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Abstract: In this paper, different post-processing methods are described and evaluated for deter-
ministic and probabilistic point-based 10-m wind speed forecast over Croatia. These methods are
applied to forecasts of operational high-resolution dynamical adaptation model (DADA) run
with 2 km horizontal resolution to address the following question: which point-based post-pro-
cessing method is the best suited for wind forecasting in the operational suite at DHMZ (Me-
teorological and Hydrological Service of Croatia).

The verification procedure includes several metrics computed considering wind speed as con-
tinuous, categorical and probabilistic predictand. Those metrics were used to optimize the con-
figuration, and to test both the deterministic and probabilistic prediction performance. This
study shows that deterministic analog-based predictions (AnEn) improve the correlation be-
tween predictions and measurements while reducing forecast error better than using Kalman
filter based predictions (KF), even though KF shows better bias reduction. The best results are
achieved when forecasting the mean of analog ensemble or the Kalman filter of the mean of
analog ensemble. Probabilistic AnEn predictions are properly dispersive, while having better
resolution, discrimination and skill than forecast generated via logistic regression. These re-
sults encourage the potential use of AnEn in an operational environment at the location of
meteorological stations, as well as at wind farms.

Keywords: Short-term wind speed forecasting, Analog forecast, Kalman-filtering, Logistic re-
gression, Verification, Complex terrain

Sazetak: U ovom radu opisano je nekoliko razli¢itih post-procesnih metoda prognoziranja 10-
m brzine vjetra koje su potom testirane na nekoliko lokacija u Hrvatskoj. Metode koriste izlaz
operativnog visoko-rezolucijskog (2 km) modela dinami¢ke adaptacije (DADA). Cilj rada je
odgovoriti na pitanje: koja je od koriStenih post-procesnih metoda najpogodnija za operativno
koriStenje na Drzavnom hidrometeoroloskom zavodu (DHMZ).

Da bi se optimiziralo i testiralo metode, u verifikacijskom procesu brzina vjetra razmatrana je
kao kontinuirani, kategoricki i probabilisticki prediktand. Pokazano je da deterministicka pro-
gnoza putem analoga poboljSava korelaciju izmedu prognoze i mjerenja, istovremeno smanju-
judi pogresku uspjesnije od referentne prognoze temeljene na Kalman filtriranju (KF), iako po-
tonja bolje uklanja pristranost prognoze. Najbolji rezultati se postizu kod prognoziranja sre-
dnjaka ansambla analoga i Kalman filtriranog srednjaka. Testirani probabilisti¢ki produkt pro-
gnoze putem analoga pokazao se prikladno disperzivan, bolje rezolucije, diskriminacije i vjesti-
ne u odnosu na referentnu prognozu baziranu na logickoj regresiji. Rezultati sugeriraju moguc-
nost operativnog koriStenja, kako za lokacije mjernih postaja, tako i za lokacije vjetroelektrana.

Kljucne rijeci: Kratkoro¢na prognoza brzine vjetra, metoda analoga, Kalman-filtriranje, logi-
Cka regresija, verifikacija, kompleksni teren
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1. INTRODUCTION

Even though the skill of numerical weather
predictions has improved at both global and
regional scales, they are still affected by im-
perfect boundary and initial conditions, sim-
plification of physical processes and numerical
errors. This is especially the case in opera-
tional models that are constrained by the
available computing capacity and time neces-
sary to produce forecast. For these reasons,
besides improving the model itself (i.e., using
higher resolution or better parametrization), it
is useful to develop post-processing methods
that reduce model errors at locations where
measurements exist.

The Analog-based method is a state-of-the-art
technique used for point-based forecasting. It
is based on finding the most similar past nu-
merical weather predictions (analogs) over
several variables (predictors), and then form-
ing an analog ensemble (AnEn) out of the
corresponding observations. Besides improv-
ing a deterministic forecasting system, there is
also need for reliably expressing its uncertain-
ty. The AnEn method can be used to produce
probabilistic forecasts also, where the forecast
probability density function may be estimated
from the members of the AnEn.

Analog-based methods have been explored by
a number of studies. Pioneering contribution
of Van den Dool (1989) revealed the ability to
predict the forecast skill of an NWP model, as
indicated by a strong spread-skill relationship
in a 10-member AnEn. The author used analy-
ses over a localized area and then used the 12-
h subsequent analysis to each analog as a plau-
sible 500 hPa height forecast. Afterwards, var-
ious procedures have been formulated, includ-
ing different predictors and analog selection
criteria. Application include idealized cases
with low-order models (Ren and Chou 2006),
general circulation modeling (Gao et al. 2006,
Ren and Chou 2007), long-range weather
(Xavier and Goswami 2007), short-term visi-
bility (Esterle 1992), El Nifio Southern Oscil-
lation index forecasts (Drosdowski 1994), cali-
bration of probabilistic predictions (Hamil
and Whitaker 2006) etc. More recently Klaus-
ner et al. (2009) proposed the "similar day
method", Panziera et al. (2011) used radar ob-
servations for very short-term orographic pre-
cipitation predictions, the -nearest neighbors

approach was tested in hydrology (Hopson
and Webster 2010) and seasonal weather pre-
dictions (Wu et al. 2012). However, due to ex-
cessive degrees of freedom of the problem at
stake, the use of analogs for forecasting of me-
teorological fields is limited.

