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Abstract. In this paper we will prove Banach-Steinhaus Theorems
for some families of bounded linear operators from a normed space into a
generalized 2-normed space.

1. Introduction

In 1964 S.Gähler introduced the concept of linear 2-normed spaces and
he has investigated many important properties and examples for the above
spaces ([1, 2]).

Definition 1.1 ([1]). Let X be a real linear space of dimension greater
than 1 and let ‖ · , · ‖ be a real valued function on X × X satisfying the
following four properties:

(G1) ‖x, y‖ = 0 if and only if the vectors x and y are linearly dependent;
(G2) ‖x, y‖ = ‖y, x‖;
(G3) ‖x, αy‖ =| α | ·‖x, y‖ for every real number α;
(G4) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ for every x, y, z ∈ X.

The function ‖ · , · ‖ will be called a 2-norm on X and the pair (X, ‖ · , · ‖)
a linear 2-normed space.

In [3] and [4] we gave a generalization of the Gähler’s 2-normed space.
Namely a generalized 2-norm need not be symmetric and satisfy the first
condition of the above definition.
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Definition 1.2 ([3]). Let X and Y be real linear spaces. Denote by D
a non-empty subset of X × Y such that for every x ∈ X, y ∈ Y the sets
Dx = {y ∈ Y ; (x, y) ∈ D} and D y = {x ∈ X ; (x, y) ∈ D} are linear
subspaces of the space Y and X, respectively.

A function ‖ · , · ‖ : D → [0,∞) will be called a generalized 2-norm on D
if it satisfies the following conditions:

(N1) ‖x, αy‖ =| α | ·‖x, y‖ = ‖αx, y‖ for any real number α and all (x, y) ∈
D;

(N2) ‖x, y+z‖ ≤ ‖x, y‖+‖x, z‖ for x ∈ X, y, z ∈ Y such that (x, y), (x, z) ∈
D;

(N3) ‖x+y, z‖ ≤ ‖x, z‖+‖y, z‖ for x, y ∈ X, z ∈ Y such that (x, z), (y, z) ∈
D.

The set D is called a 2-normed set.
In particular, if D = X × Y , the function ‖ · , · ‖ will be called a

generalized 2-norm on X × Y and the pair (X × Y, ‖ · , · ‖) a generalized
2-normed space. Moreover, if X = Y , then the generalized 2-normed space
will be denoted by (X, ‖ · , · ‖).

In [3] and [4] we considered properties of generalized 2-normed spaces on
X × Y . In what follows we shall use the following results:

Theorem 1.3 ([3]). Let (X×Y, ‖ · , · ‖) be a generalized 2-normed space.
Then the family B of all sets defined by

n⋂

i=1

{x ∈ X ; ‖x, yi‖ < ε},

where y1, y2, ..., yn ∈ Y, n ∈ N and ε > 0, forms a complete system of neigh-
borhoods of zero for a locally convex topology in X.

We will denote it by the symbol T (X,Y ). Similarly, we have the preceding
theorem for a topology T (Y,X) in the space Y . In the case when X = Y we
will denote the above topologies as follows: T1(X) = T (X,Y ) and T2(X) =
T (Y,X).

Theorem 1.4 ([4]). Let (X×Y, ‖ · , · ‖) be a generalized 2-normed space.
Let Σ be a directed set.

(a) A net {xσ;σ ∈ Σ} is convergent to xo ∈ X in (X, T (X,Y )) if and only
if for all y ∈ Y and ε > 0 there exists σo ∈ Σ such that ‖xσ−xo, y‖ < ε
for all σ ≥ σo.

(b) A net {yσ;σ ∈ Σ} is convergent to yo ∈ Y in (Y, T (Y,X)) if and only
if for all x ∈ X and ε > 0 there exists σo ∈ Σ such that ‖x, yσ−yo‖ < ε
for all σ ≥ σo.

