TRIPLE SOLUTIONS FOR THE ONE-DIMENSIONAL *p*-LAPLACIAN

HAISHEN LÜ, DONAL O'REGAN AND RAVI P. AGARWAL

Academy of Mathematics and System Sciences, Beijing, China, National University of Ireland, Ireland and Florida Institute of Technology, USA

ABSTRACT. We give conditions on f involving pairs of lower and upper solutions which lead to the existence of at least three solutions to the two point boundary value problem $(|u'|^{p-2}u') = q(t) f(t, u, u')$ on (0, 1), u(0) = u(1) = 0.

1. INTRODUCTION

In this paper we consider a two point boundary value problem for the one-dimensional p-Laplace equation of the form

(1.1) $(\varphi_p(u'))' = q(t) f(t, u, u'), \quad 0 < t < 1,$

(1.2) u(0) = u(1) = 0;

here $\varphi_p(s) = |s|^{p-2} s$, p > 1, and we assume the following two conditions hold:

(H1) $q \in C(0,1)$ with q > 0 on (0,1) and $\int_0^1 q(s) ds < \infty$, and (H2) $f: [0,1] \times R^2 \to R$ is continuous.

By a solution of (1.1)–(1.2) we mean a function $u \in C^1[0,1]$, with $\varphi_p(u') \in C^1(0,1)$, satisfying (1.1) on (0,1) and u(0) = u(1) = 0. In this paper we assume there exists two lower solutions α_1, α_2 and two upper solutions β_1, β_2 for problem (1.1) and (1.2) satisfying $\alpha_1 \leq \alpha_2, \beta_1 \leq \beta_2$ and we show that there are three solutions. For the special case $f(t, u, u') = f(u) \geq 0$ we give growth conditions on f which lead to the existence of three positive

²⁰⁰⁰ Mathematics Subject Classification. 34B15.

Key words and phrases. Lower and upper solutions, three solutions, p-Laplace equation, Nagumo condition.

²⁷³

solutions. In [1], J. Henderson and H. B. Thompson considered (1.1)–(1.2) with p = 2.

In this paper $C^k(J)$ will denote the space of functions $f : J \to R$ which are k-times continuously differentiable. For $u \in C[0,1]$, $||u||_{\infty} = \max_{t \in [0,1]} |u(t)|$, while for $u \in C^1[0,1]$, $||u|| = \max \{||u||_{\infty}, ||u'||_{\infty}\}$.

DEFINITION 1.1. A function $\alpha \in C^1[0,1]$, $\varphi_p(\alpha') \in C^1(0,1)$ will be called a lower solution of (1.1)–(1.2) if $(\varphi_p(\alpha'))' \geq q(t) f(t, \alpha(t), \alpha'(t))$ for $t \in (0,1)$, with $\alpha(0) \leq 0$, $\alpha(1) \leq 0$.

A function $\beta \in C^{1}[0,1]$, $\varphi_{p}(\beta') \in C^{1}(0,1)$ is a upper solution of (1.1)–(1.2) if the reverse inequalities hold.

DEFINITION 1.2. We say that f satisfies a Nagumo condition relative to the pair α and β , with $\alpha, \beta \in C[0,1], \alpha \leq \beta$ in [0,1], if there exists a function $\Psi: [0,\infty) \to (0,\infty)$ continuous, such that

(1.3)
$$|f(t, y, z)| \le \Psi(|z|) \quad for \ all \ (t, y, z) \in E,$$

where $E = \{(t, y, z) \in [0, 1] \times R^2 : \alpha(t) \le y \le \beta(t)\}$, and also that

(1.4)
$$\int_{\varphi_p(v)}^{\infty} \frac{du}{\Psi\left(\varphi_p^{-1}\left(u\right)\right)} > \int_0^1 q\left(t\right) dt;$$

here

$$v = \max \{ |\beta(0) - \alpha(1)|, |\beta(1) - \alpha(0)| \}.$$

2. General Results

THEOREM 2.1. Suppose (H1) and (H2) are satisfied. Assume that there exist two lower solutions α_1 and α_2 and two upper solutions β_1 and β_2 for problem (1.1)–(1.2) satisfying

- (i) $\alpha_1 \leq \alpha_2 \leq \beta_2$,
- $(ii) \ \alpha_1 \le \beta_1 \le \beta_2,$
- (*iii*) $\alpha_2 \not\leq \beta_1$,
- (iv) if u is a solution of (1.1)–(1.2) with $u \ge \alpha_2$, then $u > \alpha_2$ on (0,1), and
- (v) if u is a solution of (1.1)–(1.2) with $u \leq \beta_1$, then $u < \beta_1$ on (0,1).

