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ABSTRACT 

This article presents a novel fuzzy identification method for dynamic modelling of quadrotor unmanned 

aerial vehicles. The method is based on a special parameterization of the antecedent part of fuzzy 

systems that results in fuzzy-partitions for antecedents. This antecedent parameter representation method 

of fuzzy rules ensures upholding of predefined linguistic value ordering and ensures that fuzzy-partitions 

remain intact throughout an unconstrained hybrid evolutionary and gradient descent based optimization 

process. In the equations of motion the first order derivative component is calculated based on 

Christoffel symbols, the derivatives of fuzzy systems are used for modelling the Coriolis effects, 

gyroscopic and centrifugal terms. The non-linear parameters are subjected to an initial global 

evolutionary optimization scheme and fine tuning with gradient descent based local search. Simulation 

results of the proposed new quadrotor dynamic model identification method are promising. 
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INTRODUCTION 

A wide area of robotics research is dedicated to aerial platforms. The quadrotor architecture 

has low dimensions, good manoeuvrability, simple mechanics and payload capability. 

The study of kinematics and dynamics helps to understand the physics of the quadrotor and 

its behaviour. Together with modelling, the determination of the control algorithm structure is 

very important [1-6]. The quadrotor unmanned aerial vehicle (UAV) is controlled by angular 

speeds of four motors. Each motor produces a thrust and a torque, whose combination 

generates the main trust, the yaw torque, the pitch torque, and he roll torque acting on the 

quadrotor. Motors produce a force proportional to the square of the angular speed and the 

angular acceleration; the acceleration term is commonly neglected as the speed transients are 

short thus exerting no significant effects. Soft computing methods can be efficiently applied 

together with and also instead of conventional controllers. 

Fuzzy modelling [7-12] can be conducted as black-box modelling where all the system 

knowledge is mere input-output data, however when expert knowledge is readily available, 

we should take advantage of it – fuzzy grey-box modelling is a rational choice. Identification 

of linear parameters is a well-studied area, with efficient matrix algebra and singular value 

decomposition based reliable tools. Non-linear parameters can also be simply traced to their 

local optimum with well-studied gradient descent methods, but we should always keep in 

mind that gradient descent methods are trapped by local optimum areas. Evolutionary 

algorithms are robust global optimum search engines, capable of multi-objective search as 

described in [13-16]. 

The article is organized as follows. In Section 1 the Introduction is given, in Section 2 the 

quadrotor dynamic model is presented. In Section 3 the Fuzzy-logic systems are illustrated. 

In Section 4 the multi-objective Genetic algorithms are illustrated. Section 5 presents the 

simulation setup and simulation results. Conclusions are given in Section 6. 

QUADROTOR DYNAMIC MODEL 

Motors of a quadrotor can only turn in a fixed direction, so the produced force is always 

positive. Motors are set up so that two opposites form a pair, which turns clockwise, while 

the other pair rotates counter-clockwise. This arrangement is chosen so that gyroscopic 

effects and aerodynamic torques are canceled in trimmed flight [17-20]. 

The main trust is the sum of individual trusts of each four motor. The pitch torque is a 

function of difference in forces produced on one pair of motors, while the roll torque is a 

function of difference in forces produced on other pair of motors. The yaw torque is sum off 

all four motor reaction torques due to shaft acceleration and blades drag. The motor torque is 

opposed by a general aerodynamically drag. 

The complete dynamics of an aircraft, taking into account aero-elastic effects, flexibility of 

wings, internal dynamics of the engine, and the whole set of changing environmental 

variables is quite complex and somewhat unmanageable for the purpose of autonomous 

control engineering. 

For a full dynamic model of a quadrotor system both (1) the center of mass position vector of 

(x, y, z) in fixed frame coordinates and (2) the orientation Euler angles: roll, pitch, yaw angles 

(Φ, θ, ψ) around body axes X, Y, Z are considered for the vector of generalized coordinates q. 

Using the Euler-Lagrange approach it can be shown how the translational forces Fξ applied to 

the rotorcraft due to main trust can be full decoupled from the yaw, pitch and roll moments 

For a full dynamic model of a quadrotor system both (1) the center of mass position vector of 

(x, y, z) in fixed frame coordinates and (2) the orientation Euler angles: roll, pitch, yaw angles 
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(ϕ, θ, ψ) around body axes X, Y, Z are considered for the vector of generalized coordinates q. 