Recently, Delle Monache et al. (2011) pro-
posed two analog-based post-processing meth-
ods to improve deterministic NWP forecasts of
10-m wind speed based only on the time-series
of numerical weather predictions and observa-
tions at a single site. They demonstrated that
this approach increases correlation and re-
duces random and systematic errors. The same
methodology was used for predicting other
variables as well (i.e., Djalalova et al. 2015,
showed similar result predicting PM, 5 concen-
tration). Delle Monache et al. (2013) also ex-
plored benefits from using the AnEn approach
to produce probabilistic 10-m wind speed and
2-m temperature forecasts. Probabilistic ana-
log-based prediction was also applied to gain
wind resource estimates (Vanvyve et al. 2015),
and to predict wind energy (Alessandrini et al.
2015b; Junk et al. 2015) and solar energy
(Alessandrini et al. 2015a).

In this study the mean and median of the ana-
log ensemble are tested and compared to a lin-
ear, adaptive and recursive Kalman filter post-
processing approach (see Delle Monache et al.
2006, 2008, 2011). Two combinations of these
post-processing approaches were tested as
well. The first one is to apply the Kalman filter
algorithm to the time series of deterministic
analog-based forecasts, which will produce
new deterministic forecast called KFAN. An-
other way is to apply Kalman filtering to the
historical set of (starting) model forecasts in
the analog space, ordered from the worst to
the best analog. The best analog after the cor-
rection will be deterministic forecast named
KFAS. Also, as shown by Delle Monache et
al. (2013) AnEn can be used to generate a
probabilistic prediction from a deterministic
forecast. The latter is compared with proba-
bilistic predictions from a logistic regression
approach.

In section 2 the post-processed predictions are
described, section 3 describes the experiment
setup and datasets used and section 4 intro-
duces the verification procedure used.. In sec-
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tion 5 the results are presented, followed by
the conclusions in section 6.

2. POST-PROCESSING METHODS
2.1. Kalman filter

The Kalman filter (KF) is a recursive algo-
rithm used to estimate a signal from noisy
measurements. In this post-processing method
the recent past forecasts and observations
(past prediction errors) are used by the KF to
estimate the future bias in the current raw
forecast.

Kalman (1960) showed that the optimal recur-
sive predictor of forecast bias x, at time ¢ (de-
rived by minimizing the expected mean square
error) can be written as a combination of the
previous bias estimate and the previous fore-
cast error y,:

9?c+At|t = J?t|t—At + Ke(ye — 9?th:—At) (1)

where the hat (*) indicates the estimate. The
weighting factor K,, called Kalman gain, can
be calculated from:

K = Pe-at t+ Ur%,t
A L i -
(Pe-ac + a-r?,t +02,)

)

where p is the expected mean-square error,
that can be computed as follows:

Pe = (Pe-ac + 070 ) (1 — Ke) (3)

and o;,, o, are variances of the noise term
and the unsystematic error term, respectively.
The KF algorithm will quickly converge for
any reasonable estimate of p, and K. Addi-
tional details of the procedure and algorithm
can be found in Delle Monache et al. (2006).
Advantages of KF approach are the short
training period and the ability to adapt to
changing synoptic conditions. A disadvantage
is that it is less likely to predict extreme bias
events (Delle Monache 2011)

2.2. Logistic regression

Logistic regression is a model output statistics
(MOS) technique specifically designed to pro-
duce probabilistic forecasts. It considers a past
relationship between predictor variable(s) and
the predictand to produce a forecast of the
predictand given the predictors’ values in the
current forecast cycle. The predictand is the
probability of a predefined event, such as wind
speed greater than Sms-. A nonlinear function
is fit to past pairs of the predictor(s) and the
predictand, that, as an observed value, takes
on a probability of either 1.0 (event occurred)
or 0.0 (event did not occur). The relationship
is linear in terms of logarithm of the odds ra-
tio:

ln( il )= bo + byxy + -+ by 4)
1-p;

where p; is the probability of the event i, b; are
regression coefficients, x; are predictor values
and is the number of predictors. So logistic re-
gression can be fitted using ordinary linear re-
gression, except that the predictand is binary
(left side is either In(0) or In(e0)) and the dis-
tribution used is binomial (Wilks 2011).