If f satisfies the Bernstern-Nagumo condition with respect to α_1 , β_2 , then problem (1.1)–(1.2) has at least three solutions u_1 , u_2 and u_3 satisfying

 $\alpha_1 \leq u_1 \leq \beta_1, \ \alpha_2 \leq u_2 \leq \beta_2, \ and \ u_3 \nleq \beta_1 \ and \ u_3 \ngeq \alpha_2.$

Suppose that hypotheses (H1), (H2) and the Nagumo condition relative to a lower solution α_1 and upper solution β_2 are satisfied. We start with the construction of the modified problem. Define

 $P_{\alpha\beta}(t,x) = \max \left\{ \alpha\left(t\right), \min \left\{x, \beta\left(t\right)\right\} \right\} \text{ for all } x \in R.$

One can find the next result, with its proof, in [5].

LEMMA 2.2. For each $u \in C^1[0,1]$ the next two properties hold:

(a)
$$\frac{dP_{\alpha\beta}(t, u(t))}{dt} \text{ exists for a.e. } t \in [0, 1], \text{ and}$$

(b) if $u, u_m \in C^1[0, 1]$ and $u_m \to u$ in $C^1[0, 1]$ then
$$\frac{d}{dt} P_{\alpha\beta}(t, u_{\alpha\beta}(t)) \to \frac{d}{dt} P_{\alpha\beta}(t, u_{\beta\beta}(t)) \text{ for a } e, t \in [0, 1]$$

$$\frac{a}{dt}P_{\alpha\beta}\left(t,u_{m}\left(t\right)\right) \rightarrow \frac{a}{dt}P_{\alpha\beta}\left(t,u\left(t\right)\right), \quad for \ a.e. \ t \in [0,1]$$

From Definition 1.2, we can find a real number, L > 0, such that

$$0 \leq v < L, \ -L < \alpha'_1(t), \beta'_2(t) < L \text{ for all } t \in [0, 1]$$

and

$$\int_{\varphi_p(v)}^{\varphi_p(L)} \frac{du}{\Psi\left(\varphi_p^{-1}\left(u\right)\right)} > \int_0^1 q\left(t\right) dt.$$

We consider the following modified problem,

(2.1)
$$(\varphi_p(u'))' = q(t) k\left(t, u, \frac{d}{dt} P_{\alpha_1 \beta_2}(t, u(t))\right), \quad 0 < t < 1,$$

(2.2) u(0) = u(1) = 0,

with

$$k(t, x, y) = f(t, P_{\alpha_1 \beta_2}(t, x), h(y)) + \tanh(x - P_{\alpha_1 \beta_2}(t, x)),$$

where h is defined by

$$h(y) = \max\left\{-L, \min\left\{y, L\right\}\right\} \text{ for all } y \in R$$

Thus k is a continuous function on $[0, 1] \times R^2$ and satisfies

(2.3)
$$|k(t, x, y)| \le \Psi(|y|) + \frac{\pi}{2}$$
, for $|y| \le L$, and

(2.4)
$$|k(t, x, y)| \le M$$
, for $(t, x, y) \in [0, 1] \times R^2$

for some constant M. Moreover, we may choose M so that $\|\alpha_1\|_{\infty}, \|\beta_2\|_{\infty} < M$.

First, we show that every solution of (2.1)-(2.2) is a solution (1.1)-(1.2).

LEMMA 2.3. If u is a solution of (2.1)–(2.2), then $u \in [\alpha_1, \beta_2]$.

PROOF. We prove $\alpha_1(t) \leq u(t)$ for $t \in [0,1]$. Similar reasoning shows $u(t) \leq \beta_2(t)$ for $t \in [0,1]$.

By definition of α_1 and β_2 we have that $\alpha_1(0) \leq u(0) \leq \beta_2(0)$ and $\alpha_1(1) \leq u(1) \leq \beta_2(1)$. If there exists $t_0 \in (0, 1)$ such that

$$u(t_0) - \alpha_1(t_0) = \min_{t \in [0,1]} \{(u - \alpha_1)(t)\} < 0,$$

then, since $u - \alpha_1 \in C^1[0,1]$, we have $(u - \alpha_1)'(t_0) = 0$. Furthermore, there exists $0 \leq t_1 < t_0 < t_2 \leq 1$ such that $u < \alpha_1$ in (t_1, t_2) and $(u - \alpha_1)(t_1) = (u - \alpha_1)(t_2) = 0$. Thus,

$$\begin{aligned} \left(\varphi_{p}\left(u'\left(t\right)\right)\right)' - \left(\varphi_{p}\left(\alpha_{1}'\left(t\right)\right)\right)' &\leq q\left(t\right) f\left(t, \alpha_{1}\left(t\right), \alpha_{1}'\left(t\right)\right) \\ &+ q\left(t\right) \tanh\left[u\left(t\right) - \alpha_{1}\left(t\right)\right] \\ &- q\left(t\right) f\left(t, \alpha_{1}\left(t\right), \alpha_{1}'\left(t\right)\right) \\ &= q\left(t\right) \tanh\left[u\left(t\right) - \alpha_{1}\left(t\right)\right] \\ &< 0, \end{aligned}$$