Theorem 1.5 ([4]). Let (X×Y, ‖ · , · ‖) be a generalized 2-normed space.
If the generalized 2-norm ‖ · , · ‖ : X × Y → [0,∞) is jointly continuous and
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a sequence {(xn, yn);n ∈ N} ⊂ X × Y is convergent, then the sequence of
2-norms {‖xn, yn‖; n ∈ N} is bounded.

Definition 1.6 ([4]). Let (X × Y, ‖ · , · ‖) be a generalized 2-normed
space. A sequence {xn;n ∈ N} ⊂ X is called a Cauchy sequence if for every
y ∈ Y and ε > 0 there exists a number no ∈ N such that inequality n,m > no
implies ‖xn − xm, y‖ < ε.

Definition 1.7 ([4]). Let (X × Y, ‖ · , · ‖) be a generalized 2-normed
space. A space (X, T (X,Y )) is called sequentially complete if every Cauchy
sequence in X is convergent in this space.

By analogy we obtain definitions of a Cauchy sequence in the space Y
and the sequential completeness of the space (Y, T (Y,X)).

In what follows L(X,Y ) stands for the linear space of all linear operators
from X with values in Y, where X, Y are real linear spaces.

Definition 1.8 ([5]). Let X be a real normed space and Y ⊂ Y × Y be
a 2-normed set, where Y denotes a real linear space. A set M is defined as
follows:

M = {(f, g) ∈ L(X,Y )2; ∀x∈X(f(x), g(x)) ∈ Y
∧∃M>0∀x∈X‖f(x), g(x)‖ ≤M · ‖x‖2}.

The set M defined in Definition 1.8 has the following property:
For every f, g ∈ L(X,Y ) the sets

Mg = {f ′ ∈ L(X,Y ); (f
′

, g) ∈ M} and Mf = {g′ ∈ L(X,Y ); (f, g
′

) ∈ M}

are linear subspaces of the space L(X,Y ).
For (f, g) ∈ M we introduce the number

(1.1) ‖f, g‖ = inf{M > 0; ∀x∈X‖f(x), g(x)‖ ≤M · ‖x‖2}.

Then

(1.2) ‖f(x), g(x)‖ ≤ ‖f, g‖ · ‖x‖2 for all x ∈ X ;

‖f, g‖ = sup{‖f(x), g(x)‖; x ∈ X ∧ ‖x‖ = 1}
= sup{‖f(x), g(x)‖; x ∈ X ∧ ‖x‖ ≤ 1}

= sup

{‖f(x), g(x)‖
‖x‖2 ; x ∈ X ∧ ‖x‖ 6= 0

}
.

(1.3)

Moreover, the setM is a 2-normed set with the 2-norm defined by the formula
(1.1) (cf. [5]).
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Definition 1.9 ([5]). Let X be a real normed space and Y ⊂ Y × Y be
a 2-normed set, where Y denotes a real linear space. A set N is defined as
follows:

N =
{
(f, g) ∈ L(X,Y )2; ∀x,y∈X(f(x), g(y)) ∈ Y

∧∃M>0∀x,y∈X‖f(x), g(y)‖ ≤M · ‖x‖ · ‖y‖
}
.

The set N defined in Definition 1.9 has similar properties:
For every f, g ∈ L(X,Y ) the sets

N g = {f ′ ∈ L(X,Y ); (f
′

, g) ∈ N} and Nf = {g′ ∈ L(X,Y ); (f, g
′

) ∈ N}
are linear subspaces of the space L(X,Y ).

For (f, g) ∈ N we introduce the number

(1.4) ‖f, g‖ = inf{M > 0; ∀x,y∈X‖f(x), g(y)‖ ≤M · ‖x‖ · ‖y‖}.
Then

(1.5) ‖f(x), g(y)‖ ≤ ‖f, g‖ · ‖x‖ · ‖y‖ for all x, y ∈ X ;

‖f, g‖ = sup{‖f(x), g(y)‖; x, y ∈ X ∧ ‖x‖ = ‖y‖ = 1}
= sup{‖f(x), g(y)‖; x, y ∈ X ∧ ‖x‖ ≤ 1, ‖y‖ ≤ 1}

= sup

{‖f(x), g(y)‖
‖x‖ · ‖y‖ ; x, y ∈ X ∧ ‖x‖ 6= 0, ‖y‖ 6= 0

}
.