2.3. Analog ensemble

The AnEn seeks to estimate a separate proba-
bility distribution (f(*)) of the observed value
of the predictand variable given a model pre-
diction, that can be represented as f(ylx/),
where, for a given time and location, y is the
observed future value of the predictand vari-
able and xf:(x/,xfz,...,x/‘) contains the values
of k predictors from the deterministic model
prediction at the same location and over a
time window centered at the same time. This
method generates samples of y given x/ via
three main steps using historical data, called
the analog training period. In that period both
the NWP deterministic prediction and the ver-
ifying observation are available. Analogs (the
best-matching historical forecasts for the cur-
rent prediction) are sought independently at
each location and for each lead time, so an
analog may come from any past date within
the training period, i.e., a day, week or several
months ago. The quality of the analog (i.e.
closeness of the match) is determined by the
following metric:
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Na w; t 2
[INWP, Apll = zi_lé\}zrc(ﬂ?f” - Ai,t’+f) (5)

where F, is the current NWP deterministic
forecast valid at the future time # at a station
location, A, is an analog at the same location
and with the same forecast lead time, but valid
at a past time ¢', N4 and w; are the number of
physical variables used in the search for
analogs and their weights, respectively. Fur-
thermore, Oy is the standard deviation of the
time series of past forecasts of a given variable
at the same location, 7is equal to half the num-
ber of additional times over which the metric
is computed, and F;, ; and A, ,.,; are the values
of the forecast and the analog in the time win-
dow for a given variable. The analog searching
algorithm is highly flexible, and allows the
search to occur over a time window of any
specified width. The verifying observation for
each analog is an actual member of the analog
ensemble (AnEn). The assumption is that if
analog forecasts are found, their errors will
likely be similar to the error of the current
forecast and it can be inferred from theirs
(Delle Monache et. al. 2011.).

Once AnEn is formed, it can be used to pro-
duce a probabilistic forecast (probability of a
predefined event) or a deterministic one. Ex-
amples of deterministic forecasts are the
AnEn mean and median.

It is possible to use a combination of analog
forecasts and the Kalman-filter. One way to
do it is to apply the KF algorithm to time se-
ries of an AnEn based deterministic forecast.
Another way is to apply Kalman filtering to
the historical set of (starting) model forecasts
in the analog space, ordered from the worst to
the best analog. In the latter case the correc-
tion for the current forecast gives more weight
to the analog forecasts closer to it. The good-
ness of the analog match is defined by the
same metrics as previously mentioned
(Djalalova et al, 2015).

3. DATASETS AND EXPERIMENT SETUP

The post-processed forecasting methods de-
scribed in section 2 are tested at 14 locations
in Croatia covering different climatological re-
gions (Figure 1). Boxplots of observed data

show that the average wind speed value is
around 3 ms' with the maximum value at
noon and the minimum at midnight (Figure 2).
Post-processing methods are applied to 10-m
wind speed forecasts from an operational
high-resolution dynamical adaptation model
(DADA). Dynamical adaptation procedure
(Zagar and Rakovec, 1999) takes the output
fields from the operational limited-area
mesoscale model ALADIN (Aire Limitee
Adaptation Dynamique developement Inter-
National, ALADIN International Team,
1997) run with 8 km horizontal resolution us-
ing hydrostatic dynamics with spectral solver
on 37 hybrid sigma-pressure vertical levels
(Tudor et al. 2013). Initial conditions comput-
ed using variational data assimilation for the
upper air fields and optimum interpolation for
surface fields (Stanesi¢ 2011), the lateral
boundary conditions are taken from the
ARPEGE (Action de Recherche Petite
Echelle Grande Echelle) global model run op-
erationally in Meteo France. Using high reso-
lution terrain representation, DADA dynami-
cally adapts wind fields to higher horizontal
resolution (2 km) grid by integrating the mod-
el to reach a quasi-stationary state (Ivatek-
Sahdan and Tudor 2004). DADA is run on 15
levels in the vertical. Vertical levels in the
planetary boundary layer are at the same
heights as in the operational ALADIN model
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Figure 1. Spatial distribution of the 14 stations
providing the observations of 10-m wind speed used
in this study.

Slika 1. Prostorna distribucija 14 mjernih postaja s
kojih su preuzeti podaci o 10-m brzini vjetra
koriSteni u ovom radu.
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Figure 2. Boxplots of observed data (outliers are not
shown) measured at 14 stations in Croatia during the
2010-2012 period, as a function of UTC. Black lines
represent 50th and 90th percentile that are used as
thresholds in the categories of verification
procedure.

Slika 2. Dijagrami s pravokutnikom predstavljaju
podatke mjerene na 14 meteoroloskih postaja u
Hrvatskoj u razdoblju od 2010. do kraja 2012. godine
za razli¢ito doba dana. StrSeci podaci nisu prikazani,
a crnim linijama su istaknuti 50. i 90. percentile koji
se u kategorijskoj verifikaciji koriste kao granice
kategorija.

with 37 levels (the lowest level is about 17 m
above ground), but the ones in the upper tro-
posphere and stratosphere are reduced. The
wind field is interpolated to the height of meas-
urements using the stability functions (Geleyn
1988). In dynamical adaptation, turbulence is
the only parametrization scheme used, while
contributions of the moist and radiation
processes are neglected. This cost-effective re-
finement was run operationally twice a day (00
and 12 UTC run) for 72 h ahead with a 3 hour
model output frequency. In complex terrain
dynamical adaptation improves numerical
near-surface wind predictions, as described in
numerous studies such as Tudor and Ivatek-
Sahdan (2002), Ivatek-Sahdan and Tudor
(2004), Ivatek-Sahdan and Ivancan-Picek
(2006), Bajic¢ (2003), Baji¢ et al. (2007, 2008),
Horvath et al. (2009, 2011) etc.