for all $t \in (t_1, t_2)$. As a result $\varphi_p(u'(t)) - \varphi_p(\alpha'_1(t)) < \varphi_p(u'(t_0)) - \varphi_p(\alpha'_1(t_0)) = 0$ for all $t \in (t_1, t_2)$, so

$$u'(t) < \alpha'_1(t) \text{ for all } t \in (t_0, t_2).$$

П

Thus $(u - \alpha_1)(t_2) < (u - \alpha_1)(t_0) < 0$, which is a contradiction.

LEMMA 2.4. If u is a solution of (2.1)–(2.2) then -L < u'(t) < L for every $t \in [0, 1]$.

PROOF. Let $u \in C^1[0,1]$ be a solution of (2.1)–(2.2). From Lemma 2.3 we have $u \in [\alpha_1, \beta_2]$, and so

$$(\varphi_p(u'(t)))' = q(t) f(t, u(t), h(u'(t))) \text{ for } t \in (0, 1).$$

By the mean-value theorem, there exists $t_0 \in (0, 1)$ with

$$u'(t_0) = u(1) - u(0)$$

and as a result

$$-L < -v \le \alpha_1(1) - \beta_2(0) \le u'(t_0) \le \beta_2(1) - \alpha_1(0) \le v < L.$$

Let $v_0 = |u'(t_0)|$. Suppose that there exists a point in the interval [0, 1] for which u' > L or u' < -L. From the continuity of u' we can choose $t_1 \in [0, 1]$ such that one of the following situations hold:

- (i) $u'(t_0) = v_0, u'(t_1) = L$ and $v_0 \le u'(t) \le L$ for all $t \in (t_0, t_1)$,
- (*ii*) $u'(t_1) = L, u'(t_0) = v_0$ and $v_0 \le u'(t) \le L$ for all $t \in (t_1, t_0),$
- (*iii*) $u'(t_0) = -v_0$, $u'(t_1) = -L$ and $-L \le u'(t) \le -v_0$ for all $t \in (t_0, t_1)$, and

(*iv*) $u'(t_1) = -L$, $u'(t_0) = -v_0$ and $-L \le u'(t) \le -v_0$ for all $t \in (t_1, t_0)$.

Without loss of generality, suppose $-L \leq v_0 \leq u'(t) \leq L$ for all $t \in (t_0, t_1)$. Then

$$(\varphi_p (u'(t)))' = q(t) f(t, u(t), h(u'(t))) = q(t) f(t, u(t), u'(t)) \text{ for } t \in (t_0, t_1),$$

and so

$$\left| \left(\varphi_p \left(u'\left(t \right) \right) \right)' \right| = \left| q\left(t \right) f\left(t, u\left(t \right), u'\left(t \right) \right) \right|$$

$$\leq q\left(t \right) \Psi\left(\left| u'\left(t \right) \right| \right) \text{ for } t \in (t_0, t_1)$$

As a result

$$\begin{split} \int_{\varphi_p(v_0)}^{\varphi_p(L)} \frac{du}{\Psi\left(\varphi_p^{-1}\left(u\right)\right)} &= \int_{t_0}^{t_1} \frac{\left|\left(\varphi_p\left(u'\left(t\right)\right)\right)'\right|}{\Psi\left(|u'\left(t\right)|\right)} dt\\ &\leq \int_{t_0}^{t_1} q\left(t\right) dt. \end{split}$$

Note also that $\varphi_p^{-1}(s) \ge 0$ for $s \in [\varphi_p(v_0), \varphi_p(L)]$, so we have $v_0 \le v$ and thus $\varphi_p(v_0) \le \varphi_p(v)$, which leads

$$\int_{\varphi_p(v_0)}^{\varphi_p(L)} \frac{du}{\Psi\left(\varphi_p^{-1}\left(u\right)\right)} \geq \int_{\varphi_p(v)}^{\varphi_p(L)} \frac{\varphi_p^{-1}\left(u\right)}{\Psi\left(\varphi_p^{-1}\left(u\right)\right)} du$$

$$> \int_0^1 q\left(t\right) dt,$$

Π

a contradiction.