Using the Euler-Lagrange approach it can be shown how the translational forces Fξ applied to 

the rotorcraft due to main trust can be full decoupled from the yaw, pitch and roll moments τ: 

 
F



































1

0

0

mg

z

y

x

m







, (1) 

where m is the quadrotor mass and g is the gravitational constant. 
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where J is a 3  3 matrix, called the inertia matrix and C is also a 3  3 matrix that refers to 

Coriolis, gyroscopic and centrifugal terms. Further on, for the scope of this article we shall 

address only equation (2) as the quadrotor dynamic model to be identified. 

Equation (2) can be analyzed as three resultant torques i acting along the i
th

 axes respectively 

as i ∈ (ϕ, θ, ψ), which using Christoffel symbols of the first kind can be defined as a function 

of the state vector of Euler angles q = (ϕ, θ, ψ), their velocities ( dtdqq / ) and accelerations 

( dtqdq /  ) as: 

      
j ,
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kijkjij qqDqqqD  ,   i, j, k = 1, 2, 3. (3) 

The first component of equation (3) is shortly referred to as 𝐽�̈� the inertia matrix part, while 

the second as C q  the Coriolis matrix term for which components are defined as: 
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Where Dik, Dijk are in general, highly non-linear scalar functions of the state vector q. They 

contain sin(
.
) and cos(

.
) functions of q, and their products and sums defined by the geometry 

of the system. 

There are general relations that can be used for reducing the number of unknown elements of 

J and C, like: (1) J is symmetric and (2) Dijk are Christoffel-symbols of Dij, thus further 

properties are inherently defined as: 
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It should be noted that direct measurement of any single component from equation (4) is 

not possible; the only measurable data, on the output of the system, is the resultant torque of 

equation (3). 

Identification of all non-linear functions (4) under these terms is a considerable problem. 

FUZZY –LOGIC SYSTEMS 

Takagi-Sugeno-Kang (TSK) type Fuzzy-logic systems (FLSs) having n inputs and 1 output 

are defined as: 
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where M is the number of rules, q is the vector of n input variables, yl is a scalar function of n 

input variables, defined by (n + 1)c parameters as in equation (8). The antecedent, the 
premise part of a fuzzy rule is: 
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where )(
)( iF q
il

 is the membership function (MF) of the i
th

 input variable in the l
th

 rule that 

defines the linguistic value Fl(i). The linguistic form of the l
th

 rule from the previously 
described first order TSK FLS is defined in [13] as: 

 IF (q1 is F l(1)) AND (q2 is F l(2)) AND … (qn is F l(n)) THEN )0(
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Zadeh-formed MFs are the z-, the s-, and  -functions (named after their shape) defined 
respectively as: 
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where b1  b2  b3  b4 are parameters defining MFs. In case there is more than one value q 

such that the degree of membership of q is equal to one, the interval where k(q, b) = 1 (the 

interval [b2, b3] for mf type k) is called the plateau of the k MF. When having for example 

3 naturally ordered linguistic values l   {a, b, c} (a  low, b  medium, c  large) 
constraints on parameters to preserve this ordering are: 
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A linguistic variable can be assigned K different linguistic values, each described by a MF 

),( bqk such that for every input x it holds that 1),(
1

 

K

k k bq , the MFs are said to form a 

fuzzy-partition. Forming fuzzy-partitions by antecedent membership functions ensures that 
there can not be a numerical input within the defined input range that will not result in firing 
at least one rule consequent of the fuzzy model, which means that there is a defined output 
for all possible input states. Keeping specific properties of fuzzy-partitions imposes a set of 
hard constraints on membership function parameters as detailed in [15]. By imposing these 
restrictions on all linguistic variables of the FLS, and additionally assuming that the rule base 
is complete in the sense that it covers the whole input domain, it immediately follows that the 
TSK model structure of equation (6) simplifies to: 
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Automatic fine tuning FLS parameters that satisfies all of above listed constraints is a 
significant problem. 
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In [15] a method is introduced that simplifies parameter optimisation of equation (11) while 

preserving all required constraints. Fuzzy-partitions can be simply formed from Zadeh-typed 

MFs by making equal the last two parameters of each preceding MF to the first two 

parameters of the succeeding MF. This way a fuzzy partition of K MFs is defined by 

2(K -1) + 1 parameters. Let our input space be normalised (xmin = 0 and xmax = 1). If we do not 

want to allow any plateaux, parameter b2 must be equal to b3 in equation (9) this way the 

number of parameters is further reduced to K –2. When we take into consideration all 

constraints of equation (10), we end up with a series of strictly ordered parameters: 

 b1 < b2 < … < bK-1. (12) 

