFs were selected based on trial and error. The result shows 
that trapmf with MF numbers of [5 4] type provides precise outputs and is opti-
mum. Therefore, this mf was selected for modeling.

2.3. Model evaluation

Several parameters can be considered for the evaluation of groundwater EC 
estimations. In this investigation for evaluating the studied models, correlation 
coefficients (R) and root mean squared error (RMSE) were used as statistical 
criteria.

lower values of RMSE correspond to satisfying fit between data. If the main 
purpose of the model is prediction, RMSE is the best criterion for evaluating the 
accuracy of predicted values. The equations 10 and 11 were used to calculate the 
RMSE (Alsamamra, 2009) and correlation coefficients:
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where zp are predicted and z0 are observed data and n is the number of 
observations.
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3. Results and discussion

In this study, 11 semivariogram models (Circular, Spherical, Tetraspherical, 
Pentaspherical, Exponential, Gaussian, Rational Quadratic, Hole effect, 
K-Bessel, J-Bessel, Stable) were tested to find the best samivarigram model. 
According to results, the Tetraspherical semivariogoram had the best fit to EC 
dataset. Figure 6 shows the Tetraspherical semivariogram model fitted to the 
dataset. A summary of semivariogram model parameters for EC are presented in 
Tab. 1.

Figure 6. Fitted Tetraspherical semivariogram model to dataset.

Table 1. The best fitted Semivariogram model parameters for EC dataset.

variable Model Nugget Sill Range (m) n/s (%)
EC Tetraspherical 3.4753 6.1285 72019.1 56

The nugget to sill ratio can be used to classify the spatial dependence of 
groundwater EC. If the ratio is less than 25%, the variable has a strong spatial 
dependence. Between 25 and 75%, the variable has moderate spatial depen-
dence, and for the ratio greater than 75% the variable shows only weak spatial 
dependence. (Cambardella et al., 1994). This criterion has been used to evaluate 
the spatial dependence of groundwater EC (Arslan, 2012) and soil 137Cs element 
(Caro et al., 2013). According to Tab. 1, the spatial dependence of EC is moderate 
in the study area.
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Scatter plots of observed and estimated EC values in the test data process 
are shown in Fig. 7 and the complete results for the RMSE and R values of the 
investigated models are presented in Tab. 2.

Figure 7. Scatter plots of observed EC versus estimated values by studied models.

Table 2. The validation results of three applied models.

Method RMSE (dS.m –1) R

Ordinary kriging 2.14 0.764

Artificial neural networks 1.97 0.792

Adaptive neuro-fuzzy inference system 1.69 0.840
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As showed in Tab. 2, the ANFIS model had the minimum RMSE (1.69 dS.m–1) 
and maximum R (0.84) values between three investigated models. Conversely, 
OK had the relatively low accuracy due to high RMSE (2.14 dS.m–1 ) and low R 
(0.764) values. Also, from the Fig. 7 it is clear that the prediction of ANFIS model 
is closer to 1:1 line than those of the OK and ANN models. The ANN model esti-
mations are also less scattered than the OK.

Comparison of different methods results is conducted based on keeping the 
principle of parsimony (keep the minimum, maximum, and median values of 
original data in interpolated values) as a box plot, and distribution of errors in 
the study area, in 2-d plot (Kazemi and hosseini, 2011). Box plot of observed and 
values interpolated by ANFIS, OK, and ANN are shown in Fig. 8. In this plot, 
the minimum, maximum, upper and lower quintiles of data are summarized.

Figure 8. Box plots of observed and interpolated values of EC using ANFIS, OK, and ANN.

Simulated maximum and minimum values based on three methods, are less 
than corresponding observed values. The three models are able to simulate the 
minimum values of contaminants but only the ANFIS’s maximum predicted val-
ue was close to the observed maximum value. Median values of EC simulated by 
the three models were lower than observed median. In general, the range of pre-
dicted values by ANFIS was wider than the range of OK and ANN predicted 
values.

Figure 9 shows observed and predicted values for validation period. It sug-
gests that the ANFIS model generally performed better than the ANN and OK 
models, especially for the high EC values. 



204 M. JEIhOuNI ET AL.: SpATIAl ANAlySIS OF GROuNdwATER ElECTRICAl CONduCTIvITy ...

Figure 9. performance of ANFIS, OK, and ANN models results in the testing period.

According to ANFIS performances (Tab. 2 and Figs. 8 and 9) it is seen that 
the non linear spatial interpolation methods can simulate complex spatial pat-
terns better than other linear interpolation methods.

4. Conclusion

In this study, three spatial interpolation methods including linear estimator 
(OK) and artificial intelligence methods (ANN and ANFIS) were applied to esti-
mate groundwater EC. Models were developed for predicting groundwater EC in 
a certain location based on its geographical coordinates. Comparisons were done 
between models outputs in order to select proper model. The results indicated 
that ANFIS model performed the best in comparison with other models. Further, 
ANN gave better results than OK. Accurate estimation of groundwater EC can 
help to improve environmental management and successful decision making in 
water quality problems. hence, it can be concluded that ANFIS method can be 
successfully employed in the study area to estimate groundwater EC.
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SAŽETAK

Prostorna analiza električne vodljivosti podzemnih voda  
pomoću običnoga kriginga i metoda umjetne inteligencije  

(slučaj ravnice Tabriz, Iran)

Mehrdad Jeihouni, Reza Delirhasannia, Seyed Kazem Alavipanah,  
Mahmoud Shahabi i Saeed Samadianfard

u posljednjih nekoliko desetljeća sustavi umjetne inteligencije (AI) su otvorili nove 
horizonte u analizi problema vodnog inženjeringa te ekoloških problema. u ovoj studiji 
istražene su performanse običnog kriginga (OK) kao geostatističkog procjenitelja te per-
formanse dvaju naprednih metoda, prva od kojih je umjetna neuronska mreža (ANN), a 
druga je hibridni sustav ANFIS (Adaptive Neuro-Fuzzy Inference System) koji uz neuron-
sku mrežu uključuje i neizravnu (fuzzy) logiku. u tu svrhu, zemljopisne koordinate 120 
mjernih bunara lociranih u ravnici Tabriz u sjeverozapadnom Iranu definirane su kao 
ulazi, a električne vodljivosti (EC) podzemnih voda postavljeni su kao izlazi modela. 
Osamdeset posto podataka nasumce je izabrano za razvoj i obuku (učenje) navedenih 
modela, a dvadeset posto podataka iskorišteno je za testiranje i provjeru. Na kraju, izlazi 
modela su uspoređeni s odgovarajućim mjerenim vrijednostima u mjernim bunarima. 
Rezultati su pokazali da model ANFIS među svim promatranim modelima daje najbolju 
točnost s korijenom srednje kvadratne pogreške (RMSE) od 1,69 dS.m–1 i koeficijentom 
korelacije (R) od 0,84. Izračunate vrijednosti RMSE u modelima ANN i OK iznose 1.97, 
odnosno 2.14 dS.m–1, a koeficijenata korelacije 0,79, odnosno 0,76, respektivno. prema 
dobivenim rezultatima ANFIS metoda je precizno predvidjela električnu vodljivost te se 
stoga može preporučiti za modeliranje saliniteta podzemnih voda.

Ključne riječi: umjetna inteligencija, obični kriging, električna vodljivost, ravnica Tabriz, 
podzemne vode
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