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Abstract. We give conditions on f involving pairs of lower and
upper solutions which lead to the existence of at least three solutions to

the two point boundary value problem
(

|u′|p−2
u′

)

= q (t) f (t, u, u′) on

(0, 1) , u (0) = u (1) = 0.

1. Introduction

In this paper we consider a two point boundary value problem for the
one-dimensional p−Laplace equation of the form

(ϕp (u′))
′
= q (t) f (t, u, u′) , 0 < t < 1,(1.1)

u (0) = u (1) = 0;(1.2)

here ϕp (s) = |s|p−2
s, p > 1, and we assume the following two conditions

hold:

(H1) q ∈ C (0, 1) with q > 0 on (0, 1) and
∫ 1

0 q (s) ds <∞, and

(H2) f : [0, 1]×R2 → R is continuous.

By a solution of (1.1)–(1.2) we mean a function u ∈ C1 [0, 1], with
ϕp (u′) ∈ C1 (0, 1), satisfying (1.1) on (0, 1) and u(0) = u(1) = 0. In this
paper we assume there exists two lower solutions α1, α2 and two upper solu-
tions β1, β2 for problem (1.1) and (1.2) satisfying α1 ≤ α2, β1 ≤ β2 and we
show that there are three solutions. For the special case f (t, u, u′) = f (u) ≥ 0
we give growth conditions on f which lead to the existence of three positive
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solutions. In [1] , J. Henderson and H. B. Thompson considered (1.1)–(1.2)
with p = 2.

In this paper Ck(J) will denote the space of functions f : J → R
which are k−times continuously differentiable. For u ∈ C [0, 1] , ‖u‖∞ =
maxt∈[0,1] |u (t)| , while for u ∈ C1 [0, 1] , ‖u‖ = max {‖u‖∞, ‖u′‖∞} .

Definition 1.1. A function α ∈ C1 [0, 1], ϕp (α′) ∈ C1 (0, 1) will be

called a lower solution of (1.1)–(1.2) if (ϕp (α′))′ ≥ q (t) f (t, α (t) , α′ (t)) for
t ∈ (0, 1) , with α (0) ≤ 0, α (1) ≤ 0.

A function β ∈ C1 [0, 1], ϕp (β′) ∈ C1 (0, 1) is a upper solution of (1.1)–
(1.2) if the reverse inequalities hold.

Definition 1.2. We say that f satisfies a Nagumo condition relative to
the pair α and β, with α, β ∈ C [0, 1] , α ≤ β in [0, 1] , if there exists a function
Ψ : [0,∞)→ (0,∞) continuous, such that

(1.3) |f (t, y, z)| ≤ Ψ (|z|) for all (t, y, z) ∈ E,
where E =

{
(t, y, z) ∈ [0, 1]×R2 : α (t) ≤ y ≤ β (t)

}
, and also that

(1.4)

∫ ∞

ϕp(v)

du

Ψ
(
ϕ−1
p (u)

) >

∫ 1

0

q (t) dt;

here
v = max {|β (0)− α (1)| , |β (1)− α (0)|} .

2. General Results

Theorem 2.1. Suppose (H1) and (H2) are satisfied. Assume that there
exist two lower solutions α1 and α2 and two upper solutions β1 and β2 for
problem (1.1)–(1.2) satisfying

(i) α1 ≤ α2 ≤ β2,
(ii) α1 ≤ β1 ≤ β2,

(iii) α2 6≤ β1,
(iv) if u is a solution of (1.1)–(1.2) with u ≥ α2, then u > α2 on (0, 1),

and
(v) if u is a solution of (1.1)–(1.2) with u ≤ β1, then u < β1 on (0, 1).

If f satisfies the Bernstern-Nagumo condition with respect to α1, β2, then
problem (1.1)–(1.2) has at least three solutions u1, u2 and u3 satisfying

α1 ≤ u1 ≤ β1, α2 ≤ u2 ≤ β2, and u3 6≤ β1 and u3 6≥ α2.

