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In a network robot system, a robot and a sensor network are integrated smoothly to develop their advantages
and benefit from each other. Robot localization, sensor network calibration and environment mapping are three
coupled issues to be solved once network robot system is introduced into a service environment. In this article, the
problem of simultaneous localization, calibration and mapping is raised in order to improve their precision. The
coupled relations among localization, calibration and mapping are denoted as a joint conditional distribution and
then decomposed into three separate analytic terms according to Bayesian and Markov properties. The framework
of Rao-Blackwellized particle filtering is used to solve the three analytic terms, in which extended particle filter is
used for localization and unscented Kalman filter is used for both calibration and mapping. Simulations have been
performed to demonstrate the validity and efficiency of the proposed solutions.

Key words: network robot system, simultaneous localization, calibration and mapping, Rao-Blackwellized parti-
cle filtering, unscented transformation

Istraživanje simultane lokalizacije, kalibracije i kartiranja umreženim robotskim sustavima. U um-
reženom robotskom sustavu, robot i senzorska mreža su me�usobno integrirani i povezani na način da i jedan i drugi
iskoriste svoje prednosti, te da imaju koristi jedan od drugoga. Kako bi umreženi robotski sustav mogao djelovati u
radnom okruženju potrebno je riješiti tri me�usobno povezana problema: lokalizaciju, kalibraciju senzorske mreže
i kartiranje prostora. U ovom radu razmatraju se problemi istodobne lokalizacije, kalibracije i kartiranja te se raz-
matraju mogućnosti poboljšanja njihove preciznosti. Povezanost lokalizacije, kartiranja i kalibracije predstavljena
je pomoću zajedničke uvjetne razdiobe i zatim rastavljena u tri razdvojena analitička izraza korištenjem Bayesovih
i Markovljevih svojstava. Za rješavanje svih triju analitičkih izraza koristi se Rao-Blackwell čestično filtriranje, pri
čemu se prošireni čestični filtar koristi kod lokalizacije a nederivirajući Kalmanov filtar za kalibraciju i kartiranje.
Ispravnost i efikasnost predloženog pristupa pokazana je kroz provedene simulacije.

Ključne riječi: umreženi robotski sustav, istovremena lokalizacija, kalibracija i kartiranje, Rao-Blackwellized
čestični filtar, transformacija

1 INTRODUCTION
Network robot system, which is also called as ubiqui-

tous robot system in some articles [1-3], is a new robotic
form in which a robot and a sensor network are integrated
smoothly to develop their advantages and benefit from
each other [4-5]. On one hand, the sensor network extends
the effective sensing range of the robots, on the other hand,
the robots in turn can calibrate, deploy and maintain the
sensor network to increase its longevity and utility. Hence,
the network robot system has important application per-
spective in large-area and especially dynamic service envi-
ronment, for example, home monitoring [6], distributed air
pollution sensing [7], and other urban environment [8].

Once a network robot system is introduced into a ser-
vice environment, three issues will be solved in order to

make it work, which are the robot localization, sensor net-
work calibration and environment mapping. Furthermore,
three issues are coupled with each other as shown in Fig.
1, that is, (i) the robot can be localized according to the
robot control, calibrated sensor network observations robot
and robot observations mapped environment features, (ii)
the sensor network can be calibrated according to its ob-
servations both robot path and mapped environment fea-
tures, (iii) the environment can be mapped according to
both robot observations and calibrated sensor network ob-
servations. The solution of each issue can be optimized
by referring to other two, especially in a view of that both
control errors and observation errors exist anywhere and
anytime in reality. When only solving the coupled rela-
tion between robot localization and environment mapping,
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Fig. 1. Coupled relations between robot localization, sen-
sor network calibration and environment mapping

it degenerates into the well-known simultaneous localiza-
tion and mapping (SLAM) problem [9].

Recently researches pay more attention to simultane-
ous localization and calibration problem. Wu provided
a method of simultaneous robot localization and camera-
network calibration using Rao-Blackwellized Particle Fil-
ter [3]. Chen put forward an approach to calibrate camera-
network online base on its observations of robot path [10],
and then Liang came up with an approach of Monte Carlo-
based mobile robot localization by distributed perceptive
cooperation, which assists robot localization by consider-
ing the observations from the calibrated sensor network
[11]. Caballero presented an approach of wireless sensor
network calibration based on mobile robot [12]. Herrero
focused on indoor localization of a mobile robot in a WSN
using only inter-node range measurements, and proposed
a range-only fuzzy Voronoi-enhanced localization method
[13].

Environment mapping with network robot system is
mainly researched under the SLAM framework in existent
literature. Tuna presented the communication related de-
sign considerations of wireless sensor network aided multi-
robot SLAM [14]. Schleicher presented a real-time hierar-
chical SLAM system based on stereovision and GPS fu-
sion [15]. Menegatti presented the localization of a mo-
bile robot while simultaneously mapping the location of
the nodes of a wireless sensor network using only range
measurements [16]. Wong looked into the problem of data
association for SLAM in the robotic wireless sensor net-
work environment [17]. Angel addressed the problem of
simultaneously localizing multiple targets and estimating
the positions of the sensors in a sensor network using par-
ticle filters [18], and Liang gave a distributed- perception-
based robot SLAM approach to build an accurate map of
large-scale environment [19]. Park gave a map-building
and localization by three-dimensional local features for
ubiquitous service robot [20]. Kim presented an ubiqui-
tous SLAM method for robots with ambient intelligence

[21]. Although all the above methods have given solutions
to the sensor network-assisted robot SLAM, the calibration
of the sensor network, which is the foundation of the sensor
network assisted robot SLAM, has not yet been considered
simultaneously. Kelly combined visual and inertial sen-
sors into a robot, and presented a visual-inertial simultane-
ous localization, mapping and robot onboard sensor self-
calibration [22], and some multi-robot distributed SLAM
algorithms have been proposed [23,24], but in those papers
sensors are installed on these robots and move with them,
so the error of sensor observations will determinately in-
crease with robot motions.