PROOF OF THE THEOREM 2.1. From Lemma's 2.3-2.4 it is enough to show (2.1)–(2.2) has three solutions as described in the statement of Theorem 2.1. Solving (2.1)–(2.2) is equivalent to finding a $u \in C^1[0,1]$ which satisfies

(2.5)
$$u(t) = \int_0^t \varphi_p^{-1} \left(A_u - \int_s^1 q(\tau) k_u(\tau) d\tau \right) ds,$$

where $k_{u}\left(\tau\right) \equiv k\left(\tau, u, \frac{d}{d\tau}P_{\alpha_{1}\beta_{2}}\left(\tau, u\left(\tau\right)\right)\right)$ for a.e. $\tau \in [0, 1]$, and A_{u} satisfies

(2.6)
$$\int_{0}^{1} \varphi_{p}^{-1} \left(A_{u} - \int_{s}^{1} q(\tau) k_{u}(\tau) d\tau \right) ds = 0.$$

The argument in [2] guarantees that A_u exists and is unique for $u \in C^1[0,1]$.

Now define the following operator $T : C^1[0,1] \to C^1[0,1]$ (here $u \in C^1[0,1]$ and $t \in [0,1]$) by

(2.7)
$$(Tu)(t) = \int_0^t \varphi_p^{-1} \left(A_u - \int_s^1 q(\tau) k_u(\tau) d\tau \right) ds,$$

where A_u satisfies (2.6).

We claim that $T: C^1[0,1] \to C^1[0,1]$ is continuous. Suppose $u_n \to u$ in $C^1[0,1]$. Let A_{u_n} correspond to u_n and A_u correspond to u, and we will now

show that $\lim_{n\to\infty} A_{u_n} = A_u$. We know

(2.8)
$$\int_{0}^{1} \varphi_{p}^{-1} \left(A_{u_{n}} - \int_{s}^{1} q(\tau) k_{u_{n}}(\tau) d\tau \right) ds - \int_{0}^{1} \varphi_{p}^{-1} \left(A_{u} - \int_{s}^{1} q(\tau) k_{u}(\tau) d\tau \right) ds = 0.$$

The mean value theorem implies that there exists $\eta_n \in (0,1)$ such that

(2.9)
$$\varphi_p^{-1}\left(A_{u_n} - \int_{\eta_n}^1 q(\tau) k_{u_n}(\tau) d\tau\right) - \varphi_p^{-1}\left(A_u - \int_{\eta_n}^1 q(\tau) k_u(\tau) d\tau\right) = 0,$$

and so

(2.10)
$$A_{u_n} - A_u = \int_{\eta_n}^{1} q(\tau) \left(k_{u_n}(\tau) - k_u(\tau) \right) d\tau.$$

On the other hand, since $u_n \to u$ in $C^1\left[0,1\right]$ and k is a continuous function we have from Lemma 2.2 that

$$k_{u_n}(t) \rightarrow k_u(t)$$
 for a.e. $t \in [0, 1]$

so (2.4) and the dominated convergence theorem yields

$$qk_{u_n} \to qk_u$$
 in $L^1(0,1)$.

Moreover,

$$0 \leq \int_{\eta_n}^{1} q(\tau) |k_{u_n}(\tau) - k_u(\tau)| d\tau$$

$$\leq ||q(k_{u_n} - k_u)||_{L^1} \text{ for all } n \in N,$$

and so

(2.11)
$$\lim_{n \to \infty} \int_{\eta_n}^{1} q(\tau) \left(k_{u_n}(\tau) - k_u(\tau) \right) d\tau = 0.$$

This together with (2.10) yields

$$\lim_{n \to \infty} A_{u_n} = A_u.$$

Furthermore,

$$A_{u_n} - \int_t^1 q(\tau) k_{u_n}(\tau) d\tau \to A_u - \int_t^1 q(\tau) k_u(\tau) d\tau \text{ for all } t \in [0,1].$$

Also since

$$\left| \left(A_{u_n} - \int_t^1 q\left(\tau\right) k_{u_n}\left(\tau\right) d\tau \right) - \left(A_u - \int_t^1 q\left(\tau\right) k_u\left(\tau\right) d\tau \right) \right| \\ \leq |A_{u_n} - A_u| + \|q\left(k_{u_n} - k_u\right)\|_{L^1} \text{ for all } t \in [0, 1],$$

278

the convergence is uniform in [0, 1]. In addition the uniform continuity of φ_p^{-1} on compact intervals yields

$$(Tu_n)' \to (Tu)'$$
 uniformly on $[0,1]$

and as a result

 $Tu_n \to Tu$ uniformly on [0,1].

We next claim that $T(C^{1}[0,1])$ is a relatively compact set in $C^{1}[0,1]$. We first show that there exists a constant N^* with

$$|A_u| \le N^*$$
 for all $u \in C^1[0,1]$.