Numerical weather prediction and observa-
tion datasets in the period 2010-2012 are di-
vided to training and verification periods.

Training period is from 2010 to 2011, while
2012 was used for the verification period. For
every location the most representative grid
point is chosen from the 4 closest ones to the
measuring station and only 00 UTC run is
used. Since DADA model does not include
moist and radiation physics, only physical vari-
ables regarding wind fields are included in the
search for the best analogs: wind speed and di-
rection logarithmically interpolated to 10 m
height, vorticity and divergence at the lowest
vertical level (~17 m). Weight assigned to
wind speed and direction is 1 and 0.8 for the
other two variables Time frame window used
to find the most similar analogs included a 6-
hour time window (one time step before/after,
soTin eq. (5) equals 1. To choose an appropri-
ate number of AnEn members (N), RMSE,
RCC and bias results are averaged for all loca-
tions and all of the lead times, and their de-
pendency on N is investigated (Figure 3).
Mean confidence intervals estimated with
bootstrapping are shown for every forecast
and every measure. The DADA model, KF,
and KFAS do not depend on N. The AnEn
mean, AnEn median and KFAN show similar
behavior - by increasing N correlation im-
proves, while bias slightly worsens. The
RMSE is reduced at first, but then enlarges
again for N>15. Because the error and bias
growth for large N, the optimal number of
AnEn members selected is 15, which is used
hereinafter.

Probabilistic forecast predicts a probability of
an event occurring. Wind speed exceeding
5 ms'is chosen as an event, because it is round
number with less than 20 % probability to oc-
cur climatologically. This means that it is not a
common event, while it still occurs often
enough not to make some measures sensitive
to sample size unstable (i.e. Brier skill score).

4. VERIFICATION PROCEDURE

4.1. Evaluation of deterministic forecast
performance

To evaluate the performance of different de-
terministic post-processing methods wind
speed forecast can be considered as continu-
ous or categorical predictand. Considered as a
continuous variable, wind speed forecasts are
evaluated using bias, root-mean-square-error
(RMSE) and Spearman correlation coefficient
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Figure 3. Root-mean-square-error, ranked correlation coefficient and bias dependency on the number of analog
ensemble members (N) for the 3 different analog-based techniques averaged over lead times and 14 locations
during 2012. Results are compared to 3 deterministic forecasts that do not depend on N. Mean values of the
95% bootstrap confidence intervals are indicated by the error bars.

Slika 3. Korijen srednje kvadratne pogreske, koeficijent korelacije ranga i pristranost u odnosu na broj
odabranih ¢lanova ansambla (N) za 3 prognoze koje koriste analoge. Rezultati se odnose na 2012. godinu i
usrednjeni su za sve postaje 1 sva nastupna vremena prognoze, te je istaknut prosjecni 95 %-tni interval
pouzdanosti. Ravne linije odnose se na prognoze koje ne ovise o N.

("rank correlation", RCC). Unlike Pearson
correlation coefficient, the RCC is a nonpara-
metric statistic, allowing a nonlinear relation-
ship between predictions and observations. It
is a robust and resistant alternative to Pearson
correlation, appropriate if dealing with non-
Gaussian distributed variables such as wind
speed (Wilks 2011; Jolliffe and Stephenson
2011).

Wind speeds are also divided in 3 categories:
breeze (or no wind at all), moderate wind and
strong wind, depending on climatology. For
each lead time thresholds are determined as
the 50th and 90th percentile, so they vary due
to the diurnal cycle. Categorical verification
procedure includes the following metrics:

as = L 6
FBlaS—Oi ( )
CcSI —Fioi

T F +0; - FO; (7
PCC

where F; represents the number of events cor-
responding to category i forecasted, O; is the
number of events corresponding to category i
observed, while FO, is the number of correctly
forecasted event corresponding to category i.

Frequency bias (FBias) measures the tenden-
cy to forecast too often (FBias greater than 1)
or too rarely (FBias less than 1) a particular
category (Wilks 2011; Jolliffe and Stephenson
2011).
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Critical success index (CSI) measures the frac-
tion of observed forecast events that were cor-
rectly predicted. It can be thought of as the ac-
curacy when correct negatives have been re-
moved from consideration, therefore, CSI is
only concerned with forecasts that count. Sen-
sitive to hits, it penalizes both misses and false
alarms and does not distinguish the source of
forecast errors. CSI depends on climatological
frequency of events (poorer scores for rarer
events) since some hits can occur purely due
to random chance. Perfect value is 1 (Wilks
2011; Jolliffe and Stephenson 2011).

Polychoric correlation coefficient (PCC)
measures association of forecasts and observa-
tions in the contingency table. The bell-shaped
bivariate normal density function is assigned
to the contingency table and the domain of the
bivariate normal density function is cut into
rectangles corresponding to the cells of the
contingency table. The polychoric correlation
coefficient is the parameter value of the bi-
variate normal density function for which the
volumes of the discretized bivariate standard
normal distribution is equal to the correspon-
ding joint probabilities of the contingency
table. For that purpose values are transformed
to standard normal deviates (and thresholds,
accordingly). Values for PCC vary between -1
and 1 (1 is for perfect forecast). More details
can be found in Juras and Pasaric (2006).