Let us add two more constraints: 

 0 < b1 and bK–1 < 1. (13) 

Let us define the first MF to be: 

 ),0,( 1bxmfz . (14) 

Let the K-th, the last MF concluding the fuzzy partition be: 

 )1,,( 2Kbxmfs . (15) 

Let us define intermediate kth MFs to be: 

 ),,,,( 11  kkkk bbbbxmf   (16) 

for k = 1, …, 2K , where b0 = 0 and bK–1 = 1. This way the ordered series of K–2 

parameters bi, together with constants 1 and 0, are the minimal number of parameters to 

define a fuzzy-partition of Zadeh-formed MFs. This minimal number of non-linear 

parameters is a very important issue for optimisation as over parameterised systems are hard 

to optimise. The only problem is that when tuning the non-linear parameters of a FLS having 

an n dimensional input space, we must comply with  
n
i iK1 pieces of hard constraints. 

Although there are a number of constrained optimisation methods it is obvious that an 

unconstrained optimisation method would be more efficient. Let us consider K –1 pieces of 

rational, positive or zero parameters as proposed in [12]: 

 1 ..., ,1  ,0   KRa  . (17) 

When we define bk as: 
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for every k = 1, …, K –2; all the constraints of equation (12) and equation (13) are 

automatically fulfilled for every a from equation (18) without any further restrictions on any 

a, other than 0  a. An ANFIS like optimisation, defined in [16] or any other efficient 

unconstrained nonlinear numerical method can be applied to minimise equation (11) error 

along the a  parameters. For calculating all linear parameters a linear least square (LS) 

method can be applied to cl(j) parameters of the consequent part. To avoid traps of local 

optimal solutions for a , a preliminary global search should be applied. 

MULTI-OBJECTIVE GENETIC ALGORITHMS 

A genetic algorithm (GA) is constructed on bases of imitating natural biological processes 

and Darwinian evolution [21-24]. GAs are widely used as powerful global search and 

optimization tools [25]. Real life optimization problems often have multiple objectives. To 

establish ranking of chromosomes for Gas the comparison of two objective vectors is 

required. Often a simple weighted sum is used, but its drawbacks are widely known. Pareto 

based comparison [19] is the bases of a few popular methods like Non-dominated Sorting GA 

(NSGA) [22] and Multi-Objective GA (MOGA) [23, 25]. A general multi-objective 
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optimization problem consists of n number of scalar minimization objectives where every 

scalar objective function fi(x) is to be minimized simultaneously, where x is an n-dimensional 

vector of parameters. As maximization can be easily transformed to minimization, the 

generality of the previous statement stands. A vector x1 Pareto-dominates x2, when no scalar 

component of x2 is less than the appropriate component of x1, and at least one component of 

x1 is strictly smaller than the appropriate component of x2. Since no metrics can be assigned 

to Pareto-dominance, there have been two different attempts to define a GA ranking method, 

which can be used for Pareto-dominance vector comparison: (1) “Block-type” ranking is 

defined in [23] as: Rank is equal to 1 + (number of individuals that dominate the i
th

 

individual); (2) “Slice-type” ranking is defined in [5] as: Rank is equal to 1 + (number of 

turns when the non-dominated individuals are eliminated, needed for the i
th

 individual to 

become non-dominated). 

Quantity-dominance, as proposed in [15] is defined as: vector a = [ai]. Quantity-dominates 

vector b = [bi] if a has more such ai components, which are better than the corresponding bi 

component of vector b, and a has less such aj components, which are worse than the 

corresponding bj. A metrics can be defines as: the measurement of the extent of 

Quantity-dominance is the difference between the number of better and the number of worse 

components. For a measurement based ranking method the Rank of the i
th

 objective vector 

can be simply defined as the sum of Quantity-dominance measurements for every individual 

measured from the i
th

 vector. This ranking method can be readily applied with Quantity-

comparison. The proposed vector comparison method provides more information when 

comparing two vectors than the classic Pareto-based comparison, thus the GA is faster, more 

efficient in its search. The MMNGA algorithm is computationally less expensive, and more 

efficient compared to the classical methods, and its results analyzed on a number of GA hard 

problems are at least equally good [16]. 

