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BONE REMODELING BY OSTEOCLASTS: WHAT HAVE WE
LEARNED FROM GENE KNOCKOUT STUDIES?

Martina Ba¹iÊ-KoretiÊ1 and Nikolina Ba¹iÊ-JukiÊ2

1Drago PeroviÊ Department of Anatomy, School of Medicine, University of Zagreb, and 2Department of Medicine,
Zagreb University Hospital Center · Rebro, Zagreb, Croatia

SUMMARY · Osteopetroses are disorders of bone remodeling resulting in increased bone mass.
Osteopetrosis abnormalities can include changes in osteoclast lineage, bone marrow microenviron-
ment, or both. Little is known about the mechanisms that regulate the activity of different bone cell
types. Various agents act on bone in a complicated web of interactions, with either synergistic or
diverse effects. Advances in molecular biology have enabled studies in knockout or transgenic ani-
mals, providing an insight into the mechanism of bone remodeling.
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Three major cell types are involved in skeletogenesis:
(1) osteoblasts, which are the main producers of special-
ized matrix that undergoes mineralization; (2) chon-
drocytes, which form cartilage, but some of them are fur-
ther involved in bone formation; and (3) osteoclasts,
which are involved in bone resorption. These cells are per-
manently active while bone remodeling occurs continu-
ously throughout the lifetime of a body.

Osteopetroses are disorders of bone remodeling char-
acterized by impaired osteoclast function, which results in
a net increase of skeletal mass. Osteoclastic defects in
osteopetrosis could result from abnormalities within the
osteoclast lineage itself (hematopoietic), from defects in
the microenvironment, or both.

Little is known about the molecular mechanisms that
regulate the activity of different bone cell types. Recently,
studies utilizing transgenic (overexpression of certain
genes) and knockout (lacking certain genes) mice have
provided an insight into the mechanism of action of dif-

ferent factors involved in the regulation of bone forma-
tion and remodeling. Osteopetrotic mouse is an excellent
model for investigation of the molecules involved in the
osteoclast development and function of cells and factors
involved in bone remodeling.

Osteoclasts and Their Origin

Osteoclasts are multinucleated cells of hematopoietic
origin, derived from precursors common to osteoclasts and
monocyte-macrophages, found only in bone1,2. It is likely
that resorptive cells are derived from the colony forming
unit · granulocyte-macrophage (CFU-GM). In vitro ex-
periments have shown that, under the influence of os-
teoclastogenic factors, stem cells differentiate into bone
resorptive cells. Direct contact between osteoclast precur-
sors and osteoblasts or stromal cells is indispensable for
osteoclast differentiation, while osteoclastogenesis-modu-
lating cytokines are produced in the bone microenviron-
ment by marrow stromal cells, immature monocytes, os-
teoblasts and their precursors, acting mainly on osteoclast
precursors and causing the release of other cytokines in a
paracrine fashion1. In vitro experiments have further de-
monstrated that, in the presence of osteoblasts or stromal
cells, even mature macrophages and monocytes can dif-
ferentiate into osteoclasts3.
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The prominent features of osteoclasts as well as of
macrophages are lysosomes and mitochondria in the cy-
toplasm. Osteoclasts, however, exert an extracellular ph-
agocytic activity, showing polarity and forming a ‘ruffled
border’. Ruffled border is present only in the membrane
area near the bone surface with a lot of deep invaginations
and projections from which vacuoles bud off and to which
lysosomes fuse. Ruffled border is surrounded by a clear
zone that lacks organelles, by which the osteoclasts are
attached to the bone surface. The ruffled border and clear
zone form a great secondary extracellular lysosome be-
tween bone and osteoclast4.

mor cells produce abundant MMP-9 (and MMP-2) that
could be responsible for infiltration and osteolysis of
bone7. The expression pattern and localization of MMP-
9 in physiologic and pathologic conditions suggest a key
role in the bone resorbing process8-10.

Gene Knockout Studies

Advances in molecular biology and biotechnology
have enabled determination of gene function by its overex-
pression (transgenic animals) or by studying animals la-
cking certain genes (knockout experiments)11,12.

Fig. 1. Osteoclast differentiation. Differentiation from myeloid precursor cells is under control of PU.1
and M-CSF. PU.1 also stimulates transcription of c-fms that encodes M-CSF receptor, while M-
CSF, along with Nf-κB, mi and c-fos, is responsible for osteoclast maturation. Functional mature
osteoclast is the  result of c-src, c-Cbl, Pyk2, cathepsin K and acid-phosphatase involvement.