In this article, considering the coupled relations among
robot localization, sensor network calibration and environ-
ment mapping, the concept of simultaneous localization,
calibration and mapping of the network robot system is
raised, which is denoted as a joint conditional distribu-
tion and then decomposed into several analytic terms in
order to be solved separately under the framework of Rao-
Blackwellized particle filtering.

2 SYSTEM STATEMENT
2.1 System construction and simplification

The network robot system discussed in this article con-
sists of three parts: (1) sensor network with processing
unit, (2) mobile service robot interacting with sensor net-
work processing unit wirelessly, and (3) various targets in
environment (including family persons, manipulated ob-
jects and environment landmarks and so on, all of them are
referred as features throughout this article).

As a very important place of people’s daily life, the lay-
out structure of home or office is always relatively com-
plicated. To analyze conveniently, some simplification is
proposed in this article as follows. We take the robot coor-
dinates at the beginning of mapping as world coordinates,
and assume that robot moves in the plane parallel to the
ground. In addition, environmental features are considered
as points distributed in the same plane. So the whole envi-
ronment will be described as a feature map under the world
coordinates. Without loss of generality, we assume that the
robot observes exactly one landmark at a time, and each
sensor node also observes exactly one landmark around it.

2.2 System modeling
Firstly, a robot motion is modeled. Suppose that a robot

moves in the x-y plane of the world coordinate system with
pose st = {xt, yt, ϕt} at t-th moment, where xt, yt are x
and y coordinate of the robot location respectively and ϕt
is the robot orientation. Taking motion error into account,
the motion model can be expressed in probability form as
follows:

p (st|st−1,ut) = h (st−1,ut) + εh,t (1)
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where ut is the control at t-th moment, h (st−1,ut) is the
ideal motion equation, εh,t is white Gaussian noise sub-
mitting to distribution N (0,P t).

Secondly, a robot observation is modelled. Suppose θn
as the n-th environment feature, and the robot observation
to θn is ynt at t-th moment, so the robot observation model
of the environment features can be expressed as:

p (ynt |θn, st) = g (θn, st) + εg,t (2)

where g (θn, st) is the ideal equation of robot observa-
tion to n-th environment feature θn, εg,t is white Gaussian
noise submitting to N (0,Rt). From initial to tth moment,
robot observations of the N environment features can be
expressed as yt,N = {yn

i }i=1,··· ,t;n=1,··· ,N .
Thirdly, a sensor network nodes observation of the en-

vironment feature is modelled. Suppose that the sensor
network is composed of M sensor nodes, the location pa-
rameters of the m-th node are regarded as vector ψm in
the world coordinate system, and its observation to θn is
regarded as xm

n . Taking sensor observation errors into ac-
count, the sensor ψm observation model of the environ-
ment feature θn can be expressed as:

p (xm
n |θn,ψm) = d (θn,ψm) + εd,t (3)

where d (θn,ψm) is the ideal equation of sensor ψm ob-
servation to environment feature θn, εd,t is white Gaussian
noise submitting toN (0,T t). From initial to t-th moment,
the sensor network observations to environment feature
can be expressed as xt,M ,N = {xm

n }m=1,··· ,M ;n=1,··· ,N .
Finally, the sensor network nodes observation to robot

is modelled. As mentioned above, the pose of robot con-
sists of location and orientation, both of which could be
characterized by some identifiable tags [3]. Without loss
of generality, we denote zmt as observation from sensor
ψm to robot pose st. Taking sensor observation errors into
account, the observation model from sensor ψm to robot
can be expressed as:

p (zmt |st,ψm) = f (st,ψm) + εf,t (4)

where f (st,ψm) is the ideal equation of sensor network
observation to robot, εf,t is white Gaussian noise sub-
mitting to N (0,Qt). From initial to t-th moment, sen-
sor network observation on robot path can be expressed as
zt,M = {zmi }i=1,··· ,t;m=1,··· ,M .

3 SIMULTANEOUS LOCALIZATION, CALIBRA-
TION AND MAPPING

3.1 Fundamental thought
The fundamental thought of simultaneously localiza-

tion, calibration and mapping is to estimate robot pose ac-
cording to both robot controls, calibrated sensor network

observations, and robot observations to environment fea-
tures, simultaneously, to calibrate (and update) sensor net-
work according to its observations to both robot and en-
vironment features, and to build (and update) the environ-
ment map according to both robot observations to features
and sensor network observations to features.
From a probability perspective, the problem of simulta-
neous localization, calibration and mapping in network
robot system can be expressed as a joint posterior distri-
bution p

(
Ψ, st,Θ|ut,xt,M,N ,yt,N , zt,M

)
, that is, con-

ditioned on robot control sequence ut = {ui}i=1,··· ,t,
robot observation sequence yt,N of N environment fea-
tures, sensor network observation sequence zt,M from M
sensor nodes to robot, and sensor network observation se-
quences xt,M ,N from M sensor nodes to N environment
features, to estimate robot path st = {si}i=1,··· ,t, M sen-
sor nodes location Ψ = {ψm}m=1,··· ,M , and the map
Θ = {θn}n=1,··· ,N composed by N features. Based on
Bayesian and Markov characteristics, the joint conditional
distribution can be divided into:

p
(
Ψ, st,Θ|ut,xt,M,N ,yt,N , zt,M

)

= p
(
Ψ,Θ|st,ut,xt,M,N ,yt,N , zt,M

)
×

p
(
st|ut,xt,M,N ,yt,N , zt,M

)

= p
(
Ψ,Θ|st,xt,M,N ,yt,N , zt,M

)
p
(
st|ut,yt,N , zt,M

)

= p
(
Θ|Ψ, st,xt,M,N ,yt,N , zt,M

)
×

p
(
Ψ|st,xt,M,N ,yt,N , zt,M

)
p
(
st|ut,yt,N , zt,M

)

= p
(
Θ|Ψ, st,xt,M,N ,yt,N

)
×

p
(
Ψ|st,xt,M,N , zt,M

)
p
(
st|ut,yt,N , zt,M

)