In case of multi-rotors the roll and pitch are equal to: 
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From equations (3) and (19) it is obvious that controll torques for multi rotors are direct 

functions of up to the forth time derivatives of state variables (x,y,z) and ψ. To have realistic, 

feasible torques along a trajectory, which are efficiently controllable without chattering, we 

need smooth torque changes. Having 𝝉 = 𝝉(𝒒, �̇�, �̈�)  and 𝒒 = 𝒒(𝜓, �̇�, �̈�)  for smooth torque 

changes, we need smooth changes of the so called displacement crackle 𝒄(𝑡) = 𝑑5𝒓/𝑑𝑡5, the 

fifth time derivative of displacement r(x, y, z). Proposal of this article is to use a smooth 

displacement crackle function, which can be defined with a continuous displacement pop 

function 𝒑(𝑡) = 𝑑6𝒓/𝑑𝑡6 as: 
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where d is the natural dampened frequency from equation (3), d the phase delay is kept is 

zero, and the gain G is selected for each trajectory and system such that the required 

boundaries for displacement, velocity and acceleration limits are met. The integration 

constant for 𝒄(𝑡) is to be selected as equal to 𝐺 to achieve the required properties for the cracle 

function; for all further integrations to calculate trajectory snap, jerk, acceleration, velocity 

and displacement by intergrating 𝒄(𝑡) we are to use integration constants equal to zero. The 

resulting general trajectory plot is as presented in Figure 1. 

We can eficiently identify Dij inertia matrix components of the dynamic model in equation 

(4) as FLSs defined by equations (11) to (18), where the FLS general input variable q will be 
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substituted for the appropriate state variables of (ϕ, θ, ψ). When the Dij inertia matrix 

components are constructed in this way, forming the Dijk components as Christoffel symbols 

is to be expressed by partial derivatives of equation (11) : 
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The unknown inertia matrix components of equation (2) to be identified are: 

 ) ,(), ,(),(),( 33232213  DDDD . (22) 

Based on quadrotor system structure and inertia matrix symmetry the remaining inertia 

components are known to be: 

 2332133112211211 ,,,0, DDDDDDDID X  . (23) 

Based on equation (5) the following Coriolis term matrix components can be calculated by 

equations (22): 
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Remaining Dijk components are trivial identities defined by equation (5). 

 

Figure 1. Trajectory pop p(t), crackle c(t), snap s(t), jerk j(t), acceleration a(t), velocity v(t) 

and displacement r(t). 
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SIMULATION SETUP AND RESULTS 

The proposed method is tested for a quadrotor system simulation from [1] with following 

parameters: gravity constant g = 9,81 m/s
2
, mass m = 6 kg, trust factor k = 121,5 e

–6
, drag 

factor b = 2,7e
–6

, body inertia along axes X, IX = 0,6 kgm
2
, body inertia along axes Y, 

IY = 0,6 kgm
2
, body inertia along axes Z, Iz = 0,6 kgm

2
, simulation time t = 3 s. The training 

data set is collected from a simulation along a trajectory with jounce for (x,y,z) and ψ defined so 

that position changes simultaneously along a unit cube main diagonal (0 0, 0)-(1, 1, 1), while 

performing a full circle rotation in jaw motion 0-2.The simulated resultant torque training data 

is as presented in Figure 2. The calculated roll, pitch and yaw motions are presented in Figs. 3-5. 

Non-linear aK parameters of the system are identified in a manner that first the input space is 

normalised to the unit hyper-cube. A set of non-linear parameters consists of six times four aK 

integer parameters for defining six fuzzy-partitions of five MFs each, where each partition 

consists of one z-type MF, three π-type MFs and one s-type MF as in (9)-(18). These six 

fuzzy-partitions serve as antecedents for the four fuzzy-systems like in equation (11) and (21), 

used for identifying Dij, with ij = (13, 22, 23, 33) as defined in equations (22)-(24) and (5). 

Two unknown linear parameters D11 and D12 of the quadrotor model as in equation (23), 

together with 170 linear parameters of the four TSK FLSs (2 FLSs with 5 MFs on one input, 

each rule with 2 c parameters, plus 2 FLSs with 5 MFs on both of the 2 inputs, each rule with 

3c parameters) of equations (22) and equations (24) are determined by the SVD-based LS 

method as used in [15]. Concluded from equation (17) six fuzzy-partitions (antecedent part of 

2 FLSs with 1 input, plus 2 FLSs with 2 inputs are covered by 6 independent fuzzy-partitions) 

are represented by a vector of six times four Ka parameters, which are optimized by a 

multi-objective hybrid genetic algorithm as detailed in [16]. Each chromosome evaluation is 

extended to include an additional round of nonlinear LSQ optimization of Ka  parameters. 