Osteoclasts acidify the extracellular compartment fa-
cilitating in this way the dissolution of calcium phos-
phate hydroxyapatite and action of several proteinases
(serine protease, tartarate-resistant acid phosphatase
(TRAP), cathepsin K, matrix metalloproteinase-9
(MMP-9)). Acidification is achieved by the presence of
a unique osteoclast isoenzyme, vacuolar type H+ AT-
Pase. Carbonic anhydrase II is present in osteoclasts as
a cellular source of protons, deficiency of which leads to
osteopetrosis, renal tubular acidosis (RTA), and cerebral
calcifications4.

Essential step in bone resorption is digestion of type
I collagen. As many in vitro experiments have shown,

one of the key enzymes in bone remodeling is MMP-9
(gelatinase B), a member of the MMP family, which
degrades most components of extracellular matrix5,6.
MMPs could be obligatory for osteoclast migration to
the resorption sites, since in vitro experiments have
shown the migration of preosteoclast cells to be com-
pletely blocked by MMP inhibitors. MMP-9 is pro-
duced in osteoclasts and released into the subosteoclastic
space during resorption of bone matrix.  MMP-9 expres-
sion was significantly stronger in osteoporotic bones
compared to normal controls, suggesting an important
role in excessive resorption5. In multiple myeloma, tu-
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Several genes have been found to have an important
role in the pathogenesis of osteopetrosis mediating osteo-
clast differentiation and function (Fig. 1).

C-fos
C-fos is a nuclear proto-oncogene, a member of the

Fos family. All members of the Fos family (which includes
fosB, fra-1 and fra-2) are able to associate with the Jun
protein family members13,14. C-fos is one of the compo-
nents of the activator protein-1 (AP-1) transcription fac-
tor, a dimeric DNA binding protein15. Constitutive c-fos
expression is seen in a limited number of tissues: fetal liver,
amniotic and placental tissue, adult bone marrow, grow-
ing bone and developing central nervous system13,16.

Overexpression of c-fos in transgenic mice results in
dysregulation of bone growth, and in forming osteosar-
comas and chondrosarcomas17-19. Although expressed in
numerous tissues, c-fos knockout mice (-/-) develop se-

vere osteopetrosis as a dominant phenotype. In other cells,
other members of the Fos or Jun family probably compen-
sate for c-fos17.

It seems that in bone, c-fos exerts its effect on bipo-
tential macrophage/osteoclast precursors, because mutant
animals completely lack functional osteoclasts and their
immediate precursors, while the number of bone marrow
macrophages is increased relative to the wild type mice.
In other tissues, the macrophage count is normal. Fos mu-
tant microenvironment is capable of supporting normal
hematopoiesis, while the mutant phenotype can be res-
cued by bone marrow transplantation from normal litter-
mates17,18,20.

In vitro, hematopoietic cells of fos -/- mice fail to de-
velop into osteoclasts. Treatment with c-fos antisense in
coculture had negative effect on osteoclast differentiation,
but had no effect on bone resorbing activity after osteo-
clasts have already formed. In addition, infection of these
hematopoietic precursors with c-fos-expressing retrovirus
restores their osteoclastogenic capacity21.

Fra-1
Fra-1 (Fos related antigen 1) is a nuclear proto-onco-

gene, also member of the Fos related family of proteins.
It encodes protein that shares extensive amino acid ho-
mology with Fos, has leucine zipper domain and C-ter-
minal region that is conserved in the fos gene family22,23.
Fra-1 is involved in early transcription cell response to
extracellular stimuli and, like Fos (and all members of the
Fos family), binds cooperatively with Jun to form AP-
124,25. Interestingly, in cells of Fos lacking mice, gene
transfer of Fra-1 protein was most efficient of four Fos
proteins (c-Fos, FosB, Fra-1 and Fra-2) in rescuing osteo-
clast differentiation block. Furthermore, overexpression of
c-Fos in immortalized precursor cell lines did not enhance
osteoclastic differentiation, while Fra-1 increased substan-
tially the number of osteoclast-like cells. These data sug-
gest that Fra-1 has a role in osteoclast differentiation that
cannot be substituted by c-Fos and that it could be cru-
cial for regulation of AP-1 activity, which is essential for
osteoclast formation. Although c-Fos is essential for os-
teoclast formation, Fra-1 could be the factor needed for
full responsiveness of osteoclast precursors26,27.