(1.6)

Moreover, the set N is a 2-normed set with the 2-norm defined by the formula
(1.4) (cf. [5]).

2. Banach-Steinhaus Theorems for bounded linear operators

In this section we will consider properties of sequences of operators, which
are contained in Mg,Mf or N g ,Nf for some f, g ∈ L(X,Y ). Moreover
we will investigate sequences {(fn, gn);n ∈ N} from M or N . In every
case we will formulate Banach-Steinhaus Theorems. Because any theorem for
sequences of operators from Mg or N g is also true (after making necessary
changes) for sequences of operators from Mf or Nf , we will give only one
version of theorems.

Theorem 2.1. Let (X, ‖ · ‖) be a normed space, (Y, ‖ · , · ‖) a generalized
2-normed space and g ∈ L(X,Y ). Then:

(a) If a sequence {fn, n ∈ N} ⊂ Mg and the sequence of 2 -norms
{‖fn, g‖;n ∈ N} is bounded, then for every x ∈ X the sequence
{‖fn(x), g(x)‖, n ∈ N} is bounded.

(b) If a sequence {fn, n ∈ N} ⊂ N g and the sequence of 2 -norms
{‖fn, g‖;n ∈ N} is bounded, then for every x, y ∈ X the sequence
{‖fn(x), g(y)‖, n ∈ N} is bounded.
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Proof. (a) Let ‖fn, g‖ ≤M for every n ∈ N . Then for x ∈ X we have

‖fn(x), g(x)‖ ≤ ‖fn, g‖ · ‖x‖2 ≤M · ‖x‖2.
Hence for every x ∈ X the sequence {‖fn(x), g(x)‖;n ∈ N} is bounded by
the number M · ‖x‖2.
(b) If ‖fn, g‖ ≤M for every n ∈ N , then for x, y ∈ X we have

‖fn(x), g(y)‖ ≤ ‖fn, g‖ · ‖x‖ · ‖y‖ ≤M · ‖x‖ · ‖y‖.
Thus for every x, y ∈ X the sequence {‖fn(x), g(y)‖;n ∈ N} is bounded by
the number M · ‖x‖ · ‖y‖.

Theorem 2.2. Let (X, ‖ · ‖) be a Banach space, (Y, ‖ · , · ‖) a generalized
2-normed space and {fn;n ∈ N} a sequence of elements from N g for some
g ∈ L(X,Y ). Then the following conditions are equivalent:

(a) The sequence of 2-norms {‖fn, g‖;n ∈ N} is bounded;
(b) ∃M>0∀x,y∈X,‖x‖≤1,‖y‖≤1∀n∈N‖fn(x), g(y)‖ ≤M ;
(c) The following conditions are true:

(i) ∀x∈X∃Mx>0∀y∈X,‖y‖≤1∀n∈N‖fn(x), g(y)‖ ≤Mx;
(ii) ∀y∈X∃My>0∀x∈X,‖x‖≤1∀n∈N‖fn(x), g(y)‖ ≤My.

Proof. At first let us suppose that the sequence of 2-norms {‖fn, g‖;n ∈
N} is bounded. From this it follows that there exists a positive number M
such that ‖fn, g‖ ≤ M for each n ∈ N . Thus for x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1
and n ∈ N we have ‖fn(x), g(y)‖ ≤ ‖fn, g‖ · ‖x‖ · ‖y‖ ≤M .