Suppose that hypotheses (H1) , (H2) and the Nagumo condition relative
to a lower solution α1 and upper solution β2 are satisfied. We start with the
construction of the modified problem. Define

Pαβ (t, x) = max {α (t) ,min {x, β (t)}} for all x ∈ R.
One can find the next result, with its proof, in [5].
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Lemma 2.2. For each u ∈ C1 [0, 1] the next two properties hold:

(a)
dPαβ (t, u (t))

dt
exists for a.e. t ∈ [0, 1], and

(b) if u, um ∈ C1 [0, 1] and um → u in C1 [0, 1] then

d

dt
Pαβ (t, um (t))→ d

dt
Pαβ (t, u (t)) , for a.e. t ∈ [0, 1] .

From Definition 1.2, we can find a real number, L > 0, such that

0 ≤ v < L, −L < α′
1 (t) , β′

2 (t) < L for all t ∈ [0, 1]

and ∫ ϕp(L)

ϕp(v)

du

Ψ
(
ϕ−1
p (u)

) >

∫ 1

0

q (t) dt.

We consider the following modified problem,

(ϕp (u′))
′
= q (t) k

(
t, u,

d

dt
Pα1β2 (t, u (t))

)
, 0 < t < 1,(2.1)

u (0) = u (1) = 0,(2.2)

with

k (t, x, y) = f (t, Pα1β2 (t, x) , h (y)) + tanh (x− Pα1β2 (t, x)) ,

where h is defined by

h (y) = max {−L,min {y, L}} for all y ∈ R.
Thus k is a continuous function on [0, 1]×R2 and satisfies

(2.3) |k (t, x, y)| ≤ Ψ (|y|) +
π

2
, for |y| ≤ L, and

(2.4) |k (t, x, y)| ≤M, for (t, x, y) ∈ [0, 1]×R2,

for some constant M. Moreover, we may choose M so that ‖α1‖∞, ‖β2‖∞ <
M .

First, we show that every solution of (2.1)–(2.2) is a solution (1.1)–(1.2).

Lemma 2.3. If u is a solution of (2.1)–(2.2), then u ∈ [α1, β2] .

Proof. We prove α1 (t) ≤ u (t) for t ∈ [0, 1] . Similar reasoning shows
u (t) ≤ β2 (t) for t ∈ [0, 1] .

By definition of α1 and β2 we have that α1 (0) ≤ u (0) ≤ β2 (0) and
α1 (1) ≤ u (1) ≤ β2 (1) . If there exists t0 ∈ (0, 1) such that

u (t0)− α1 (t0) = min
t∈[0,1]

{(u− α1) (t)} < 0,
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then, since u− α1 ∈ C1 [0, 1] , we have (u− α1)
′
(t0) = 0. Furthermore, there

exists 0 ≤ t1 < t0 < t2 ≤ 1 such that u < α1 in (t1, t2) and (u− α1) (t1) =
(u− α1) (t2) = 0. Thus,

(ϕp (u′ (t)))
′ − (ϕp (α′

1 (t)))
′ ≤ q (t) f (t, α1 (t) , α′

1 (t))

+q (t) tanh [u (t)− α1 (t)]

−q (t) f (t, α1 (t) , α′
1 (t))

= q (t) tanh [u (t)− α1 (t)]

< 0,

for all t ∈ (t1, t2). As a result ϕp (u′ (t)) − ϕp (α′
1 (t)) < ϕp (u′ (t0)) −

ϕp (α′
1 (t0)) = 0 for all t ∈ (t1, t2) , so

u′ (t) < α′
1 (t) for all t ∈ (t0, t2) .

Thus (u− α1) (t2) < (u− α1) (t0) < 0, which is a contradiction.

Lemma 2.4. If u is a solution of (2.1)–(2.2) then −L < u′ (t) < L for
every t ∈ [0, 1] .