(5)
Conditioned on the robot path, locations of sensor net-

work nodes are independent, hence, decomposition can be
obtained as follows:

p
(
Ψ, st,Θ|ut,xt,M,N ,yt,N , zt,M

)

= p
(
Θ|Ψ, st,xt,M,N ,yt,N

)
×∏M

m=1p
(
ψm|st,xt,M,N , zt,M

)
p
(
st|ut,yt,N , zt,M

)

(6)
Furthermore, conditioned on both robot path and sen-

sor nodes locations, environment features locations are in-
dependent, and decomposition can be obtained as follows:

p
(
Ψ, st,Θ|ut,xt,M,N ,yt,N , zt,M

)

=
∏N
n=1 p

(
θn|Ψ, st,xt,M,N ,yt,N

)
×∏M

m=1 p
(
ψm|st,xt,M,N , zt,M

)
p
(
st|ut,yt,N , zt,M

)

(7)
It can be seen from the above factorization that the

calculation of the posterior over simultaneous localiza-
tion, calibration and mapping in network robot system
can be decomposed into an estimator over robot path
p
(
st|ut,yt,N , zt,M

)
, M separate estimators over sensor

node location parameters p
(
ψm|st,xt,M,N , zt,M

)
and

N separate estimators over environment feature location
p
(
θn|Ψ, st,xt,M,N ,yt,N

)
.
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Based on framework of Rao-Blackwellized particle fil-
tering, robot localization can be recursively implemented
using particle filter, and both sensor network calibration
and environment mapping of each particle can be imple-
mented using Kalman filter.

In this paper we propose a solution using EPF for lo-
calization, and UKF for both calibration and mapping.
For the k-th particle at t-th moment S(k)

t , the corre-
sponding robot path can be expressed as st,(k), the cor-
responding location of the m-th sensor node can be ex-
pressed as ψ(k)(m)

t =
{
µ

(k)(m)
ψ,t ,Σ

(k)(m)
ψ,t

}
with mean

µ
(k)(m)
ψ,t and variance Σ

(k)(m)
ψ,t , and the corresponding lo-

cation of the n-th environment feature can be expressed as
θ
(k)(n)
t =

{
µ

(k)(n)
θ,t ,Σ

(k)(n)
θ,t

}
with mean µ(k)(n)

θ,t and vari-

ance Σ
(k)(n)
θ,t , hence, each particle possesses its own set of

sensor nodes locations and environment features locations.
So at t-th moment, the system state is characterized by set
of K particles, where k-th particle S(k)

t is defined as:

St
(k)

=
{
s
t,(k)

,

{
µ

(k)(m)
ψ,t

,Σ
(k)(m)
ψ,t

}

m=1,··· ,M
,

{
µ

(k)(n)
θ,t

,Σ
(k)(n)
θ,t

}

n=1,··· ,N

}

(8)

And the reliability of the system can be expressed by K
weighted particles as:

Bel (Xt) =
{
S

(k)
t , w

(k)
t

}
k=1,··· ,K

(9)

3.2 Robot localization

Theoretically, robot path particle st,(k)

should be sampled from posterior distribution
p
(
st|st−1,(k),ut,yt,N , zt,M

)
in order to approxi-

mate robot real path as close as possible. But actually it is
hard to obtain this posterior. Based on Bayesian formula,

we can divide this posterior into the following form:

st,(k) ∼ p
(
st|st−1,(k),ut,yt,N ,zt,M

)

=
p(zMt |st,st−1,(k),ut,yt,N ,zt−1,M)
p(zMt |st−1,(k),ut,yt,N ,zt−1,M)

×

p
(
st|st−1,(k),ut,yt,N ,zt−1,M

)

=
p(zMt |st,st−1,(k),ut,yt,N ,zt−1,M)
p(zMt |st−1,(k),ut,yt,N ,zt−1,M)

×
p(yNt |st,st−1,(k),ut,yt−1,N ,zt−1,M)
p(yNt |st−1,(k),ut,yt−1,N ,zt−1,M)

×

p
(
st|st−1,(k),ut,yt−1,N ,zt−1,M

)

= η(k)p
(
st|s(k)t−1,ut

)
×

p
(
zMt |st, st−1,(k),ut,yt,N ,zt−1,M

)
×

p
(
yNt |st, st−1,(k),ut,yt−1,N ,zt−1,M

)

= η(k) p
(
st|s(k)t−1,ut

)

︸ ︷︷ ︸
∼N

(
st;h

(
s
(k)
t−1,ut

)
,P t

)

×

∫
p (zmt |st,ψm)︸ ︷︷ ︸

∼N(zmt ;f(st,ψm),Qt)

p
(
ψm|st−1,(k),zt−1,m

)

︸ ︷︷ ︸
∼N

(
ψm;µ

(k)(m)
ψ,t−1

,Σ
(k)(m)
ψ,t−1

)

dψm×

∫
p (ynt |st,θn)︸ ︷︷ ︸

∼N(ynt ;g(θn,st),Rt)

p
(
θn|st−1,(k),yt−1,n

)

︸ ︷︷ ︸
∼N

(
θn;µ

(k)(n)
θ,t−1

,Σ
(k)(n)
θ,t−1

)

dθn

= η(k)p
(
st|st−1,(k),ut,yt−1,N ,zt−1,M

)
×

p
(
zMt |st, st−1,(k),ut,yt,N ,zt−1,M

)
×

p
(
yNt |st, st−1,(k),ut,yt−1,N ,zt−1,M

)

(10)
where η(k) is the normalization factor, and

η(k) = p
(
zMt |st−1,(k),ut,yt,N , zt−1,M

)−1×
p
(
yNt |st−1,(k),ut,yt−1,N , zt−1,M

)−1

p
(
st|s(k)t−1,ut

)
, p (zmt |st,ψm) and p (ynt |st,θn) are

the robot motion model h (·), sensor observation model
f (·) of the robot and robot observation model g (·)
of the environment feature. p

(
ψm|st−1,(k), zt−1,m

)
,

assumed as N
(
ψm;µ

(k)(m)
ψ,t−1 ,Σ

(k)(m)
ψ,t−1

)
, is the proba-

bility of obtaining m-th sensor location ψm accord-
ing to robot path st−1,(k) and m-th sensor observations
zt−1,m on this path; p

(
θn|st−1,(k),yt−1,n

)
, assumed as

N
(
θn;µ

(k)(n)
θ,t−1 ,Σ

(k)(n)
θ,t−1

)
, is the probability of obtain n-th

environment feature location θn according to robot path
st−1,(k) and the observations yt−1,n to the n-th environ-
ment feature.