4.2. Evaluation of probabilistic forecast
performance

The joint distribution of the forecasts and ob-
servations is of fundamental interest with re-
spect to the verification of forecasts. Since it

can be difficult to use the joint distribution di-

rectly, two factorizations are used. The first

one, which is called calibration-refinement
factorization, is conditional on the particular
value of the forecasts. Attributes related to
calibration-refinement factorization use sub-

sets are (Murphy 1993; Wilks 2011):

e Reliability is a measure of the conditional
bias of the forecasts or the agreement be-
tween forecast probability and mean ob-
served frequency. It is calculated as a
weighted average of the squared differences
between the forecast probabilities and the
relative frequencies of the observed event
conditional on forecast probability in each
subsample:

REL =" 25 Ny (001l foin) = foin) - (8)

For perfectly reliable forecasts, the subsam-
ple relative frequency is exactly equal to the
forecast probability in each subsample and
equals zero.

e Resolution is the ability of a forecast to re-
solve the set of sample events into subsets
with characteristically different frequencies.
Mathematically, the resolution term is a
weighted average of the squared differences
between subsamples of relative frequencies
of the observed event conditional on fore-
cast probability and the overall sample cli-
matology relative frequency:

RES = %z Nbin (p(allfbin) — Pctim (01)) : (9)

If the forecasts sort the observations into
subsamples having substantially different
relative frequencies than overall sample cli-
matology, resolution term will be large,
which is a desirable situation.

Sharpness is an attribute of the forecasts
alone, without regard to their corresponding
observations. It characterizes the uncondition-
al distribution of the forecasts f;, in the cali-
bration-refinement factorization. Forecasts
that rarely deviate much from the climatologi-
cal value of the predictand exhibit low sharp-
ness. Thus, sharpness attribute measures ten-
dency to forecast extreme values ("climatol-
ogy" is not sharp). Sharp forecasts will be ac-
curate only if forecasts also exhibit good relia-
bility (Wilks, 2011).

Uncertainty (UNC) depends only on the vari-
ability of the observations. It exhibits zero val-
ue (minimum) when the climatological proba-
bility is either zero or one, and maximum val-
ue when the climatological probability is 0.5.

The attributes diagram plots the observed fre-
quency against the forecast probability, where
the range of forecast probabilities is divided
into K bins (for example, 0-5%, 5-15%, 15-
25%, etc.). The diagonal line indicates perfect
reliability (average observed frequency equal
to predicted probability for each category),
and the horizontal line represents the climato-
logical frequency. Sharpness, which is a prop-
erty of the forecasts only, is diagnosed via a re-
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liability diagram by plotting how often proba-
bility corresponding to each bin is forecasted
(relative frequency).

The reliability is indicated by the proximity of
the plotted curve to the diagonal, so the small-
er value, the better the forecast is. The devia-
tion from the diagonal gives the conditional
bias. If the curve lies below the diagonal line
that indicates over-forecasting (probabilities
are too high), while points above the line indi-
cate under-forecasting (probabilities are too
low). The flatter the curve in the reliability di-
agram, the less resolution it has. A forecast of
climatology does not discriminate at all be-
tween events and non-events, thus has no res-
olution. The reliability diagram is conditioned
on the forecasts (i.e., given that X was predict-
ed, what was the outcome?). It is a good part-
ner to the relative operating characteristic,
which is conditioned on the observations
(Wilks 2011; Jolliffe and Stephenson 2011).

The Brier skill score (BSS) measures the im-
provement of the probabilistic forecast rela-
tive to a reference forecast (climatology),
therefore taking uncertainty into account:

BSS = (RES — REL)/UNC (10)

where 0 indicates no skill when compared to
the reference forecast, while 1 indicates per-
fect skill. This score should always be applied
to a sufficiently large sample for which the
sample climatology of the event is a represen-
tative of the long term climatology. The rarer
the event, the larger the number of samples is
needed to stabilize the score (Wilks 2011;
Jolliffe and Stephenson 2011).

The relative operating characteristic skill
score (ROCSS) is calculated using relative op-
erating characteristic (ROC) curve (Figure 4).
The ROC is created by plotting the probabili-
ty of detection as a function of false alarm rate
(false alarms / observed no, also known as
probability of false detection), using a set of
increasing probability thresholds (for exam-
ple, 0.05, 0.15, 0.25, etc.) to make the yes/no
decision. The ROC is conditioned on the ob-
servations (i.e., given that Y occurred, what
was the corresponding forecast?), unlike at-
tributes diagram that is conditioned on the
forecasts. While attributes diagram shows full

joint distribution of forecasts and observations
for probability forecasts in terms of calibra-
tion-refinement factorization, the ROC dia-
gram shows full joint distribution in terms of
likelihood-base rate factorization. ROC meas-
ures the ability of the forecast to discriminate
between two alternative outcomes and a good
ROC is indicated by a curve that goes close to
the upper left corner (low false alarm rate,
high probability of detection). The area under
the ROC curve is frequently used as a skill
score:

A—Aganpom  _A-1/2

ROCSS = =
perrect — Aranpom  1—1/2

=24-1(11)

where A represents area under the ROC
curve, Apanpon 1S the area underneath the di-
agonal (0.5) and A pgrprcris 1. Hence, ROCSS
ranges from 0 (forecast with no skill) to 1 (per-
fect forecast) (Wilks 2011; Jolliffe and
Stephenson 2011).