Proof. Let u ∈ C1 [0, 1] be a solution of (2.1)–(2.2). From Lemma 2.3
we have u ∈ [α1, β2] , and so

(ϕp (u′ (t)))
′
= q (t) f (t, u (t) , h (u′ (t))) for t ∈ (0, 1) .

By the mean-value theorem, there exists t0 ∈ (0, 1) with

u′ (t0) = u (1)− u (0)

and as a result

−L < −v ≤ α1 (1)− β2 (0) ≤ u′ (t0) ≤ β2 (1)− α1 (0) ≤ v < L.

Let v0 = |u′ (t0)| . Suppose that there exists a point in the interval [0, 1] for
which u′ > L or u′ < −L. From the continuity of u′ we can choose t1 ∈ [0, 1]
such that one of the following situations hold:

(i) u′ (t0) = v0, u
′ (t1) = L and v0 ≤ u′ (t) ≤ L for all t ∈ (t0, t1) ,

(ii) u′ (t1) = L, u′ (t0) = v0 and v0 ≤ u′ (t) ≤ L for all t ∈ (t1, t0) ,
(iii) u′ (t0) = −v0, u

′ (t1) = −L and −L ≤ u′ (t) ≤ −v0 for all t ∈ (t0, t1) ,
and

(iv) u′ (t1) = −L, u′ (t0) = −v0 and −L ≤ u′ (t) ≤ −v0 for all t ∈ (t1, t0) .

Without loss of generality, suppose −L ≤ v0 ≤ u′ (t) ≤ L for all t ∈ (t0, t1).
Then

(ϕp (u′ (t)))
′

= q (t) f (t, u (t) , h (u′ (t)))

= q (t) f (t, u (t) , u′ (t)) for t ∈ (t0, t1) ,
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and so
∣∣∣(ϕp (u′ (t)))

′
∣∣∣ = |q (t) f (t, u (t) , u′ (t))|
≤ q (t) Ψ (|u′ (t)|) for t ∈ (t0, t1) .

As a result
∫ ϕp(L)

ϕp(v0)

du

Ψ
(
ϕ−1
p (u)

) =

∫ t1

t0

∣∣(ϕp (u′ (t)))′
∣∣

Ψ (|u′ (t)|) dt

≤
∫ t1

t0

q (t) dt.

Note also that ϕ−1
p (s) ≥ 0 for s ∈ [ϕp (v0) , ϕp (L)], so we have v0 ≤ v

and thus ϕp (v0) ≤ ϕp (v) , which leads

∫ ϕp(L)

ϕp(v0)

du

Ψ
(
ϕ−1
p (u)

) ≥
∫ ϕp(L)

ϕp(v)

ϕ−1
p (u)

Ψ
(
ϕ−1
p (u)

)du

>

∫ 1

0

q (t) dt,

a contradiction.

Proof of the Theorem 2.1. From Lemma’s 2.3-2.4 it is enough to
show (2.1)–(2.2) has three solutions as described in the statement of The-
orem 2.1. Solving (2.1)–(2.2) is equivalent to finding a u ∈ C1 [0, 1] which
satisfies

(2.5) u (t) =

∫ t

0

ϕ−1
p

(
Au −

∫ 1

s

q (τ) ku (τ) dτ

)
ds,

where ku (τ) ≡ k
(
τ, u, ddτPα1β2 (τ, u (τ))

)
for a.e. τ ∈ [0, 1] , and Au satisfies

(2.6)

∫ 1

0

ϕ−1
p

(
Au −

∫ 1

s

q (τ) ku (τ) dτ

)
ds = 0.