Because of nonlinearity of functions h (·), f (·) and
g (·), it is still hard to obtain the numerical solution of (10).
A direct method is to estimate (10) according to EKF, in
which approximates these functions with first-degree Tay-
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lor expansion:

f (st,ψm) ≈ ẑ
m,(k)
t + F s

(
st − ŝ(k)t

)
+ Fψ

(
ψm − µ

(k)(m)
ψ,t−1

)

(11a)

g (θn, st) ≈ ŷn,(k)t +Gs
(
st − ŝ(k)t

)
+Gθ

(
θn − µ(k)(n)

θ,t−1

)

(11b)

where ŝ
(k)
t = h

(
s
(k)
t−1,ut

)
is the predicted robot

pose according to robot motion model h (·), ẑ
m,(k)
t =

f
(
ŝ
(k)
t ,µ

(k)(m)
ψ,t−1

)
is the predicted sensor network ob-

servation to robot according to observation model f (·),
ŷ
n,(k)
t = g

(
ŝ
(k)
t ,µ

(k)(n)
θ,t−1

)
is the predicted robot observa-

tion to environment feature according to observation model
g (·). Matrix F s and F ψ are the Jacobians of f (·), respec-
tively. Matrix Gs and Gθ are the derivatives of g (·) with
respect to st and θn. According to the approximation, the
two integral terms can be transformed into two Gaussian
distributions:
∫
p (zmt |st,ψm) p

(
ψm|st−1,(k),zt−1,m

)
dψm ∼

N
(
zmt ; ẑ

m,(k)
t + F sst − F sŝ(k)t ,Qt + FψΣ

(k)(m)
ψ,t−1 F

T
ψ

)

(12a)
∫
p (ynt |st,θn) p

(
θn|st−1,(k),yt−1,n

)
dθn ∼

N
(
ynt ; ŷ

n,(k)
t +Gsst −Gsŝ(k)t ,Rt +GθΣ

(k)(n)
θ,t−1 G

T
θ

)

(12b)

And then the posterior (10) can be transformed into
product of several Gaussian distributions denoted as:

p
(
st|st−1,(k),ut,yt,N , zt,M

)
= η′ exp

{
−E(k)

t

}
(13)

Where

E
(k)
t = 1

2

(
st − ŝ(k)

t

)T
P−1
t

(
st − ŝ(k)

t

)
+

1
2

(
zmt − ẑ

m,(k)
t − F sst + F sŝ(k)

t

)T
×

(
Qt + FψΣ

(k)(m)
ψ,t−1 F

T
ψ

)−1 (
zmt − ẑ

m,(k)
t − Fsst + Fsŝ

(k)
t

)
+

1
2

(
ynt − ŷ

n,(k)
t −Gsst + Gsŝ

(k)
t

)T
×

(
Rt + GθΣ

(k)(n)
θ,t−1 GT

θ

)−1 (
ynt − ŷ

n,(k)
t −Gsst + Gsŝ

(k)
t

)

(14)

It can be seen obviously that,E(k)
t is quadratic in robot

pose st, hence p
(
st|st−1,(k),ut,yt,N , zt,M

)
is still Gaus-

sian, whose mean and covariance are equivalent to the min-
imum of E(k)

t and its curvature.

The first and second derivatives ofE(k)
t with respect to

st are:

∂E
(k)
t

∂st
= P−1

t

(
st − ŝ

(k)
t

)
−

FT
s

(
Qt + FψΣ

(k)(m)
ψ,t−1 FT

ψ

)−1 (
zmt − ẑ

m,(k)
t − Fsst + Fsŝ

(k)
t

)
−

GT
s

(
Rt + GθΣ

(k)(n)
θ,t−1 GT

θ

)−1 (
ynt − ŷ

n,(k)
t −Gsst + Gsŝ

(k)
t

)

(15)

∂2E
(k)
t

∂s2
t

= P−1t + FT
s

(
Qt + FψΣ

(k)(m)
ψ,t−1 FT

ψ

)−1
F+

GT
s

(
Rt + GθΣ

(k)(n)
θ,t−1 GT

θ

)−1
Gs

(16)

The covariance Σ
(k)
s,t of st is now obtained by the in-

verse of the second derivative:

Σ
(k)
s,t =

[
P−1t + FT

s

(
Qt + FψΣ

(k)(m)
ψ,t−1 FT

ψ

)−1
F+

GT
s

(
Rt + GθΣ

(k)(n)
θ,t−1 GT

θ

)−1
Gs

] −1

(17)

The mean µ(k)
s,t of st is obtained by setting the first

derivative to zero, which is:

µ
(k)
s,t = ŝ

(k)
t + Σ

(k)
s,tF

T
s

(
Qt + FψΣ

(k)(m)
ψ,t−1 FT

ψ

)−1 (
zmt − ẑ

m,(k)
t

)

+Σ
(k)
s,tG

T
s

(
Rt + GθΣ

(k)(n)
θ,t−1 GT

θ

)−1 (
ynt − ŷ

n,(k)
t

)

(18)

So, according to the robot controls ut, sensor network
observations to robot zt,M , and robot observations to lo-
calized environment feature yt,N we obtain the proposal
distribution p

(
st|st−1,(k),ut,yt,N , zt,M

)
with Gaussian

form N
(
st;µ

(k)
s,t ,Σ

(k)
s,t

)
, from which new particles are

sampled.