Now, let the condition (b) be satisfied. We fix x ∈ X \{0}. Then for each
y ∈ X, ‖y‖ ≤ 1 and n ∈ N we obtain the inequalities:

‖fn(x), g(y)‖ =
∥∥∥fn
( x

‖x‖ · ‖x‖
)
, g(y)

∥∥∥ = ‖x‖·
∥∥∥fn
( x

‖x‖
)
, g(y)

∥∥∥ ≤M · ‖x‖.

If we choose Mx = M · ‖x‖, then we have the condition (i). Moreover, for
x = 0 the condition (i) is satisfied for every positive number Mx. Analo-
gously, taking My = M · ‖y‖ for each y ∈ X \ {0} and any positive number
for y = 0 we obtain (ii).

Conversely, let (i) and (ii) be satisfied. In X ×X let us define a norm by
the formula:

‖(x, y)‖? = ‖x‖+ ‖y‖ for each (x, y) ∈ X ×X.
It is easy to verify that (X ×X, ‖ · ‖?) is a Banach space. Put

Anm = {(x, y) ∈ X ×X ; ‖fn(x), g(y)‖ ≤ m}
and

Bm =

∞⋂

n=1

Anm

for m,n ∈ N . We shall show that sets Bm are closed in (X × X, ‖ · ‖?) for
each m ∈ N .
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At first we shall show that sets Anm are closed in this space. Let m,n ∈ N
and let {(xk, yk); k ∈ N} ⊂ Anm be a sequence converging to (x

′

, y
′

) ∈ X×X .
Then

‖fn(xk), g(yk)‖ ≤ m and ‖(xk, yk)− (x
′

, y
′

)‖? −→ 0, k →∞.
The last condition is equivalent to the following: ‖xk−x

′‖ → 0 and ‖yk−y
′‖ →

0, which implies the convergence of the sequences {xk; k ∈ N}, {yk; k ∈ N}.
As a consequence these sequences are bounded. There exists K > 0 such that
the inequalities ‖xk‖ ≤ K, ‖yk‖ ≤ K are true for each k ∈ N . Using these
results we get

‖fn(x
′

), g(y
′

)‖ ≤ m+K · ‖fn, g‖ · ‖xk − x
′‖+K · ‖fn, g‖ · ‖yk − y

′‖
+ ‖fn, g‖ · ‖xk − x

′‖ · ‖yk − y
′‖.

Letting k → ∞ we obtain ‖fn(x
′

), g(y
′

)‖ ≤ m, which means that (x
′

, y
′

) ∈
Anm. Therefore the sets Anm are closed for each n,m ∈ N , and hence the
sets Bm are also closed in (X ×X, ‖ · ‖?).

Now, we shall show that the equality

X ×X =

∞⋃

m=1

Bm

is true. Let x, y ∈ X, x 6= 0. Then ‖ x
‖x‖‖ = 1. By virtue (ii) there exists

My > 0 such that
∥∥∥fn

( x

‖x‖
)
, g(y)

∥∥∥ ≤My for each n ∈ N.

Thus ‖fn(x), g(y)‖ ≤My · ‖x‖ for each n ∈ N .
If x = 0, then ‖x‖ ≤ 1 and ‖fn(x), g(y)‖ = ‖0, g(y)‖ = 0 = My · ‖0‖.

As a consequence, for every x, y ∈ X the sequence {‖fn(x), g(y)‖;n ∈ N} is
bounded. From this it follows that for any point (x, y) ∈ X ×X there exists
n ∈ N such that ‖fn(x), g(y)‖ ≤ m for every m ∈ N , i.e.

(x, y) ∈
∞⋃

m=1

Bm.

Thus

X ×X =

∞⋃

m=1

Bm.

By the well known Baire theorem there exists a set Bmo with non-empty
interior. Therefore Bmo contains some closed ball with the center (xo, yo)
and radius r. Denote it by K((xo, yo), r). Thus for each n ∈ N and (x, y) ∈
K((xo, yo), r) we have ‖fn(x), g(y)‖ ≤ mo.