An ensemble is statistically consistent when its
members are indistinguishable from the truth.
If so, an observation ranked among the corre-
sponding ordered ensemble members is equal-
ly likely to take any rank i in the range
i=1,2,..., N+1, where N is the number of en-
semble members. Collecting the rank of the
observation over a number of cases and plot-
ting the results generates a rank histogram,
that is flat (i.e., uniform rank probability of
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Figure 4. Theoretical example of a ROC curve.

Slika 4. Teoretski primjer ROC krivulje.
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[1/(N+1)] for a statistically consistent ensem-
ble). Missing rate error (MRE) measures the
distance of the first and last (two) bin(s) from
the ideal case - so the smaller is the better.
More info on MRE can be found in Appendix
A of Eckel and Mass (2005).

Statistical consistency over all forecast lead
times can be calculated following the general
definition that the normalized mean square
error of the ensemble mean should match the
average ensemble variance. Comparing the
square root of those two statistics over all
forecast lead times produces a dispersion dia-
gram that shows if an ensemble is properly
dispersive. If .uzv=%2'iv:1fi is the ensemble

1 .
mean and of = XiL.(fi —un)? is the ensemble
variance, then the normalized mean square er-
ror of the ensemble mean is computed as:

N 1 J
AnEn mean RMSE = NTilT ijl(‘uj -0p?  (12)
and the spread (SPRD) as:
N N 13
SPRD = |5 Z,-:f’v (13)

where is the number of analogs chosen, while
is the number of forecasts produced (Tala-
grand et al. 1997; Eckel and Mass 2005; Hamill
2001).

5. RESULTS

5.1. Deterministic forecasting

The DADA model overestimates the wind
speed minimum at midnight (Figure 5). All
post-processing methods shown reduce the

RCC Bias [m/s]

0.5

0.45[ -
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0 18 36 54 72
Time UTC [h]

0.4 4 . . i i ;
0O 18 36 54 72 0 18 36 54 72
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—e— DADA —— KF —=— AnEn mean

Time UTC [h]
KFAN KFAS

Figure 5. Root-mean-square-error, ranked correlation coefficient and bias dependency on forecast lead time
for 5 different deterministic forecasts averaged over 14 locations during 2012. Mean value of the 95% bootstrap

confidence intervals are indicated by the error bars.

Slika 5. Korijen srednje kvadratne pogreske, koeficijent korelacije ranga i pristranost u odnosu na nastupno
vrijeme prognoze za 5 deterministickih prognoza. Rezultati se odnose na 2012. godinu i usrednjeni su za sve
postaje, te je istaknut prosjecni 95 %-tni interval pouzdanosti.
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bias and have much smaller diurnal variations
(results for AnEn median forecasting are simi-
lar, but are not shown to avoid clutter). The
best results are for the KF based methods (KF
and KFAN). Besides the decreasing trend for
long lead times, all forecasting systems are less
correlated in the afternoon than during the
night and in the morning. Although post-pro-

Cat. 1 Cat. 2 Cat. 3

1-4 ............ L

FBias

o ! (.
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Figure 6. Frequency bias (Fbias) for 6 different
deterministic forecasts averaged for 14 locations
during year 2012. The Fbias is calculated for 3
different categories, so that Category 1 represents
low (up to the 50th percentile), Category 2 moderate
(between the 50th and the 90th percentile) and
category 3 high wind speed (over the 90th
percentile).

Slika 6. Ucestalost pristranosti (Fbias) za 6 ispitanih
deterministickih prognoza usrednjenih za 14
lokacija tijekom 2012. Fbias je izracunat za 3
kategorije tako da kategorija 1 predstavlja slabi (do
50. percentila), kategorija 2 umjereni, a kategorija
3 jaki vjetra (iznad 90. percentila).

cessing did not affect that trend, after the cor-
rection forecasts are more correlated, espe-
cially in case of AnEn mean and KFAN. Simi-
larly to RCC, RMSE is increasing for longer
lead times, with a superimposed diurnal error
cycle consisting in an increase of errors during
the night and decrease in the afternoon for all
cases shown. Maintaining the same general
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Figure 7. Critical success index (CSI) for 6 different
deterministic forecasts averaged for 14 locations
during year 2012. CSI is calculated for 3 different
categories, so that Category 1 represents low (up to
the 50th percentile), Category 2 moderate (between
the 50th and the 90th percentile) and category 3 high
wind speed (over the 90th percentile).