Chromosomes are updated before applying further GA operators, so the GA does not waste 

time on local optimization; only global search capabilities of the GA are utilized. Three 

objectives are set for minimization: (1) the root mean square of the torque identification error, 

(2) the maximum absolute error for any given training data input-output pair, and (3) the 

condition number of the linear system of equations used for LS calculation of linear 

parameters. The GA is set to work on a population of 125, divided into 5 subpopulations with 

migration rate 0,2 taking place after each 5 completed generations. Crossover rate, generation 

gap and insertion rate is 0,8, selection pressure is 1,5. In each generation 4 % of individuals 

are subject to mutation, when 1 % of the binary genotype is mutated. Individuals, 

chromosomes are comprised of 24 Gray-coded integers, each consist of 16 bits. The initial 

population is set up in a completely random manner.Matrix of the linear equation is pre-

processed from equation (3), where FLSs like equation (11) and their partial derivatives like 

equation (21) are inserted as described in equations (22)-(24). Unknown linear parameters are 

D11, D12 and the 170 c parameters of fuzzy-rule consequents. 

Evaluation of each individual is done as follows: (1) Convert the coded aK values from the 

chromosome to bk by equation (18). (2) Evaluate all MFs, which will comprise six 

fuzzy-partitions from each of six bk quadruplets by equations (14)-(16). Also evaluate 

derivatives of equations (14)-(16). (3) The pre-processed matrix of the linear equation is 

evaluated with the MFs. (4) Linear components of equations (11) and (21) are calculated by 

SVD decomposition as described in [20]. (5) Next the Ka parameters are fine-tuned by the 

Matlab “lsqnonlin” function, (6) MFs are re-calculated for the optimised aK parameters and 

all linear parameters are re-calculated. (7) Resulting optimised Ka  parameters are re-assigned 

into the chromosome of the evaluated chromosome. 
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Figure 2. Torque training data set for otput. 

 

Figure 3. Roll training data for input. 

 
Figure 4. Pitch training data for input. 
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Figure 5. Yaw training data for input. 

For the multi-objective rank assignment described in [16], the objective vector is created 
from: (i) the mean square of the identified torque error, (ii) the maximum absolute torque 
identification error and (iii) the condition number of the matrix of the linear equation. 
Stochastic universal sampling is used for selecting the next generation without explicit 
elitism. To speed up the GA processing, a database of evaluated chromosomes and their 
objective vectors is created, so only unique new individuals are evaluated in each generation. 
Convergence is achieved in some 50 generation evaluations, when the mean square error is in 
order of 5e

–7
, the maximum torque error is smaller than 0,005 Nm. For non-dominated 

chromosomes the condition number of the used matrix of linear equation is in order of 1e
+38

. 
One typical non-dominated chromosome and the corresponding torque identification error are 
presented on figures 6 to 10. The numerical value of this chromosome is: [61029  8550  
10175  18348  6668  22470  11993  57404  608  18024  25310  39946  26698  53573  39807  
47476  1909  46  52007  47288  3712  920  50956  5174], which defines fuzzy-partition MF 
parameters as: bi for J13: [0,6221, 0,7093, 0,8130]. bi for J22: [0,0677, 0,2957, 0,4174]. bi for 
J23: [0,0072, 0,2221, 0,5238; 0,1593, 0,4791, 0,7167]. bi for J33: [0,0189, 0,0193, 0,5330; 
0,0611, 0,0762, 0,9148]. 

 
Figure 6. Fuzzy-partition for J13 antecedents. 

 
Figure 7. Fuzzy-partition for J22 antecedents. 
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Figure 8. Fuzzy-partition for J23 antecedents. 

 

Figure 9. Fuzzy-partition for J33 antecedents. 

 

Figure 10. Torque identification error. 
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CONCLUSIONS 

Simulation results of the proposed new quadrotor dynamic model identification method are 

promising. The quality of identification with the relative torque error being uniformly <0.1% 

is excellent, suitable for taking part in a model based control algorithm. The typical condition 

number for used linear parameter evaluations is very high for the used training data setup, so 

a more advanced trajectory has to be planned with sufficient inertia excitation along the 

complete input domain. Also the FLS structure is to be made flexible, in terms that the GA 

should be able to turn off unnecessary MFs and thus reduce the number of unnecessary rules 

and linear parameters. 
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