Let us take x, y ∈ X such that ‖x‖ ≤ r
2 and ‖y‖ ≤ r

2 . Then

‖(x, y)‖? = ‖x‖+ ‖y‖ ≤ r and ‖(x, y)‖? = ‖(x+ xo, y + yo)− (xo, yo)‖? ≤ r.
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Therefore ‖fn(x + xo), g(y + yo)‖ ≤ mo. In particular ‖fn(xo), g(yo)‖ ≤ mo.
Thus

‖fn(x), g(y)‖ ≤ ‖fn(x+ xo), g(y + yo)‖+ ‖fn(x+ xo), g(yo)‖
+ ‖fn(xo), g(y + yo)‖+ ‖fn(xo), g(yo)‖
≤ 2mo + ‖fn(x) + fn(xo), g(yo)‖+ ‖fn(xo), g(y) + g(yo)‖
≤ 4mo + ‖fn(x), g(yo)‖+ ‖fn(xo), g(y)‖.

So we have shown that the inequalities ‖x‖ ≤ r
2 and ‖y‖ ≤ r

2 imply the
condition

‖fn(x), g(y)‖ ≤ 4mo + ‖fn(x), g(yo)‖+ ‖fn(xo), g(y)‖.
Now, let x, y ∈ X, ‖x‖ ≤ 1 and ‖y‖ ≤ 1. Because ‖ r2x‖ ≤ r

2 and ‖ r2y‖ ≤ r
2 ,

then

‖fn(
r

2
x), g(

r

2
y)‖ ≤ 4mo + ‖fn(

r

2
x), g(yo)‖+ ‖fn(xo), g(

r

2
y)‖.

As a consequence we obtain

‖fn(x), g(y)‖ ≤
16mo

r2
+

2

r
(‖fn(x), g(yo)‖+ ‖fn(xo), g(y)‖)

for each n ∈ N . Applying (i) we have that there exists Mxo > 0 such that for
every y ∈ X, ‖y‖ ≤ 1 and n ∈ N the inequality ‖fn(xo), g(y)‖ ≤Mxo is true.
However the assumption (ii) implies there exists Myo > 0 such that for every
x ∈ X, ‖x‖ ≤ 1 and n ∈ N the inequality ‖fn(x), g(yo)‖ ≤ Myo is satisfied.
So

‖fn(x), g(y)‖ ≤
16mo

r2
+

2

r
· (Myo +Mxo)

for each n ∈ N and x, y ∈ X such that ‖x‖ ≤ 1, ‖y‖ ≤ 1. Therefore

‖fn, g‖ = sup{‖fn(x), g(y)‖; x, y ∈ X ∧ ‖x‖ ≤ 1, ‖y‖ ≤ 1}

≤ 16mo + 2r(Mxo +Myo)

r2

for each n ∈ N . So the sequence {‖fn, g‖;n ∈ N} is bounded and the proof
is completed.

Let g ∈ L(X,Y ). A sequence {fn;n ∈ N} ⊂ N g is pointwise convergent to
f ∈ L(X,Y ), if

∀x∈X∀z∈Y lim
n→∞

‖fn(x)− f(x), z‖ = 0

(cf. [4]). However, if g is the operator from X on Y, then the sequence {fn;n ∈
N} ⊂ N g is pointwise convergent to f ∈ L(X,Y ), if

∀x∈X∀y∈Y lim
n→∞

‖fn(x)− f(x), g(y)‖ = 0.

We will use the above note in the following theorem.
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Theorem 2.3. Let (X, ‖ · ‖) be a Banach space, (Y, ‖ · , · ‖) a generalized
2-normed space and g a linear operator from X on Y . If {fn;n ∈ N} ⊂ N g

is pointwise convergent to f ∈ L(X,Y ) and satisfies one of the conditions (a),
(b), (c) from Theorem 2.2, then f ∈ N g.