Up to now, the solution to robot localization is given
utilizing EPF [25]. Besides, it is easy to find that, when
there are only robot observations to environment features
but no sensor network observations to robot, that is, {zt} =
NULL and {yt} 6= NULL, then (17), (18) can be rewritten
into:

Σ
(k)
s,t =

[
P
−1
t + G

T
s

(
Rt + GθΣ

(k)(n)
θ,t−1 G

T
θ

)−1
Gs

]−1

µ
(k)
s,t = ŝ

(k)
t + Σ

(k)
s,tG

T
s

(
Rt + GθΣ

(k)(n)
θ,t−1 G

T
θ

)−1 (
y
n
t − ŷ

n,(k)
t

)

In which case, the solution degenerates into the local-
ization of FastSLAM algorithm.

Because of the deduce phenomenon, the robot path
simulated by particles biases from the true path. To deal
with this problem, the resample step is involved. The dif-
ferences between normalizing factors η(k) are ignored in
(10), and in order to remedy it we choose the ratio between
true posterior distribution and proposal distribution as par-
ticle weight, which is:

w
(k)
t = true

proposal =
p(st,(k)|ut,yt,N ,zt,M)

p(st−1,(k)|ut−1,yt−1,N ,zt−1,M)p
(
s
(k)
t |ut,st−1,(k),yt,N ,zt,M

)

(19)
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Depending on Bayesian formula and Markov charac-
teristics we can obtain the following factorization:

w
(k)
t =
p
(
s
(k)
t |st−1,(k),ut,yt,N ,zt,M

)
p(st−1,(k)|ut,yt,N ,zt,M)

p(st−1,(k)|ut−1,yt−1,N ,zt−1,M)p
(
s
(k)
t |st−1,(k),ut,yt,N ,zt,M

)

=
p(zMt |st−1,(k),ut,yt,N ,zt−1,M)p(st−1,(k)|ut,yt,N ,zt−1,M)
p(zMt |ut,yt,N ,zt−1,M)p(st−1,(k)|ut−1,yt−1,N ,zt−1,M)

=
p(yNt |st−1,(k),ut,yt−1,N ,zt−1,M)

p(yNt |ut,yt−1,N ,zt−1,M)
×

p(zMt |st−1,(k),ut,yt,N ,zt−1,M)p(st−1,(k)|ut,yt−1,N ,zt−1,M)
p(zMt |ut,yt,N ,zt−1,M)p(st−1,(k)|ut−1,yt−1,N ,zt−1,M)

∝ p
(
zMt |st−1,(k),ut,yt,N , zt−1,M

)
×

p
(
yNt |st−1,(k),ut,yt−1,N , zt−1,M

)

(20)

It can be seen that, particle weight is the inverse of nor-
malizing factors η(k) in (10). In the above factorization,
former distribution p

(
zMt |st−1,(k),ut,yt,N , zt−1,M

)
can

be decomposed further as:

p
(
zMt |s

t−1,(k),ut, yt,N , zt−1,M
)

=
∫
p
(
zMt |st, s

t−1,(k),ut, zt−1,M
)
p
(
st|st−1,(k),ut, zt−1, yt,N

)
dst

=
∫
p
(
zMt |st, s

t−1,(k),ut, zt−1,M
)
p

(
st|s

(k)
t−1

,ut

)
dst

=
∫∫
p
(
zmt |ψm, st

)
p
(
ψm|st−1,(k), zt−1,m

)
dψmp

(
st|s

(k)
t−1

,ut

)
dst

(21)

In the same way, the latter distribution
p
(
yNt |st−1,ut,yt−1,N , zt−1,M

)
can be decomposed

as:

p
(
yNt |st−1,(k),ut,yt−1,N , zt−1,M

)
=∫∫

p (ynt |st,θn) p
(
θn|st−1,(k),yt−1,n

)
dθnp

(
st|s(k)t−1,ut

)
dst

(22)
Then the weight can be denoted as product of two integrals:

w
(k)
t ∝ p

(
z
M
t |s

t−1,(k)
,u
t
, y
t,N

, z
t−1,M

)
×

p
(
yNt |s

t−1,(k),ut, yt−1,N , zt−1,M
)

=

∫∫
p
(
z
m
t |st,ψm

)

︸ ︷︷ ︸
∼N

(
zmt ;f(st,ψm),Qt

)

p
(
ψm|s

t−1
, z
t−1,m

)

︸ ︷︷ ︸

∼N
(
ψm;µ

(k)(m)
ψ,t−1

,Σ
(k)(m)
ψ,t−1

)

dψm

p

(
st|s

(k)
t−1

,ut

)

︸ ︷︷ ︸

∼N
(
st;h

(
s
(k)
t−1

,ut

)
,Pt

)

dst ×
∫∫

p
(
y
n
t |st, θn

)

︸ ︷︷ ︸
∼N

(
ynt ;g(θn,st),Rt

)

p
(
θn|st−1

, y
t−1,n

)

︸ ︷︷ ︸

∼N
(
θn;µ

(k)(n)
θ,t−1

,Σ
(k)(n)
θ,t−1

)

dθn p

(
st|s

(k)
t−1

,ut

)

︸ ︷︷ ︸

∼N
(
st;h

(
s
(k)
t−1

,ut

)
,Pt

)

dst

(23)

According to the approximation like (12a), we can obtain
their Gaussian forms as follows:
∫∫

p (zmt |st,ψm) p
(
ψm|st−1, zt−1,m

)
dψmp

(
st|s(k)t−1,ut

)
dst

∼ N
(
zmt ; ẑ

(k)
t ,Qt + FsPtFT

s + FψΣ
(k)(m)
ψ,t−1 FT

ψ

)

∫∫
p (ynt |st,θn) p

(
θn|st−1,yt−1,n

)
dθnp

(
st|s(k)t−1,ut

)
dst

∼ N
(
ynt ; ŷ

(k)
t ,Rt + GsPtGT

s + GθΣ
(k)(n)
θ,t−1 FT

θ

)