Slika 7. Kriti¢ni indeks uspjesnosti (CSI) za 6
ispitanih deterministickih prognoza usrednjenih za
14 lokacija tijekom 2012. Fbias je izracunat za 3
kategorije tako da kategorija 1 predstavlja slabi (do
50. percentila), kategorija 2 umjereni, a kategorija 3
jaki vjetra (iznad 90. percentila).

Table 1. Mean values of PCC for the DADA NWP model and the five different post-processing methods

applied to it at 14 locations in Croatia during year 2012.

Tablica 1. Usrednjene vrijednosti PCC za DADA NWP model i 5 razlicitih post-procesnih metoda koje ovaj

model koriste, za 14 lokacija u Hrvatskoj tijekom 2012.

DADA KF

AnEn mean

KFAN KFAS AnEn median

PCC 0.629 0.698 0.774

0.759 0.737 0.769
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behavior as model data suggests that lack of
radiation processes in this simplified model
could only be partially compensated by any of
these post-processing techniques. Neverthe-
less, there are some significant improvements
due to post-processing, especially for AnEn
mean and KFAN method. These two methods
show similar errors, with KFAN having less
bias, and AnEn mean having slightly better
correlation.

Categorical verification showed similar re-
sults: AnEn mean has the highest PCC, and all
of the analog based methods show higher val-
ues of PCC than KF and particularly than the
DADA model (Table 1). Frequency bias
shows that both the model and the post-pro-
cessing methods predict medium wind speed
too often (Figure 6). Low winds are under-
forecasted by the model, but post-processing
improves that. On the other hand, model pre-
dicts higher wind speeds almost as often as
they actually happen, while post-processing
leads to underestimation of those cases. It can
be concluded that post-processing reduces
bias for common wind speeds and underesti-
mates the frequency of rare ones. Again, the
methods that include Kalman filtering provide
the best results. Although less often predict-
ed, strong wind speed category is predicted
more accurately by post-processing methods,
especially by the KFAN method. That results
in a reduction of false alarms. All AnEn meth-
ods have similar CSI, better than KF and the
DADA model (Figure 7). The different CSI
values for different categories are likely a con-
sequence of their sensitivity to climatology.

5.2. Probabilistic forecasting

Two probabilistic forecasts produced using
the same dataset and training period are com-
pared for the probabilistic prediction of wind
speed exceeding 5 ms~L. Statistical consistency
measures (spread diagram and rank his-
togram) are only possible for the ensemble
(AnEn) forecasts, so these results are not
compared to LR.

The attributes diagram shows that wind speed
exceeding 5 ms! occurs about 13 % of the cas-
es, so it is a relatively rare event (Figure 8).
The AnEn forecasting seems to be somewhat
more reliable than LR, although both of them
exhibit a good degree of reliability. For the

smallest forecast probabilities (0-0.2 bin), both
methods provide a slight overestimation of the
observed relative frequency. Above that val-
ue, AnEn slightly overestimates, while LR un-
derestimates the observed relative frequency.
The forecast relative frequency for every bin
reveals good tendency to predict extreme
probabilities, with the majority occurring in
the 0.0 - 0.2 probability range. The AnEn and
LR forecasts are similarly sharp, except for
AnEn (LR) predicts the highest (smallest)
forecast probability bin a bit more often.
Combined with good reliability, this is a trust-
worthy sharpness (i.e., does not result in over-
confidence).

Since the attributes diagram is plotted consid-
ering all lead times, to better understand the
performance over different lead times the BSS
and its components are shown on Figure 9.
Uncertainty term is the highest around noon,
when wind speeds are the highest and climato-
logical probability for wind speed to exceed
5 ms is the highest (closer to 0.5). Both AnEn
and LR forecasts show similar and very good
ability to dicern subsample forecast periods
with relative frequencies of the event that are
different from each other. Resolution attrib-
ute is higher for AnEn forecasting than for LR
forecasting for event and locations tested.
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Figure 8. The attributes diagram of AnEn and LR
probabilistic prediction of 10-m wind speed greater
than 5 ms! at 14 locations during 2012.

Slika 8. Dijagram atributa za AnEn i LR
probabilisticku prognozu vjerojatnosti da brzina
vjetra premasi 5 ms™ tijekom 2012. na 14 postaja u
Hrvatskoj.
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BSS and its Decomposition
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Figure 9. The Brier skill score and its decomposition to uncertainty, reliability and resolution, depending on
lead time, for AnEn and LR probabilistic prediction of 10-m wind speed greater than 5 ms at 14 locations

during 2012..

Slika 9. Brierova mjera uspjesnosti i njena dekompozicija na neizvjesnost, pouzdanost i rezoluciju u odnosu na
nastupno vrijeme prognoze za AnEn i LR probabilisticku prognozu vjerojatnosti da brzina vjetra premasi

5 ms! tijekom 2012 na 14 postaja u Hrvatskoj.