Proof. From Theorem 2.2 the sequence of 2-norms {‖fn, g‖;n ∈ N} is
bounded. Thus there exists M > 0 such that ‖fn, g‖ ≤ M for each n ∈ N .
For points x, y ∈ X we have

‖fn(x), g(y)‖ ≤ ‖fn, g‖ · ‖x‖ · ‖y‖ ≤M · ‖x‖ · ‖y‖.

So ‖f(x), g(y)‖ ≤ ‖f(x)− fn(x), g(y)‖+M · ‖x‖ · ‖y‖. Letting n→∞ in the
above inequality we obtain

‖f(x), g(y)‖ ≤M · ‖x‖ · ‖y‖,

which implies f ∈ N g .

Definition 2.4 ([6]). A set A of elements of a normed space X is said
to be linearly dense in X, if the set Xo of all linear combinations of elements
from A is dense in X.

Theorem 2.5. Let A be a linearly dense set in a Banach space (X, ‖ · ‖),
(Y, ‖ · , · ‖) a generalized 2-normed space such that (Y, T1(Y )) is a Hausdorff
sequentially complete space. Let g be a linear operator from X on Y and
{fn;n ∈ N} ⊂ N g. The following conditions are equivalent:

(a) The sequence {fn;n ∈ N} is pointwise convergent to f ∈ L(X,Y ) and
the conditions (i),(ii) from Theorem 2.2 are satisfied.

(b) The sequence {fn;n ∈ N} is pointwise convergent to f ∈ N g on the
set A and the sequence of 2-norms {‖fn, g‖;n ∈ N} is bounded.

Proof. If the sequence {fn(x);n ∈ N} is convergent to f(x) ∈ Y for
each x ∈ X , then it is convergent also for x ∈ A ⊂ X . Moreover - this
follows from Theorem 2.2 and Theorem 2.3 - the sequence {‖fn, g‖;n ∈ N}
is bounded and f ∈ N g .

Now, we will suppose that the sequence {fn;n ∈ N} is pointwise conver-
gent to f ∈ N g on the set A and the sequence of 2-norms {‖fn, g‖;n ∈ N} is
bounded. By Theorem 2.2 the conditions (i),(ii) hold. Let Xo be the vector
subspace of the Banach space X generated by A. So Xo is a normed space.

Let x, y ∈ Xo. Then x = a1x1 + · · ·+ akxk , y = b1y1 + · · ·+ btyt, where
ai, bj ∈ R, xi, yj ∈ A, i = 1, 2, . . . , k, j = 1, 2, . . . , t, k, t ∈ N . Thus, it follows
from assumptions on fn, f, g that

‖fn(x)− f(x), g(y)‖ =

= ‖a1(fn(x1)− f(x1)) + · · ·+ ak(fn(xk)− f(xk)), b1g(y1) + · · ·+ btg(yt)‖.
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Using properties of 2-norms we get:

‖fn(x) − f(x), g(y)‖ ≤
k∑

i=1

t∑

j=1

| aibj | ·‖fn(xi)− f(xi), g(yj)‖.

Because
lim
n→∞

‖fn(xi)− f(xi), g(yj)‖ = 0 for each xi, yj ∈ A,
then

lim
n→∞

‖fn(x) − f(x), g(y)‖ = 0,

i.e. the sequence {fn;n ∈ N} is convergent to f on Xo.
Let ‖fn, g‖ ≤ M for every n ∈ N . Let us take a number ε > 0, x ∈ X

and y ∈ X such that y 6= 0. Since Xo is a dense set in X , we can choose
xo ∈ Xo, xo 6= 0 such that

‖x− xo‖ <
ε

6M · ‖y‖ .

Moreover there exists yo ∈ Xo with the property

‖y − yo‖ <
ε

6M · ‖xo‖
.