Assume that L
(k)
z,t = Qt + FsPtF

T
s + FψΣ

(k)(m)
ψ,t−1 FT

ψ ,

L
(k)
y,t = Rt + GsPtG

T
s + GθΣ

(k)(n)
θ,t−1 FT

θ , and the weight
of k-th particle can be obtained as:

w
(k)
t =

∣∣∣2πL
(k)
y,t

∣∣∣
−1/2 ∣∣∣2πL

(k)
z,t

∣∣∣
−1/2

×

exp

{
− 1

2

(
zmt − ẑ

m,(k)
t

)T
L
(i)−1
z,t

(
zmt − ẑ

m,(k)
t

)
−

1
2

(
ynt − ŷ

n,(k)
t

)T
L
(k)
y,t

(
ynt − ŷ

n,(k)
t

)}

(24)

The weights should be normalized and particles are
resampled according to the normalized weights. Here,
we calculate an effective particle number Neff =

1

/∑K
k=1

(
w

(k)
t

)2
. When Neff is smaller than a thresh-

old value (0.7K in this article), the weighted particles set{
S
(k)
t , w

(k)
t

}
k=1,··· ,K

would be transformed into a new

particle set
{

S
(k)
t , 1/K

}
k=1,··· ,K

with equal weights.

3.3 Sensor network calibration

Depend on Bayesian formula and Markov characteris-
tics, it can be obtained that:

p
(
ψm|st,xt,M,N , zt,M

)

=
p
(
zMt |ψm,x

t,M,N ,zt−1,M
)

p(zMt |st,xt,M,N ,zt−1,M )
p
(
ψm|st,xt,M,N , zt−1,M

)

=
p
(
zMt |ψm,s

t,xt,M,N ,zt−1,M
)

p(zMt |st,xt,M,N ,zt−1,M )
×

p
(
x
M,N
t |ψm,st,xt−1,M,N ,zt−1,M

)

p
(
x
M,N
t |st,xt−1,M,N ,zt−1,M

) ×

p
(
ψm|st,xt−1,M,N , zt−1,M

)

= ηp
(
zMt |ψm, st,xt,M,N , zt−1,M

)
×

p
(
xM,Nt |ψm, st,xt−1,M,N , zt−1,M

)
×

p
(
ψm|st,xt−1,M,N , zt−1,M

)
= η p

(
z
M
t |st,ψm

)

︸ ︷︷ ︸
∼N(zMt ;f(st,ψm),Qt)

×

∫
p
(
x
M,N
t |ψm, θn

)

︸ ︷︷ ︸
∼N

(
x
M,N
t ;d(ψm,θn),Tt

)

p
(
θn|ψm, st,xt−1,M,N

)

︸ ︷︷ ︸
∼N

(
θn;µ

(k)
θ,t−1

,Σ
(k)
θ,t−1

)

dθn×

p
(
ψm|st−1

,x
t−1,M,N

, z
t−1,M

)

︸ ︷︷ ︸
∼N

(
ψm;µ

(k)
ψ,t−1

,Σ
(k)
ψ,t−1

)

(25)

where p
(
zMt |st,ψm

)
and p

(
xM,N
t |ψm,θn

)
denote

the sensor network observation to robot and sensor net-
work observation to environment features. Because they
are nonlinear, it is hard to obtain the numerical solution of
the proposal distribution p

(
ψm|st,xt,M,N , zt,M

)
.

Here UKF algorithm [26, 27] is used recursively to
estimate the sensor node location at present moment based
on mean µ(k)

ψ,t−1 and variance Σ
(k)
ψ,t−1 estimated at (t-1)-th

moment, the main algorithm is as following:
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Step 1 (Calculate Sigma points):
Calculate 2nψ + 1 Sigma points

{
ξ
(k),(i)
t−1

}
i=0,1,...,2nψ

and

weights according to mean µ(k)
ψ,t−1 and variance Σ

(k)
ψ,t−1:

ξ
(k),(0)
t−1 = µ

(k)
ψ,t−1

ξ
(k),(i)
t−1 = µ

(k)
ψ,t−1 +

(√
(nψ + λ) Σ

(k)
ψ,t−1

)

i

i = 1, 2, . . . , nψ

ξ
(k),(i)
t−1 = µ

(k)
ψ,t−1 −

(√
(nψ + λ) Σ

(k)
ψ,t−1

)

i

i = nψ + 1, nψ + 2, . . . , 2nψ

w
(k),(m)
0 =

λ

nψ + λ

w
(k),(c)
0 =

λ

nψ + λ
+
(
1− α2 + β

)

w
(k),(m)
i = w

(k),(c)
i =

1

2 (nψ + λ)
i = 1, 2, . . . , 2nψ

where nψ is the dimension of sensor location,
λ = α2 (nψ + κ) − nψ , here we also set α as 0.01,

κ as 0, and β as 2.
(√

(nψ + λ) Σ
(k)
ψ,t−1

)

i

is the

i-th column of matrix square root of (nψ + λ) Σ
(k)
ψ,t−1.

w
(k),(m)
i=0,1,...,2nψ

is the weight of first-degree peculiarity,

w
(k),(c)
i=0,1,...,2nψ

is the weight of second-degree peculiarity.