C-src
C-src is a normal cellular gene. It encodes a 60 kd

tyrosine kinase localized on the cytoplasmic side of the
plasma membrane. The c-src proto-oncogen product,
pp60c-src, seems to play a vital role in impaired bone re-

Fig. 2. Nf-κB is a set of five transcriptional factors which form
dimers and are bound in cell cytoplasm to inhibitory proteins IκB
(α,β,ε). Once cells are stimulated, IκB is degraded, allowing NF-
κB to enter the nucleus and activate specific gene transcription.
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sorption because pp60c-src-/- mice develop osteopetro-
sis, and neither of the src-related proteins (like c-fyn, c-
lyn) can compensate for pp60c-src in osteoclasts28-30. A
gene derived from c-src, called v-src, is responsible for the
formation of  sarcoma of viral etiology. In mouse, src is
expressed in all cells at variable levels. The highest level
of expression is in platelets and neuron growth cones,
where it is found in two different forms, one of which
displays higher kinase activity. Src family kinases associ-
ate with c-fms (receptor for colony stimulating factor 1
(CSF-1)), and both src and c-fms kinases may be involved
in a common signal transduction in osteoclasts. Src fam-
ily members may be able to compensate for each other in
many cell types. This, however, is not the case in osteo-
clasts31. How c-src controls osteoclast function, is not fully
understood. Evidence that there are downstream proteins
in c-src signaling pathway, such as c-Cbl and Pyk2, has
been recently presented. Both c-Cbl (proto-oncogene
product) and Pyk2 (pyruvate kinase 2) are phosphorylated
by src kinase and are required for osteoclast adhesion and
bone resorption32-35.

In c-src knockout (-/-) animals, the osteoclast lineage
is intact but the cells are functionally impaired and are
unable to resorb bone. In addition, src activity could be
involved in the regulation of cathepsin-K, cathepsin-L
and cathepsin-B proteases that are essential in degrading
the organic phase of bone36.

C-src -/- mice develop osteopetrosis, have shorter
bones with partial absence of bone marrow, and their in-
cisors fail to erupt. Though osteoclasts in bone marrow
can be identified, resorption is minimal to absent, and on
electron microscopic examination osteoclasts from c-src
nullmutant mice contain no ruffled membrane. In vitro
experiments have shown that osteoclasts from src mutants
fail to form bone resorption pits, suggesting that the lack
of bone resorption is intrinsic to osteoclasts and not re-
flective of the bone microenvironment31,37,38.

Op/op
Animals with op/op mutation fail to produce com-

petent macrophage colony stimulating factor (M-CSF),
and show a failure in generating monocytes, macroph-
ages and osteoclasts39. M-CSF is one of the cytokines
required for normal osteoclast formation and is normally
produced by fibroblasts, uterine epithelial cells and by
the decidual layer of placenta. It provides a signal requi-
red for the survival, proliferation and maturation of cells
with osteoclast characteristics, as shown in many in vitro
experiments40,41.

In op/op mice, both fibroblasts and osteoblasts are
defective in producing active M-CSF. Its mRNA is
present at normal levels, but the protein is aberrant. The
op mutation maps to a single base pair insertion in the
coding region of the M-CSF gene, resulting in insertion
of a stop codon 21bp downstream producing a nonfunc-
tional protein. op/op fibroblasts produce only granulocyte-
macrophage colony stimulating factor (GM-CSF)42,43.
This results in a severely reduced number of monocytes,
tissue macrophages and osteoclasts. Osteoclasts that do
differentiate are larger, but their function is impaired44.
Studies showed that daily injections of M-CSF in mice
corrected cell count of affected cell lines. However, the
number of macrophages in the ovary, uterus and synovia
did not increase suggesting existence of differentiation
pathways other than CSF-1 dependent one44.

The microenvironment in which these cells develop is
defective45. It is likely that other cytokines compensate for
the lack of active M-CSF, as mutant mice recover by week
2246-48.