Since

$$\int_{0}^{1} \varphi_{p}^{-1} \left(A_{u} - \int_{s}^{1} q\left(\tau\right) k_{u}\left(\tau\right) d\tau \right) ds = 0,$$

the Mean Value theorem for integrals implies that there exists $\xi \in [0, 1]$ with

$$\varphi_p^{-1}\left(A_u - \int_{\xi}^{1} q\left(\tau\right) k_u\left(\tau\right) d\tau\right) = 0.$$

Consequently,

$$A_{u} = \int_{\xi}^{1} q(\tau) k_{u}(\tau) d\tau,$$

which implies

$$|A_u| \le M \int_0^1 q(\tau) \,\tau \equiv N^*$$

where M is defined in (2.4).

Next we show that $T(C^{1}[0,1])$ is bounded. This follows from the following inequalities:

$$|Tu(t)| \le \int_0^1 J(s) \, ds$$
 and $|(Tu)'(t)| \le J(0)$ for $t \in [0, 1]$

or

$$\varphi_p^{-1}(Q) \le (Tu)'(t) \le \varphi_p^{-1}(-Q) \text{ for } t \in [0,1],$$

where

$$J(s) = \max\left\{ \left| \varphi_p^{-1} \left(-N^* - M \int_s^1 q(u) \, du \right) \right|, \left| \varphi_p^{-1} \left(N^* + M \int_s^1 q(u) \, du \right) \right| \right\}$$

and

$$Q = N^* + M \int_0^1 q\left(u\right) du.$$

We next show the equicontinuity of $T(C^{1}[0,1])$ on [0,1]. For $u \in C^{1}[0,1]$ and $t, s \in [0, 1]$ we have

$$\left|Tu\left(t\right) - Tu\left(s\right)\right| \le \left|\int_{s}^{t} J\left(v\right) dv\right|$$

Finally, to see that $(T(C^1[0,1]))' = \{y' : y \in T(C^1[0,1])\}$ is equicontinuous on [0,1], we use the fact that φ_p^{-1} is uniformly continuous on [-Q,Q] and (2.4).

By Arzela-Ascoli Theorem, $T: C^1[0,1] \to C^1[0,1]$ is compact. Let

$$\Omega = \left\{ u \in C_0^1 \left[0, 1 \right] : ||u|| < M + L + J \left(0 \right) + \int_0^1 J \left(s \right) ds \right\}$$

It is immediate from the argument above that $T(\overline{\Omega}) \subset \Omega$. Thus

$$d\left(I - T, \Omega, 0\right) = 1.$$

Let

 $\Omega_{\alpha_2} = \{ u \in \Omega : u > \alpha_2 \text{ on } (0,1) \} \text{ and } \Omega^{\beta_1} = \{ u \in \Omega : u < \beta_1 \text{ on } (0,1) \}.$ Since $\alpha_2 \not\leq \beta_1, \ \alpha_2 > -M$, and $\beta_1 < M$ (i.e. we choose M with $\|\alpha_2\|_{\infty}, \|\beta_1\|_{\infty} < M$) it follows that $\Omega^{\beta_1} \neq \emptyset \neq \Omega_{\alpha_2}, \ \Omega^{\beta_1} \cap \Omega_{\alpha_2} = \emptyset$, and $\Omega \setminus \{ \Omega^{\beta_1} \cup \Omega_{\alpha_2} \} \neq \emptyset.$

By assumptions (iv) and (v), there are no solutions in $\partial \Omega^{\beta_1} \cup \partial \Omega_{\alpha_2}$. Thus

$$d(I - T, \Omega, 0) = d\left(I - T, \Omega \setminus \overline{\{\Omega^{\beta_1} \cup \Omega_{\alpha_2}\}}, 0\right)$$
$$+ d\left(I - T, \Omega_{\alpha_2}, 0\right) + d\left(I - T, \Omega^{\beta_1}, 0\right).$$

We show that $d(I - T, \Omega_{\alpha_2}, 0) = d(I - T, \Omega^{\beta_1}, 0) = 1$. Then

$$d\left(I - T, \Omega \setminus \overline{\{\Omega^{\beta_1} \cup \Omega_{\alpha_2}\}}, 0\right) = -1,$$

and there are solution in $\Omega \setminus \overline{\{\Omega^{\beta_1} \cup \Omega_{\alpha_2}\}}, \Omega_{\alpha_2}$ and Ω^{β_1} , as required.

We show $d(I - T, \Omega_{\alpha_2}, 0) = 1$. The proof that $d(I - T, \Omega^{\beta_1}, 0) = 1$ is similar and hence omitted. We define I - W, the extension to $\overline{\Omega}$ of the restriction of I - T to $\overline{\Omega}_{\alpha_2}$ as follows. Let

$$w(t, x, y) = f(t, P_{\alpha_2 \beta_2}(t, x), h(y)) + \tanh(x - P_{\alpha_2 \beta_2}(t, x)),$$

where $P_{\alpha_2\beta_2}$ (replace α_1 by α_2) and h are defined previously. Thus w is a continuous function on $[0,1] \times R^2$ and satisfies

$$|w(t, x, y)| \le \Psi(|y|) + \frac{\pi}{2}, \text{ for } |y| \le L, \text{ and}$$

 $|w(t, x, y)| \le M_1, \text{ for } (t, x, y) \in [0, 1] \times R^2,$

for some constant M_1 . Moreover, we may choose M_1 so that $\|\alpha_2\|_{\infty}, \|\beta_2\|_{\infty} < M_1$.