The sequence {fn(xo);n ∈ N} is convergent in (Y, T1(Y )), so it is a Cauchy
sequence in this space. Therefore there exists a number no such that

‖fn(xo)− fm(xo), g(yo)‖ <
ε

3
for each n,m ≥ no.

As a consequence we obtain

‖fn(x) − fm(x), g(y)‖ ≤
≤ ‖fn(x) − fn(xo), g(y)‖+ ‖fn(xo)− fm(xo), g(y)‖

+‖fm(xo)− fm(x), g(y)‖
≤ ‖fn, g‖ · ‖x− xo‖ · ‖y‖+ ‖fn(xo)− fm(xo), g(y − yo) + g(yo)‖

+‖fm, g‖ · ‖x− xo‖ · ‖y‖
≤ 2M‖x− xo‖ · ‖y‖+ ‖fn(xo)− fm(xo), g(y − yo)‖

+‖fn(xo)− fm(xo), g(yo)‖
< 2M‖x− xo‖ · ‖y‖+ ‖fn(xo), g(y − yo)‖+ ‖fm(xo), g(y − yo)‖+

ε

3

< 2M
ε

6M‖y‖‖y‖+ ‖fn, g‖ · ‖xo‖ · ‖y − yo‖

+‖fm, g‖ · ‖xo‖ · ‖y − yo‖+
ε

3

<
2

3
ε+ 2M‖xo‖ · ‖y − yo‖ <

2

3
ε+ 2M‖xo‖

ε

6M‖xo‖
= ε

for n,m ≥ no. If y = 0, then the inequality ‖fn(x) − fm(x), g(y)‖ = 0 < ε is
also true.
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Hence we have shown that {fn(x);n ∈ N} is a Cauchy sequence in
(Y, T1(Y )) for every x ∈ X . Because (Y, T1(Y )) is a sequentially complete
space, then the sequence {fn;n ∈ N} is pointwise convergent.

Let us denote

h(x) = lim
n→∞

fn(x) for every x ∈ X.

The fact that (Y, T1(Y )) is a Hausdorff space implies h(x) = f(x) for x ∈ A,
i.e. (h − f)(x) = 0 for x ∈ A. The operator h−f is linear, thus (h−f)(x) = 0
for every x ∈ Xo. Using Theorem 2.3 we see that h ∈ N g . Because N g is
a linear subspace, then h − f ∈ N g . Thus there exists a positive number K
such that

‖(h− f)(x), g(y)‖ ≤ K · ‖x‖ · ‖y‖ for every x, y ∈ X.
Let ε > 0, x, y ∈ X, y 6= 0. Since the set Xo is dense in X we can choose
xo ∈ Xo such that

‖x− xo‖ <
ε

K · ‖y‖ .

Then

0 ≤ ‖(h− f)(x), g(y)‖ = ‖(h− f)(x− xo) + (h− f)(xo), g(y)‖ =

= ‖(h− f)(x− xo), g(y)‖ ≤ K · ‖x− xo‖ · ‖y‖ < ε

This gives ‖(h − f)(x), g(y)‖ = 0 for each x ∈ X, y ∈ X \ {0}. Thus h(x) =
f(x) for every x ∈ X . As a consequence we have shown that the sequence
{fn;n ∈ N} is pointwise convergent to f, which finishes the proof.

Theorem 2.6. Let (X, ‖ · ‖) be a Banach space, (Y, ‖ · , · ‖) a
generalized 2-normed space such that (Y, T1(Y )) is a Hausdorff sequentially
complete space. Let g be a linear operator from X on Y . If a sequence
{fn;n ∈ N} ⊂ N g is pointwise convergent to f ∈ N g on a linearly dense
set A in X and the sequence of 2-norms {‖fn, g‖;n ∈ N} is bounded, then
{fn;n ∈ N} is pointwise convergent to f and ‖f, g‖ ≤ sup{‖fn, g‖;n ∈ N}.