The argument in [2] guarantees that Au exists and is unique for u ∈ C1 [0, 1] .
Now define the following operator T : C1 [0, 1] → C1 [0, 1] (here u ∈

C1 [0, 1] and t ∈ [0, 1]) by

(2.7) (Tu) (t) =

∫ t

0

ϕ−1
p

(
Au −

∫ 1

s

q (τ) ku (τ) dτ

)
ds,

where Au satisfies (2.6).
We claim that T : C1 [0, 1]→ C1 [0, 1] is continuous. Suppose un → u in

C1 [0, 1] . Let Aun correspond to un and Au correspond to u, and we will now
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show that limn→∞Aun = Au. We know
∫ 1

0

ϕ−1
p

(
Aun −

∫ 1

s

q (τ) kun (τ) dτ

)
ds

−
∫ 1

0

ϕ−1
p

(
Au −

∫ 1

s

q (τ) ku (τ) dτ

)
ds = 0.(2.8)

The mean value theorem implies that there exists ηn ∈ (0, 1) such that

(2.9) ϕ−1
p

(
Aun−

∫ 1

ηn

q (τ) kun (τ) dτ

)
− ϕ−1

p

(
Au−

∫ 1

ηn

q (τ) ku (τ) dτ

)
= 0,

and so

(2.10) Aun −Au =

∫ 1

ηn

q (τ) (kun (τ) − ku (τ)) dτ.

On the other hand, since un → u in C1 [0, 1] and k is a continuous function
we have from Lemma 2.2 that

kun (t)→ ku (t) for a.e. t ∈ [0, 1] ,

so (2.4) and the dominated convergence theorem yields

qkun → qku in L1 (0, 1) .

Moreover,

0 ≤
∫ 1

ηn

q (τ) |kun (τ) − ku (τ)| dτ

≤ ‖q (kun − ku) ‖L1 for all n ∈ N,
and so

(2.11) lim
n→∞

∫ 1

ηn

q (τ) (kun (τ) − ku (τ)) dτ = 0.

This together with (2.10) yields

lim
n→∞

Aun = Au.

Furthermore,

Aun −
∫ 1

t

q (τ) kun (τ) dτ → Au −
∫ 1

t

q (τ) ku (τ) dτ for all t ∈ [0, 1] .

Also since
∣∣∣∣
(
Aun −

∫ 1

t

q (τ) kun (τ) dτ

)
−
(
Au −

∫ 1

t

q (τ) ku (τ) dτ

)∣∣∣∣
≤ |Aun −Au|+ ‖q (kun − ku) ‖L1 for all t ∈ [0, 1] ,
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the convergence is uniform in [0, 1] . In addition the uniform continuity of ϕ−1
p

on compact intervals yields

(Tun)
′ → (Tu)

′
uniformly on [0, 1]

and as a result

Tun → Tu uniformly on [0, 1] .

We next claim that T
(
C1 [0, 1]

)
is a relatively compact set in C1 [0, 1] .

We first show that there exists a constant N ∗ with

|Au| ≤ N∗ for all u ∈ C1 [0, 1] .

Since ∫ 1

0

ϕ−1
p

(
Au −

∫ 1

s

q (τ) ku (τ) dτ

)
ds = 0,

the Mean Value theorem for integrals implies that there exists ξ ∈ [0, 1] with

ϕ−1
p

(
Au −

∫ 1

ξ

q (τ) ku (τ) dτ

)
= 0.

Consequently,

Au =

∫ 1

ξ

q (τ) ku (τ) dτ,

which implies

|Au| ≤M
∫ 1

0

q (τ) τ ≡ N∗

where M is defined in (2.4).
Next we show that T

(
C1 [0, 1]

)
is bounded. This follows from the follow-

ing inequalities:

|Tu (t)| ≤
∫ 1

0

J (s) ds and
∣∣(Tu)′ (t)

∣∣ ≤ J (0) for t ∈ [0, 1]

or

ϕ−1
p (Q) ≤ (Tu)′ (t) ≤ ϕ−1

p (−Q) for t ∈ [0, 1],

where

J (s) = max

{∣∣∣∣ϕ
−1
p

(
−N∗ −M

∫ 1

s

q (u) du

)∣∣∣∣ ,
∣∣∣∣ϕ

−1
p

(
N∗ +M

∫ 1

s

q (u) du

)∣∣∣∣
}

and

Q = N∗ +M

∫ 1

0

q (u) du.