Consider the problem:

(2.12)
$$(\varphi_p(u'))' = q(t) w\left(t, u, \frac{d}{dt} P_{\alpha_2 \beta_2}(t, u(t))\right), \quad 0 < t < 1$$

$$(2.13) u(0) = u(1) = 0$$

280

Solving (2.12)–(2.13) is equivalent to finding a $u \in C^1[0,1]$ which satisfies

$$u(t) = \int_0^t \varphi_p^{-1} \left(B_u - \int_s^1 q(\tau) w_u(\tau) d\tau \right) ds,$$

where $w_{u}\left(\tau\right) \equiv w\left(\tau, u, \frac{d}{dt}P_{\alpha_{2}\beta_{2}}\left(t, u\left(t\right)\right)\right)$ for a.e. $\tau \in [0, 1]$, and B_{u} satisfies

(2.14)
$$\int_{0}^{1} \varphi_{p}^{-1} \left(B_{u} - \int_{s}^{1} q(\tau) w_{u}(\tau) d\tau \right) ds = 0.$$

As before B_u exists and is unique for $u \in C^1[0,1]$.

Now define the following operator $W : C^1[0,1] \to C^1[0,1]$ (here $u \in C^1[0,1]$ and $t \in [0,1]$) by

$$(Wu)(t) = \int_0^t \varphi_p^{-1} \left(B_u - \int_s^1 q(\tau) w_u(\tau) d\tau \right) ds,$$

where B_u satisfies (2.14).

Again it is easy to check (from a previous argument and (v)) that u is a solution of (2.12)–(2.13) if $u \in \Omega_{\alpha_2}$ and Wu = u (note $W : C^1[0,1] \to C^1[0,1]$ is compact.

Thus $d(I - W, \Omega \setminus \overline{\Omega}_{\alpha_2}, 0) = 0$. Moreover it is easy to see that $W(\overline{\Omega}) \subset \Omega$. By assumptions (iv) and (v), there are no solutions in $\partial \Omega_{\alpha_2} \cap \partial \Omega^{\beta_1}$. Thus

$$d(I - T, \Omega_{\alpha_2}, 0) = d(I - W, \Omega_{\alpha_2}, 0)$$

= $d(I - W, \Omega \setminus \overline{\Omega}_{\alpha_2}, 0) + d(I - W, \Omega_{\alpha_2}, 0)$
= $d(I - W, \Omega, 0)$
= 1.

Thus there are three solutions, as required.

A slight modification of the argument in Theorem 2.1 yields the next result.

THEOREM 2.5. Suppose (H1) and (H2) satisfied. Assume that there exists two lower solutions α_1 and α_2 and two upper solutions β_1 and β_2 for problem (1.1)-(1.2) satisfying

- (i) $\alpha_1 < \alpha_2 \leq \beta_2$,
- (*ii*) $\alpha_1 \leq \beta_1 < \beta_2$,
- (iii) there exist $0 < \overline{\varepsilon} < \min_{t \in [0,1]} \{ \alpha_2(t) \alpha_1(t), \beta_2(t) \beta_1(t) \}$ such that all $\varepsilon \in (0,\overline{\varepsilon}]$, the function $\alpha_2(t) \varepsilon$ and $\beta_1 + \varepsilon$ are, respectively, lower and upper solution of (1.1)-(1.2), and

$$(iv) \ \alpha_2 - \overline{\varepsilon} \not\leq \beta_1 + \overline{\varepsilon}$$

If f satisfies the Bernstern-Nagumo condition with respect to α_1 , β_2 , then problem (1.1)–(1.2) has at least three solution u_1 , u_2 and u_3 satisfying

$$\alpha_1 \leq u_1 \leq \beta_1, \ \alpha_2 \leq u_2 \leq \beta_2, \ and \ u_3 \nleq \beta_1 \ and \ u_3 \ngeq \alpha_2.$$

PROOF. In the proof of Theorem 2.1, define

$$\Omega_{\alpha_2} = \{ u \in \Omega : u > \alpha_2 - \overline{\varepsilon} \text{ on } (0,1) \}$$

and

$$\Omega^{\beta_1} = \{ u \in \Omega : u < \beta_1 + \overline{\varepsilon} \text{ on } (0,1) \}$$

where Ω is defined in Theorem 2.1.