Proof. It follows from Theorem 2.5 that the sequence {fn(x);n ∈ N} is
convergent in Y to f(x) for every x ∈ X . Let us denote M = sup{‖fn, g‖;n ∈
N}. Then for every n ∈ N and x, y ∈ X such that ‖x‖ ≤ 1, ‖y‖ ≤ 1 we have
‖fn(x), g(y)‖ ≤M . Thus

‖f(x), g(y)‖ ≤ ‖fn(x)−f(x), g(y)‖+‖fn(x), g(y)‖ ≤ ‖fn(x)−f(x), g(y)‖+M.

By letting n→∞ we obtain

‖f(x), g(y)‖ ≤M for x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1.

This implies ‖f, g‖ ≤M , which finishes the proof.

Now, let us consider sequences {(fn, gn);n ∈ N} fromM or N . Using analo-
gous arguments as in proofs of the foregoing theorems we can show that the
following theorems are true.
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Theorem 2.7. Let (X, ‖ · ‖) be a normed space and (Y, ‖ · , · ‖) a
generalized 2-normed space.

(a) If {(fn, gn);n ∈ N} ⊂ M and the sequence of 2-norms {‖fn, gn‖;n ∈
N} is bounded, then for every x ∈ X the sequence {‖fn(x), gn(x)‖;n ∈
N} is bounded.

(b) If {(fn, gn);n ∈ N} ⊂ N and the sequence of 2-norms {‖fn, gn‖;n ∈
N} is bounded, then for every x, y ∈ X the sequence {‖fn(x), gn(y)‖;
n ∈ N} is bounded.

Theorem 2.8. Let (X, ‖ · ‖) be a Banach space, (Y, ‖ · , · ‖) a generalized
2-normed space and {(fn, gn);n ∈ N} a sequence of elements from N . Then
the following conditions are equivalent:

(a) The sequence of 2-norms {‖fn, gn‖;n ∈ N} is bounded;
(b) ∃M>0∀x,y∈X,‖x‖≤1,‖y‖≤1∀n∈N‖fn(x), gn(y)‖ ≤M ;
(c) The following conditions are satisfied:

(i) ∀x∈X∃Mx>0∀y∈X,‖y‖≤1∀n∈N‖fn(x), gn(y)‖ ≤Mx;
(ii) ∀y∈X∃My>0∀x∈X,‖x‖≤1∀n∈N‖fn(x), gn(y)‖ ≤My.

Theorem 2.9. Let (X, ‖ · ‖) be a Banach space, (Y, ‖ · , · ‖) a generalized
2-normed space with the continuous 2-norm. If a sequence {(fn, gn);n ∈ N} ⊂
N is pointwise convergent to (f, g) ∈ L(X,Y )2 and one of three conditions
(a), (b), (c) of Theorem 2.8 is true, then (f, g) ∈ N .

Proof. Using Theorem 2.8 we have that the sequence of 2-norms
{‖fn, gn‖;n ∈ N} is bounded, i.e. there exists M > 0 such that ‖fn, gn‖ ≤M
for each n ∈ N . Let x, y ∈ X be arbitrary. Then

‖fn(x), gn(y)‖ ≤ ‖fn, gn‖ · ‖x‖ · ‖y‖ ≤M‖x‖ · ‖y‖.
Since the 2-norm is continuous, then

‖f(x), g(y)‖ = lim
n→∞

‖fn(x), gn(y)‖ ≤M‖x‖ · ‖y‖,

i.e. (f, g) ∈ N .

From Theorem 1.5 the following follows

Theorem 2.10. Let (X, ‖ · ‖) be a normed space, (Y, ‖ · , · ‖) a gen-
eralized 2-normed space. If a sequence {(fn, gn);n ∈ N} ⊂ N is pointwise
convergent to (f, g) ∈ L(X,Y )×L(X,Y ) and the 2-norm is continuous, then
the sequence {‖fn(x), gn(y)‖;n ∈ N} is bounded for each x, y ∈ X.
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