We next show the equicontinuity of T
(
C1 [0, 1]

)
on [0, 1] . For u ∈ C1 [0, 1]

and t, s ∈ [0, 1] we have

|Tu (t)− Tu (s)| ≤
∣∣∣∣
∫ t

s

J (v) dv

∣∣∣∣ .
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Finally, to see that
(
T
(
C1 [0, 1]

))′
=
{
y′ : y ∈ T

(
C1 [0, 1]

)}
is equicontinuous

on [0, 1] , we use the fact that ϕ−1
p is uniformly continuous on [−Q,Q] and

(2.4).
By Arzela-Ascoli Theorem, T : C1 [0, 1]→ C1 [0, 1] is compact. Let

Ω =

{
u ∈ C1

0 [0, 1] : ||u|| < M + L+ J (0) +

∫ 1

0

J (s) ds

}
.

It is immediate from the argument above that T
(
Ω
)
⊂ Ω. Thus

d (I − T,Ω, 0) = 1.

Let

Ωα2 = {u ∈ Ω : u > α2 on (0, 1)} and Ωβ1 = {u ∈ Ω : u < β1 on (0, 1)} .
Since α2 6≤ β1, α2 > −M, and β1 < M (i.e. we choose M with
‖α2‖∞, ‖β1‖∞ < M) it follows that Ωβ1 6= ∅ 6= Ωα2 , Ωβ1 ∩ Ωα2 = ∅, and

Ω\{Ωβ1 ∪ Ωα2} 6= ∅.
By assumptions (iv) and (v) , there are no solutions in ∂Ωβ1 ∪∂Ωα2 . Thus

d (I − T,Ω, 0) = d
(
I − T,Ω\{Ωβ1 ∪ Ωα2}, 0

)

+d (I − T,Ωα2 , 0) + d
(
I − T,Ωβ1 , 0

)
.

We show that d (I − T,Ωα2 , 0) = d
(
I − T,Ωβ1 , 0

)
= 1. Then

d
(
I − T,Ω\{Ωβ1 ∪ Ωα2}, 0

)
= −1,

and there are solution in Ω\{Ωβ1 ∪ Ωα2}, Ωα2 and Ωβ1 , as required.
We show d (I − T,Ωα2 , 0) = 1. The proof that d

(
I − T,Ωβ1 , 0

)
= 1 is sim-

ilar and hence omitted. We define I−W, the extension to Ω of the restriction
of I − T to Ωα2 as follows. Let

w (t, x, y) = f (t, Pα2β2 (t, x) , h (y)) + tanh (x− Pα2β2 (t, x)) ,

where Pα2β2 (replace α1 by α2 ) and h are defined previously. Thus w is a
continuous function on [0, 1]×R2 and satisfies

|w (t, x, y)| ≤ Ψ (|y|) +
π

2
, for |y| ≤ L, and

|w (t, x, y)| ≤M1, for (t, x, y) ∈ [0, 1]×R2,

for some constant M1. Moreover, we may choose M1 so that ‖α2‖∞, ‖β2‖∞ <
M1.

Consider the problem:

(ϕp (u′))
′
= q (t)w

(
t, u,

d

dt
Pα2β2 (t, u (t))

)
, 0 < t < 1,(2.12)

u (0) = u (1) = 0.(2.13)
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Solving (2.12)–(2.13) is equivalent to finding a u ∈ C1 [0, 1] which satisfies

u (t) =

∫ t

0

ϕ−1
p

(
Bu −

∫ 1

s

q (τ)wu (τ) dτ

)
ds,

where wu (τ) ≡ w
(
τ, u, ddtPα2β2 (t, u (t))

)
for a.e. τ ∈ [0, 1] , and Bu satisfies

(2.14)

∫ 1

0

ϕ−1
p

(
Bu −

∫ 1

s

q (τ)wu (τ) dτ

)
ds = 0.