Consider the problem

(2.15)
$$(\varphi_p(u'))' + f(u) = 0, \text{ for all } t \in [0,1],$$

(2.16) $u(0) = u(1) = 0.$

Theorem 2.6. Assume there exist real numbers a, b, c with 0 < a < b, 0 < a < c and

$$c > \max\left\{b + \frac{p-1}{p}\frac{b}{M}\left(\frac{\rho}{2}\right)^{\frac{1}{p-1}}\left(\frac{1}{2} - e\right)^{\frac{p}{p-1}}, \frac{Mb}{h(e)}\right\}$$

and suppose there is a continuous nonnegative function f such that

(i) $f(y) < \left(\frac{a}{M}\right)^{p-1}, y \in [0, a],$ (ii) $f(y) \ge \frac{\rho}{2} \left(\frac{b}{M}\right)^{p-1}, y \in \left[b, b + \frac{p-1}{p}\rho^{\frac{1}{p-1}} \left(\frac{1}{2} - e\right)^{\frac{p}{p-1}}\right], and$ (iii) $f(y) \le \left(\frac{e}{M}\right)^{p-1}, y \in [0, c].$

Then problem (2.15)–(2.16) has at least three solution u_1, u_2 and u_3 satisfying $||u_1||_{\infty} < a, \alpha_2 \leq u_2$, and $||u_3||_{\infty} > a$ and $u_3 \not\geq \alpha_2$, where α_2 is given by

$$\alpha_{2}(t) = \begin{cases} \left(\frac{1}{2}\right)^{\frac{1}{p-1}} \frac{b}{M}t, & \text{for all } t \in [0, e], \\ b - \frac{p-1}{p} \frac{b}{M} \left(\frac{\rho}{2}\right)^{\frac{1}{p-1}} \left[\left(\frac{1}{2} - t\right)^{\frac{p}{p-1}} - \left(\frac{1}{2} - e\right)^{\frac{p}{p-1}} \right], \text{ for all } t \in [e, \frac{1}{2}], \\ b - \frac{p-1}{p} \frac{b}{M} \left(\frac{\rho}{2}\right)^{\frac{1}{p-1}} \left[\left(t - \frac{1}{2}\right)^{\frac{p}{p-1}} - \left(\frac{1}{2} - e\right)^{\frac{p}{p-1}} \right], \text{ for all } t \in [\frac{1}{2}, 1 - e], \\ \left(\frac{1}{2}\right)^{\frac{1}{p-1}} \frac{b}{M} \left(1 - t\right), & \text{ for all } t \in [1 - e, 1]; \end{cases}$$

here $e = \frac{p-1}{2p}$, $\rho = \frac{2b}{1-2e}$ and $M = \max_{t \in [0,1]} h(t)$ where $h(t) = \begin{cases} \frac{p-1}{p} \left[\left(\frac{1}{2}\right)^{\frac{p}{p-1}} - \left(\frac{1}{2} - t\right)^{\frac{p}{p-1}} \right], & \text{for } t \in [0, \frac{1}{2}], \\ \frac{p-1}{p} \left[\left(\frac{1}{2}\right)^{\frac{p}{p-1}} - \left(t - \frac{1}{2}\right)^{\frac{p}{p-1}} \right], & \text{for } t \in [\frac{1}{2}, 1]. \end{cases}$

PROOF. It is easily proved that h satisfies

$$(\varphi_p(u'))' + 1 = 0, \quad t \in [0, 1],$$

 $u(0) = u(1) = 0.$

Let $\alpha_1(t) \equiv 0$, $\beta_1(t) = \frac{a}{M}h(t)$, and $\beta_2(t) = \frac{c}{M}h(t)$ for $0 \le t \le 1$, and let α_2 be as above.

It is easy to check that $0 \leq \beta_2(t) \leq c$ and $(\varphi_p(\beta'_2))' = -(\frac{c}{M})^{p-1}$ for $0 \leq t \leq 1$. It follows that β_1 is a strict upper solution and β_2 is an upper solution for problem (2.15)–(2.16) with $\beta_1 < \beta_2$ on (0, 1).