Step 2 (Time update):
Transform Sigma points into

{
ξ
(k),(i)
t|t−1

}
i=0,1,...,2nψ

,

and calculate the predicted mean µ̂(k)
ψ,t|t−1 and variance

Σ̂
(k)

ψ,t|t−1:

ξ
(k),(i)
t|t−1 = ξ

(k),(i)
t−1 i = 0, 1, . . . , 2nψ

µ̂
(k)
ψ,t|t−1 =

2nψ∑

i=0

w
(k),(m)
i ξ

(k),(i)
t|t−1

Σ̂
(k)
ψ,t|t−1

=

2nψ∑

i=0

w
(k),(c)
i

(
ξ
(k),(i)
t|t−1

− µ̂(k)
ψ,t|t−1

)(
ξ
(k),(i)
t|t−1

− µ̂(k)
ψ,t|t−1

)T

Step 3 (Update with measurement zt):

i) Calculate the predicted measurement ẑ
(k)
t

ζ
(k),(i)
t|t−1 = f

(
s
(k)
t , ξ

(k),(i)
t|t−1

)
i = 0, 1, . . . , 2nψ

ẑ
(k)
t =

2nψ∑

i=0

w
(k),(m)
i ζ

(k),(i)
t|t−1

ii) Update with true measurement zt

P
(k)
ẑt

=

2nψ∑

i=0

w
(k),(c)
i

(
ζ

(k),(i)

t|t−1
− ẑ(k)

t

)(
ζ

(k),(i)

t|t−1
− ẑ

(k)
t

)T
+ Qt

P
(k)

ψ̂tẑt
=

2nψ∑

i=0

w
(k),(c)
i

(
ξ
(k),(i)

t|t−1
− µ̂(k)

ψ,t|t−1

)(
ζ

(k),(i)

t|t−1
− ẑ

(k)
t

)T

µ̂
(k)
ψ,t|t = µ̂

(k)
ψ,t|t−1 + Kt

(
zt − ẑ

(k)
t

)

Kt = P
(k)

ψ̂tẑt

(
P

(k)
ẑt

)−1

Σ̂
(k)
ψ,t|t = Σ̂

(k)
ψ,t|t−1 −KtP

(k)
ẑt

KT
t

Step 4 (Update with measurement xt):

i) Calculate the predicted measurement x̂
(k)
t

ς
(k),(i)
t = d

(
θn, ξ

(k),(i)
t

)
i = 0, 1, . . . , 2nψ

x̂
(k)
t =

2nψ∑

i=0

w
(k),(m)
i ς

(k),(i)
t

ii) Update with true measurement xt

P
(k)
x̂t

=

2nψ∑

i=0

w
(k),(c)
i

(
ς
(k),(i)
t|t−1

− x̂(k)
t

)(
ς
(k),(i)
t − x̂

(k)
t

)T
+ Tt

P
(k)

ψ̂tx̂t
=

2nψ∑

i=0

w
(k),(c)
i

(
ξ
(k),(i)
t|t−1

− µ̂(k)
ψ,t|t−1

)(
ς
(k),(i)
t − x̂

(k)
t

)T

µ
(k)
ψ,t = µ̂

(k)
ψ,t|t + Kt

(
xt − x̂

(k)
t

)

Kt = P
(k)

ψ̂tx̂t

(
P

(k)
x̂t

)−1

Σ
(k)
ψ,t = Σ̂

(k)
ψ,t|t −KtP

(k)
x̂t

KT
t

So, here we obtain mean µ(k)
ψ,t and variance Σ

(k)
ψ,t of

sensor at tth moment based on UKF.
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3.4 Environment mapping
Similar to formula (25), it can be known depend on

Bayesian formula and Markov characteristics:

p
(
θn|ψm, st,xt,M,N ,yt,N

)

=
p(yNt |θn,ψm,st,xt,M,N ,yt−1,N)
p(yNt |ψm,st,xt,M,N ,yt−1,N)

×
p
(
θn|ψm, st,xt,M,N ,yt−1,N

)

=
p(yNt |θn,ψm,st,xt,M,N ,yt−1,N)
p(yNt |ψm,st,xt,M,N ,yt−1,N)

×
p(xM,Nt |θn,ψm,st,xt−1,M,N ,yt−1,N)
p(xM,Nt |ψm,st,xt−1,M,N ,yt−1,N)

×
p
(
θn|ψm, st,xt−1,M,N ,yt−1,N

)

= ηp
(
yNt |θn, ψm, st,xt,M,N ,yt−1,N

)
×

p
(
xM,N
t |θn, ψm, st,xt−1,M,N ,yt−1,N

)
×

p
(
θn|ψm, st,xt−1,M,N ,yt−1,N

)

= η p
(
yNt |st, θn

)
︸ ︷︷ ︸
∼N(yt;g(st,θn),Rt)

p
(
xM,N
t |ψm, θn

)

︸ ︷︷ ︸
∼N(xt;d(ψm,θn),Tt)

×

p
(
θn|ψm, st−1,xt−1,M,N ,yt−1,N

)
︸ ︷︷ ︸

∼N
(
θn;µ

(k)
θ,t−1,Σ

(k)
θ,t−1

)

(26)
In above formula, p

(
yNt |st, θn

)
and

p
(
xM,N
t |ψm, θn

)
are robot observation to environment

features and sensor network observation to environment
features respectively.

In this solution, UKF algorithm is also used to estimate
the environment feature location at present moment based
on mean µ(k)

θ,t−1 and variance Σ
(k)
θ,t−1 estimated at (t-1)-th

moment. The UKF processing is similar to sensor network
calibration and not given because of limited paper space.

4 EXPERIMENTS AND ANALYSIS

Because the actual network robot system that inte-
grates robot, sensor network and environment landmarks
has not been built yet, the experiments are executed un-
der a simulated system. Tim Bailey has provided simu-
lations of SLAM and a dataset of 200mx200m [28], we
develop the simulated system and set the landmarks and
waypoints as shown in Fig. 2. The robot is located ini-
tially at the origin point orienting to left. The control pe-
riod is set as tc = 0.025s. Robot can obtain the range
and bearing to the landmarks within front semicircle re-
gion of radius 30m, robot observation sampling period is
set as ∆T = 0.2s and observation covariance is set as
Rt = diag{0.12, 0.12}, robot moves at rate u = 3m/s

with covariance Pt = diag{0.32, 0.32,
(
3
◦)2}. The num-

ber of particle is set as N = 100. As shown in Fig. 2,
7 sensor nodes are fixed up to construct sensor network to
monitor robot and the whole environment. Assume that
each sensor can obtain range and bearing to both robot and

0 50 100 150

−20

0

20

40

60

80

100

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

 

 

landmark

robot path

way point

sensor node

Fig. 2. Schematic diagram of environment features, sensor
nodes and robot path
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Fig. 3. Screenshot of simulation at 100∆T

landmarks within circle region of radius 30m, observation
period is set as ∆T = 0.05s, and observation covariance of
sensor nodes to landmark is set as Tt = diag{0.12, 0.12},
and to robot is set as Qt = diag{0.12,

(
3
◦)2}.