Mi/mi
Osteopetrotic microphthalmia (mi/mi) mutant mice

have a number of defects, e.g., loss of pigmentation, de-
creased number of mast cells, deafness, reduced eye size,
and impaired bone resorption49-51. Mutations in mi gene
in humans are associated with Waardenburg’s syndrome
type 2, an inherited disorder characterized by hearing loss
and impaired pigmentation50,51. The mi gene encodes a
member of basic-helix-loop-helix leucine zipper (bHLH-
ZIP) family of transcription factors called mitf (mi-
crophthalmia transcription factor). Two mutations of mi
gene produce altered proteins that do not bind DNA and
act as negative alleles in osteoclasts leading to osteoscle-
rosis50. Osteoclasts from mutant animals differentiate
normally but are significantly smaller with smaller clear
zones and abnormal ruffled border52. There are fewer
normal, multinucleated osteoclasts, while the number of
less efficient, mononucleated cells is increased53,54.

Granulocyte Macrophage · Colony stimulating
Factor (GM-CSF -/-)

GM-CSF was defined by its ability to stimulate colo-
nies of granulocytes and macrophages in cell cultures.
However, it acts on many cell types including hematopoi-
etic stem cells, megakaryocytes, erythroid progenitors and
eosinophils55. In vitro studies showed a significant increa-
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se in TRAP (tartarate resistant acid phosphatase, a marker
of osteoclasts) positive cell count in response to GM-CSF
treated progenitors, significant even when compared to
M-CSF treated progenitors56,57. Given intravenously,
murine GM-CSF caused leukocytosis in peripheral blood
and had a myeloproliferative effect in rat bone marrow, but
its effect in marrow was lesser as compared to M-CSF or
G-CSF alone58. Interestingly, in GM-CSF nullmutant
mice, skeleton develops normally and osteoclast differen-
tiation occurs, suggesting that the action of GM-CSF may
thus be compensated by another cytokine in vivo. Possible
candidates include interleukines -1 and -3 (IL-1, IL-3)
and tumor necrosis factor (TNF)59-61.

PU.1 -/-
PU.1 (Spi-1, Sfpi-1) is a specific transcription factor

regulating expression of many genes in myeloid and B-
cells62, with a very important role in hematopoiesis63,64.
In myeloid cells, PU.1 regulates transcription of c-fms and
Mac1 proteins that are central to the monocyte pheno-
type. PU.1 is, together with c-Fos, essential for differen-
tiation into osteoclast lineage65-67. Expression of PU.1
parallels induction of osteoclastogenesis in vitro after
treatment with 1.25(OH)2D3 and dexamethasone, and
is expressed throughout the temporal span of osteoclasto-
genesis68.

Animals mutant for PU.1 have mature erythrocytes,
megakaryocytes and T cells but no mature myeloid or B
cells, and die from septicemia within 2 days following
delivery62,69. These animals also develop severe osteo-
petrosis in all bones including vertebrae, with cartilaginous
bars persisting deeply in metaphyseal bone. PU.1-/- mice
are devoid of osteoclasts as well as of macrophages in the
marrow, lungs and liver. Mutant animals can be saved by
marrow cell transplantation, suggesting that this mutation
is a cell autonomous defect in a common hematopoietic
progenitor and that PU.1 transcription factor regulates
initial steps of myeloid differentiation67,68.

NF-κB -/-
The NF-κB transcription factor family regulates the

expression of series of target genes that are involved in de-
velopment and immunity, in regulation of cell prolifera-
tion and apoptosis and response to stress70-72. The major
form of NF-κB is a heterodimer that is formed from two
of five proteins p50, p52, p65 (RelA), Rel B and Rel C70.
It is retained in cytoplasm by receptor molecules such as
IκB family (IκBα,β,ε) as well as NF-κB precursors p105
(NF-JκB1) and p100 (NF-κB2)73-76. After cell stimula-

tion, IκB is phosphorylated by Ikappakinases (IKK-1, 2)
and degraded allowing NF-κB to translocate into the nuc-
leus77,78. Exceptions are mature B-cells where NF-κB is
a constitutive nuclear protein77.