Π

Since α_2 is symmetric in $t = \frac{1}{2}$, $\alpha_2(e) = \alpha_2(1-e)$, and $\alpha'_2(e) = \alpha'_2(1-e)$, so it follows that α_2 is in $C^1[0,1]$. Moreover α_2 satisfies $(\varphi_p(\alpha'_2))' = 0 \ge -f(\alpha_2)$ on $(0,e) \cup (1-e,1)$, and $(\varphi_p(\alpha'_2))' = -\frac{p}{2} \left(\frac{b}{M}\right)^{p-1} \ge -f(\alpha_2)$ on (e,1-e), so α_2 is a lower solution for problem (2.15)–(2.16). Moreover $\alpha_2(\frac{1}{2}) = b + \frac{p-1}{p} \frac{b}{M} \left(\frac{p}{2}\right)^{\frac{1}{p-1}} \left(\frac{1}{2}-e\right)^{\frac{p}{p-1}} > b > a = \beta_1(\frac{1}{2}).$

Also since

$$\alpha_{2}'(0) = \left(\frac{1}{2}\right)^{\frac{1}{p-1}} \frac{b}{M} \le \left(\frac{1}{2}\right)^{\frac{1}{p-1}} \frac{c}{M} = \beta_{2}'(0),$$

$$\alpha_{2}(e) = b \le \frac{ch(e)}{M} = \beta_{2}(e),$$

$$\alpha_{2}\left(\frac{1}{2}\right) = b + \frac{p-1}{p} \frac{b}{M} \left(\frac{\rho}{2}\right)^{\frac{1}{p-1}} \left(\frac{1}{2} - e\right)^{\frac{p}{p-1}} < c = \beta_{2}\left(\frac{1}{2}\right),$$

it follows that $\alpha_2 < \beta_2$ on (0, 1).

We show that there is no solution u of problem (2.15)-(2.16) with $u \ge \alpha_2$ on [0,1] and $u(t) = \alpha_2(t)$ for some $t \in (0,1)$. Assume this is false and that there is such a solution. Consider the case $t \in (0,e)$. Since $u'(t) = \alpha'_2(t)$ and $u \ge \alpha_2$ and $(\varphi_p(u'))' \le (\varphi_p(\alpha'_2))'$ on [0,e], it follows that $u = \alpha_2$ for all $t \in [0,e]$. Thus $0 = (\varphi_p(u'))'(e) = -f(u(e)) = -f(\alpha_2(e)) = -f(b)$, a contradiction, so $t \notin (0,e)$. Similarly $t \in [1-e,1)$ leads to the contradiction that $(\varphi_p(u'))'(1-e) = 0$, so $t \notin [1-e,1)$. Assume that $t \in [e, 1-e)$. Again $u'(t) = \alpha'_2(t)$ and $y \ge \alpha_2$ and $(\varphi_p(u'))' \le -\frac{\rho}{2} \left(\frac{b}{M}\right)^{p-1} = (\varphi_p(\alpha'_2))'$ on [e, 1-e]. Thus $u = \alpha_2$ on [e, 1-e] so that $(\varphi_p(u'))'(1-e) \le -\frac{\rho}{2} \left(\frac{b}{M}\right)^{p-1} < 0$ and $u'(1-e) = \left(\frac{1}{2}\right)^{\frac{1}{p-1}} \frac{b}{M}$. It follows that $u(x) < \alpha_2(x)$ for any $x \in$ $(1-e, 1-e+\delta)$ for some $\delta > 0$, a contradiction. Thus $u(t) \neq \alpha_2(t)$ for any $t \in (0,1)$, as required.

Thus the conditions of Theorem 2.1 are satisfied and there are three solutions of problem (2.15)–(2.16), as required.

References

- J. Henderson and H. B. Thompson, Existence of multiple solutions for second order boundary value problems, J. Diff. Equ. 166 (2000), 443–454.
- [2] D. O'Regan, Some general existence principles and results for $(\phi(y'))' = qf(t, y, y')$, 0 < t < 1, SIAM J. Math. Anal. **24** (1993), 648–668.
- [3] D. O'Regan, Existence theory for $(\phi(y'))' = qf(t, y, y') \ 0 < t < 1$, Commun. Appl. Anal. 1 (1997), 33–52.
- [4] C. De Coster, Pairs of positive solutions for the one-dimensional p-Laplacian, Nonl. Anal. 23 (1994), 669–681.
- [5] M. X. Wang, A. Cabada and J. Nieto, Monotone methods for nonlinear second order periodic boundary value problems with Carathéodory functions, Ann. Polon. Math. 58 (1993), 221–235.
- [6] Q. Yao and H. Lü, Positive solutions of one-dimensional singular p-Laplace equation, Acta Mathematica Sinica 41 (1998), 1255–1264.

H. LÜ, D. O'REGAN AND R. P. AGARWAL

[7] H. Lü and D. O'Regan, A general existence theorem for singular equation $(\varphi_p(y'))' + g(t, y) = 0$, Math. Ineq. Appl. 5 (2000), 69–78.

H. Lü

Institute of Applied Mathematics Academy of Mathematics and System Sciences Chinese Academy of Science Beijing 100080 China

D. O'Regan Department of Mathematics National University of Ireland Galway Ireland

R. P. Agarwal Department of Mathematical Sciences Florida Institute of Technology Melbourne, FL 32901-6975 USA

Received: 04.11.2002.

284