As before Bu exists and is unique for u ∈ C1 [0, 1] .
Now define the following operator W : C1 [0, 1] → C1 [0, 1] (here u ∈

C1 [0, 1] and t ∈ [0, 1]) by

(Wu) (t) =

∫ t

0

ϕ−1
p

(
Bu −

∫ 1

s

q (τ)wu (τ) dτ

)
ds,

where Bu satisfies (2.14).
Again it is easy to check (from a previous argument and (v)) that u is

a solution of (2.12)–(2.13) if u ∈ Ωα2 and Wu = u (note W : C1 [0, 1] →
C1 [0, 1] is compact.

Thus d
(
I −W, Ω\Ωα2 , 0

)
= 0.Moreover it is easy to see thatW

(
Ω
)
⊂ Ω.

By assumptions (iv) and (v) , there are no solutions in ∂Ωα2 ∩ ∂Ωβ1 . Thus

d (I − T,Ωα2 , 0) = d (I −W,Ωα2 , 0)

= d
(
I −W,Ω\Ωα2 , 0

)
+ d (I −W,Ωα2 , 0)

= d (I −W,Ω, 0)

= 1.

Thus there are three solutions, as required.

A slight modification of the argument in Theorem 2.1 yields the next
result.

Theorem 2.5. Suppose (H1) and (H2) satisfied. Assume that there exists
two lower solutions α1 and α2 and two upper solutions β1 and β2 for problem
(1.1)–(1.2) satisfying

(i) α1 < α2 ≤ β2,
(ii) α1 ≤ β1 < β2,

(iii) there exist 0 < ε < mint∈[0,1] {α2 (t)− α1 (t) , β2 (t)− β1 (t)} such that
all ε ∈ (0, ε], the function α2 (t)− ε and β1 + ε are, respectively, lower
and upper solution of (1.1)–(1.2), and

(iv) α2 − ε 6≤ β1 + ε.

If f satisfies the Bernstern-Nagumo condition with respect to α1, β2, then
problem (1.1)–(1.2) has at least three solution u1, u2 and u3 satisfying

α1 ≤ u1 ≤ β1, α2 ≤ u2 ≤ β2, and u3 6≤ β1 and u3 6≥ α2.
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Proof. In the proof of Theorem 2.1, define

Ωα2 = {u ∈ Ω : u > α2 − ε on (0, 1)}
and

Ωβ1 = {u ∈ Ω : u < β1 + ε on (0, 1)} ,
where Ω is defined in Theorem 2.1.

Consider the problem

(ϕp (u′))
′
+ f (u) = 0, for all t ∈ [0, 1] ,(2.15)

u (0) = u (1) = 0.(2.16)

Theorem 2.6. Assume there exist real numbers a, b, c with 0 < a < b,
0 < a < c and

c > max

{
b+

p− 1

p

b

M

(ρ
2

) 1
p−1

(
1

2
− e
) p

p−1

,
Mb

h (e)

}

and suppose there is a continuous nonnegative function f such that

(i) f (y) <
(
a
M

)p−1
, y ∈ [0, a] ,

(ii) f (y) ≥ ρ
2

(
b
M

)p−1
, y ∈

[
b, b+ p−1

p ρ
1

p−1
(

1
2 − e

) p
p−1

]
, and

(iii) f (y) ≤
(
c
M

)p−1
, y ∈ [0, c] .

Then problem (2.15)–(2.16) has at least three solution u1, u2 and u3 satisfying
‖u1‖∞ < a, α2 ≤ u2, and ‖u3‖∞ > a and u3 6≥ α2, where α2 is given by

α2 (t) =





(
1
2

) 1
p−1 b

M t, for all t ∈ [0, e],

b− p−1
p

b
M

(
ρ
2

) 1
p−1

[(
1
2 − t

) p
p−1 −

(
1
2 − e

) p
p−1

]
, for all t ∈

[
e, 1

2

]
,

b− p−1
p

b
M

(
ρ
2

) 1
p−1

[(
t− 1

2

) p
p−1 −

(
1
2 − e

) p
p−1

]
, for all t ∈

[
1
2 , 1− e

]
,

(
1
2

) 1
p−1 b

M (1− t) , for all t ∈ [1− e, 1];

here e = p−1
2p , ρ = 2b

1−2e and M = maxt∈[0,1] h (t) where

h (t) =





p−1
p

[(
1
2

) p
p−1 −

(
1
2 − t

) p
p−1

]
, for t ∈

[
0, 1

2

]
,

p−1
p

[(
1
2

) p
p−1 −

(
t− 1

2

) p
p−1

]
, for t ∈

[
1
2 , 1
]
.