There is a small reduction of resolution for
greater lead times, as expected. Reliability
values show minimums around noon (highest
wind speeds and uncertainty). It increases
(while wind speeds and uncertainty decrease)
for larger lead times, especially for LR fore-
casting. The latter result, together with the at-
tributes diagram indicates that AnEn is a
more reliable forecast when predicting high
probabilities, while LR reliability is more con-
sistent with lead time, mostly due to the 0.2-
0.4 bin. Finally, the BSS results show better
values during nights than around noon and
that the AnEn forecasting system has a better
relative skill than LR. These results might not
seem intuitive at first glance, but are consis-
tent with the previous analysis. Even though
LR is more reliable for greater lead times, that
difference in reliability term between AnEn
and LR forecasting is around an order of mag-
nitude smaller than the difference in resolu-

tion term. Also, the BSS minimums around
noon are consequence of increased uncertain-
ty, so they are mostly affected by the climato-
logical distribution of the observations and
not the forecasts. Without normalization with
uncertainty (that would result in the Brier
score), score minimums would be more consis-
tent with reliability maximums and resolution
minimums.

Figure 10 consists of ROC skill score results
for AnEn and LR forecasting depending on
lead time, dispersion diagram and rank his-
togram for AnEn forecasting. Results regard-
ing ROC skill score show that the AnEn per-
forms better than LR regarding forecast abili-
ty to discriminate between two possible out-
comes (when wind speed did or did not exceed
5 ms'l). Since ROCSS depends on resolution
(and not on reliability), this is an expected re-
sult. Better result for AnEn forecasting system
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Figure 10. Left: ROC skill score result for AnEn and LR forecasting depending on lead time. Middle:
Dispersion diagram for AnEn forecasting. Right: Rank histogram for AnEn forecasting. All results refer to 14

locations in Croatia during year 2012.

Slika 10. Lijevo je prikazana ROC mjera uspjesnosti u odnosu na nastupno vrijeme prognoze za AnEni LR
probabilisticku prognozu tijekom 2012. na 14 postaja u Hrvatskoj. U sredini i desno za iste podatke prikazan

je dijagram rasprSenja i histogram ranga.

is probably due to LR’s difficulty to fit a de-
pendable regression line in case of the event is
rarely observed within the training dataset, as
it is the case here.

Statistical consistency is examined via disper-
sion diagram and rank histogram, only for
AnEn forecasting. The LR forecasting is not
included because in its standard formulation
(the one adopted in this study) it does not pro-
vide an actual ensemble, just a probability for
a given event threshold. The rank histogram
of AnEn is U-shaped. That result indicates ei-
ther slight under-spread condition that could
not be corrected with increasing the number
of ensemble members, or the ensemble is sam-
pling a population with some combination of
conditional biases (as noted in Hamill 2001).
These results are consistent with the results
presented in Delle Monache et al. (2013) and
the time-lagged ensemble forecasting in Lu et
al. (2007). The MRE value shows that it is
more probable for the observed value to be
higher than any of the ensemble members,
than to be lower than any AnEn member. This

result includes all lead times, but it is expected
that the histogram flattens with increasing
lead time (Candile and Talagrand 2005). To
see how statistical consistency varies with lead
time, a dispersion diagram can be plotted. Dis-
persion diagram shows that the mean square
error of the ensemble mean matches the aver-
age ensemble variance, suggesting that AnEn
is properly dispersive.

6. CONCLUSIONS

This study compares different post-processing
methods based on a historical data set of deter-
ministic 2-km dynamical adaptation model
(DADA) 00 UTC runs and verifying observa-
tions of 10-m wind speed. For deterministic
post-processing of 10-m wind speed all of the
methods tested reduce forecast error and bias
compared to the DADA model, while at the
same time they are improving correlation. The
largest bias reduction is obtained with methods
that use Kalman filtering, while analog-based
methods show the highest correlation and the
smallest root-mean-square-error. Analog-based
post processing methods show improvement in
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forecasting high wind speed also, even though
they are forecasted too rarely. Overall, the best
results are for the analog ensemble (AnEn)
mean and KF forecasting applied to the mean
of AnEn (KFAN).

Regarding probabilistic post-processing of
wind speed forecasts, probability for wind
speed to exceed the analyzed threshold (5 m/s)
is better predicted with the analog-based
method than with logistic regression (LR)
post-processing method. Both forecast systems
were similarly sharp, but AnEn has better res-
olution and discrimination attributes than LR.
It is also more reliable when predicting high
probability of event occurrence. The LR fore-
casting is somewhat more reliable for greater
lead times than AnEn , but that is likely due to
the low probability class that is close to clima-
tological forecasting. Statistical consistency
was also tested. The rank histogram for AnEn
shows a mild U-shape that suggests slight un-
derspread or conditional bias, while dispersion
diagram shows satisfactory dispersion.

Based on these results, analog ensemble
method shows to be useful for post-processing
of ALADIN numerical weather forecasts. For
deterministic post-processing the best results
are for AnEn mean and KFAN forecasting.
Furthermore, AnEn method applies not only
to the improvement of accuracy of determinis-
tic forecast, but even more to providing reli-
able forecast uncertainty information for loca-
tions where measurements do exist. There-
fore, AnEn method is being additionally test-
ed in quasi-operational setting to assess its po-
tential as a component of the numerical wind
prediction system.
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