To intuitively show the estimated location of the robot,
sensors and landmarks compared to their true location, Fig.
3 gives one screenshot of the simulation at 100∆T, and
at the same time Fig.4 gives an amplified screenshot of
robot localization. The blue dashed lines denote observa-
tion of calibrated sensor nodes, and the red solid line de-
notes current observation of robot. Firstly, the robot local-
ization accuracies are compared between traditional EKF-
SLAM(without sensor network), FastSLAM 2.0(without
sensor network) and SLCAM 1.0(network robot system si-
multaneous localization calibration and mapping with es-
timation technique of FastSLAM 2.0) and the proposed
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Fig. 4. Amplified screenshot of robot localization at
100∆T

SLCAM 2.0 (network robot system simultaneous localiza-
tion calibration and mapping with EPF for localization and
UKF for both sensor calibration and mapping). These al-
gorithms run 50 times and the obtained means and vari-
ances of robot location root-mean-square (RMS) errors are
given in Fig. 5, and means and variances of robot orien-
tation RMS errors are given in Fig. 6. It can be seen
that, the FastSLAM 2.0 full considers the robot observa-
tions to landmarks and improves localization accuracy ob-
viously comparing to EKF-SLAM, but because robot sen-
sor is fixed within robot, the localization errors are increas-
ing faster with robot running both EKF-SLAM and Fast-
SLAM 2.0. As for both SLCAM 1.0 and SLCAM 2.0,
the department of sensor nodes from robot makes the sen-
sor network observation and robot movement uncoupled,
so both the accuracy and stability of the localization are
improved. Furthermore, comparing to SLCAM 1.0, the
SLCAM 2.0 obtains more accuracy and stability because it
uses unscented transformation rather than approximating
nonlinear models by neglecting higher order terms.

Secondly, the calibration accuracies are compared us-
ing only robot motion model, FastSLAM 2.0, SLCAM
1.0 and SLCAM 2.0. These algorithms run 50 times and
the obtained means and variances of sensor network cal-
ibration RMS errors are given in Fig. 7. It can be seen
that based on robot-motion-only method, the error of robot
localization grows quickly along with robot motion dis-
tance, therefore the error of sensor network calibration is
huge and hardly useful. FastSLAM 2.0 can deduce robot
localization error and improve sensor calibration accura-
cies, but because it only considers the sensor observation
to robot, the calibration accuracies of sensors are still not
good enough. As for the SLCAM 1.0 and SLCAM 2.0,
because of the independence between sensor network cali-
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Fig. 5. Robot location RMS errors of 4 methods
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Fig. 6. Robot orientation RMS errors of 4 methods

bration and robot localization, the observation and motion
are uncoupled, which makes the accuracies of robot local-
ization and sensor calibration both high, but the stability
of both estimation and calibration has improved. Besides,
similar to deal with robot localization, SLCAM 2.0 per-
forms better than SLCAM 1.0 in sensor network calibra-
tion. Thirdly, the mapping accuracies are compared us-
ing only robot motion, FastSLAM 2.0, SSEAM 1.0 and
SSEAM 2.0. These algorithms run 50 times and the ob-
tained means and variances of environment mapping RMS
errors are given in Fig. 8. It can be seen that based on
motion-only method, the error of robot localization grows
quickly along with robot motion distance, therefore the er-
ror of environment mapping is also huge and hardly useful.
FastSLAM 2.0 can reduce robot localization errors and im-
prove mapping accuracies, but because only consider the
observation from sensors to robot, the mapping error of
sensors is still high. As for the SLCAM 1.0 and SLCAM
2.0, because of the uncouple relation between robot motion
and sensor network observation, the accuracies of robot lo-
calization, sensor calibration and environment mapping are
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high and their stability is also improved. It can be also seen
that SLCAM 2.0 performs better in environment mapping
comparing to SLCAM 1.0. All the above experiments are
executed using Matlab under Windows XP with CPU of
Pentium 4 2.4GHz and 1G memory. The running times
are respectively EKF-SLAM with 12.3s, FastSLAM 2.0
with 135.4s, SLCAM 1.0 with 580.8s and SLCAM 2.0
with 647.6s. It can be seen that although SLCAM 1.0 and
SLCAM 2.0 consume more time than traditional SLAM,
their efficiencies are still acceptable, and more importantly,
the proposed methods can automatically calibrate sensor
network once and for all after ubiquitous robot system is
introduced into a service environment.

The experiments showed a relative balanced scatter of
both sensor network nodes and environment landmarks,
the proposed solution is also suitable for setup that contains
more sensors and fewer landmarks, or vice versa, while the
accuracy and stability may decrease.

5 CONCLUSION

Robot localization, sensor network calibration and en-
vironment mapping are three basic issues to make the
network robot system works effectively. In this article,
the problem of simultaneous localization, calibration and
mapping in network robot system is put forward and de-
noted as joint conditional distribution. The problem is de-
composed into three analytic terms in aspect of probabil-
ity and a solution is given under the framework of Rao-
Blackwellized particle filtering. Although the proposed
methods are tested and verified under simulated system,
to perform well under actual system, others issues such as
wireless communication, feature detection, data associa-
tion should also be considered, and the further optimiza-
tion should be made so the algorithm could run in real-
time.

As mentioned above, network robot system plays more
and more important rule in daily life, especially in the dy-
namic environment. Based on solutions presented in this
paper, the network robot system have calibrated the sensor
network, and built a contemporary environment map. To
ensure robot correct path planning and navigation, the map
must be updated momentarily to reflect the change of envi-
ronment. So how to update the map effectively through the
interaction between robot and calibrated sensor network,
comes to be an important research issue.
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