Proof. It is easily proved that h satisfies

(ϕp (u′))
′
+ 1 = 0, t ∈ [0, 1] ,

u (0) = u (1) = 0.

Let α1 (t) ≡ 0, β1 (t) = a
M h (t) , and β2 (t) = c

M h (t) for 0 ≤ t ≤ 1, and let α2

be as above.
It is easy to check that 0 ≤ β2 (t) ≤ c and (ϕp (β′

2))
′

= −
(
c
M

)p−1
for

0 ≤ t ≤ 1. It follows that β1 is a strict upper solution and β2 is an upper
solution for problem (2.15)–(2.16) with β1 < β2 on (0, 1).
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Since α2 is symmetric in t = 1
2 , α2 (e) = α2 (1− e) , and α′

2 (e) =

α′
2 (1− e) , so it follows that α2 is in C1 [0, 1] . Moreover α2 satisfies

(ϕp (α′
2))

′
= 0 ≥ −f (α2) on (0, e)∪(1− e, 1) , and (ϕp (α′

2))
′
= −ρ2

(
b
M

)p−1 ≥
−f (α2) on (e, 1− e) , so α2 is a lower solution for problem (2.15)–(2.16).

Moreover α2

(
1
2

)
= b+ p−1

p
b
M

(
ρ
2

) 1
p−1

(
1
2 − e

) p
p−1 > b > a = β1

(
1
2

)
.

Also since

α′
2 (0) =

(
1

2

) 1
p−1 b

M
≤
(

1

2

) 1
p−1 c

M
= β′

2 (0) ,

α2 (e) = b ≤ ch (e)

M
= β2 (e) ,

α2

(
1

2

)
= b+

p− 1

p

b

M

(ρ
2

) 1
p−1

(
1

2
− e
) p

p−1

< c = β2

(
1

2

)
,

it follows that α2 < β2 on (0, 1) .
We show that there is no solution u of problem (2.15)–(2.16) with u ≥ α2

on [0, 1] and u (t) = α2 (t) for some t ∈ (0, 1) . Assume this is false and that
there is such a solution. Consider the case t ∈ (0, e) . Since u′ (t) = α′

2 (t)
and u ≥ α2 and (ϕp (u′))′ ≤ (ϕp (α′

2))
′ on [0, e] , it follows that u = α2 for

all t ∈ [0, e] . Thus 0 = (ϕp (u′))′ (e) = −f (u (e)) = −f (α2 (e)) = −f (b) , a
contradiction, so t /∈ (0, e) . Similarly t ∈ [1− e, 1) leads to the contradiction

that (ϕp (u′))′ (1− e) = 0, so t /∈ [1− e, 1). Assume that t ∈ [e, 1− e). Again

u′ (t) = α′
2 (t) and y ≥ α2 and (ϕp (u′))′ ≤ −ρ2

(
b
M

)p−1
= (ϕp (α′

2))
′

on

[e, 1− e] . Thus u = α2 on [e, 1− e] so that (ϕp (u′))′ (1− e) ≤ − ρ2
(
b
M

)p−1
<

0 and u′ (1− e) =
(

1
2

) 1
p−1 b

M . It follows that u (x) < α2 (x) for any x ∈
(1− e, 1− e+ δ) for some δ > 0, a contradiction. Thus u (t) 6= α2 (t) for any
t ∈ (0, 1) , as required.

Thus the conditions of Theorem 2.1 are satisfied and there are three so-
lutions of problem (2.15)–(2.16), as required.
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