NF-κB1 and NF-κB2 functions are required for nor-
mal B cell and osteoclast/macrophage development, and
are probably involved at a similar step as c-fos. NF-κB -
/- animals fail to generate mature osteoclasts and B-cells,
which leads to severe osteopetrosis and impaired host
defense71,79. NF-κB proteins are prominent in common
signal transduction pathways of the osteoclastogenic
cytokines such as IL-1, IL-6 and TNF-α80. Interestingly,
NF-kB upregulates back IL-1, IL-6 and TNF gene ex-
pression, so the once activated effect of cytokines could
be enormously amplified70. This could also explain why
deletion of an individual cytokine does not significantly
affect osteoclast differentiation. It appears that other
cytokines may compensate for this defect using this com-
mon pathway71,80-82. The role of NF-κB in survival and
bone resorption activity of osteoclasts has been confirmed
in a series of in vitro experiments83,84 (Fig 2).

Cathepsin-K
Cathepsin-K is a cystein protease, present in osteo-

clasts, which is secreted into the subosteoclastic space and
is essential for degradation of the organic phase of bone85-90.
Mutations in cathepsin-K gene in humans lead to pykno-
dysostosis, an inherited disorder characterized by acro-
osteolysis of distal phalanges, short stature, skull defor-
mities and impaired osteoclast function causing osteoscle-
rotic changes in bone85,91. Cathepsin K deficient mice are
osteopetrotic, with disturbed hematopoiesis and splenom-
egaly86. Osteoclasts derived from knockout mice are fully
differentiated, but have undefined resorptive surface con-
taining undigested collagen fibrils85,86. The function of
these cells is severely impaired while they are incapable or
resorbing type I collagen, an important step in the pro-
cess of bone resorption92,93.

Acp 5
Tartarate-resistant acid phosphatase 5 is an enzyme

specifically expressed in osteoclasts and is used as a marker
of osteoclast lineage. Mice lacking osteoclast tartarate-re-
sistant acid phosphatase (Acp 5 -/-) develop a mild form
of osteopetrosis. Animals are healthy, develop normally
and have normal reproductive capacity. Characteristics of
Acp5 knockout are skeletal deformities that become more
apparent with age: shortened and deformed long bones,
shortened vertebrae, expanded growth plates with disor-
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ganized loci of bone modeling and ossification and in-
creased mineralization. Osteoclast function in mutant
mice is impaired. Interestingly, resorption alveolar crest is
active enough to allow normal dentition.

Mutation occurs on chromosome 9 where a single
Acp 5 gene is located, and leads to osteoclast cell-intrin-
sic defect of resorption activity. This enzyme is appar-
ently required for normal modeling and remodeling of
developing and adult skeleton94.

Conclusion

Bone remodeling is a process maintained in fragile
balance under the influence of numerous hormones,
growth factors and cytokines. Numerous studies on
osteopetrotic animal mutants provide valuable informa-
tion about the etiology and pathophysiology of osteo-
petrosis, which is a highly heterogeneous disorder. Al-
though correlation between animal models and human
diseases is limited, studies on knockout animals provide
an insight into the bone biology in general. This knowl-
edge of various factors that influence bone modeling and
remodeling enable us to understand processes in bone
metabolic disorders and to develop different strategies
in treating them. However, there are still questions that
have to be answered, since for two mouse osteopetrotic
mutations, i.e. osteosclerotic (oc/oc) and gray lethal (gl),
the mutated genes have not yet been identified.
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Saæetak

KO©TANA PREGRADNJA POMOÆU OSTEOKLASTA:
©TO SMO NAU»ILI IZ ISPITIVANJA KNOCKOUT GENA?

M. Ba¹iÊ-KoretiÊ i N. Ba¹iÊ-JukiÊ

Osteopetroze su poremeÊaji pregradnje kostiju koji dovode do poveÊanja ko¹tane mase. OsteopetrotiËne abnormalnosti
mogu obuhvaÊati promjene u staniËnoj liniji osteoklasta, u mikrookoli¹u ko¹tane sræi ili oboje. Malo se zna o mehanizmima
koji reguliraju aktivnost razliËitih vrsta ko¹tanih stanica. RazliËiti Ëimbenici utjeËu na kost kroz Ëitav splet meðusobnih
aktivnosti sa sinergistiËnim ili raznovrsnim uËincima. Napredak u molekularnoj biologiji omoguÊio je ispitivanja na knockout
ili transgenskim æivotinjama, pruæajuÊi uvid u mehanizme ko¹tane pregradnje.

KljuËne rijeËi: Osteopetroza, etiologija; Osteoklast, fiziologija; Ko¹tana pregradnja, genetika, Æivotinja


