GLASNIK MATEMATIČKI Vol. 38(58)(2003), 331 – 342

BANACH-STEINHAUS THEOREMS FOR BOUNDED LINEAR OPERATORS WITH VALUES IN A GENERALIZED 2-NORMED SPACE

Zofia Lewandowska

Pedagogical University, Slupsk, Poland

ABSTRACT. In this paper we will prove Banach-Steinhaus Theorems for some families of bounded linear operators from a normed space into a generalized 2-normed space.

1. INTRODUCTION

In 1964 S.Gähler introduced the concept of linear 2-normed spaces and he has investigated many important properties and examples for the above spaces ([1, 2]).

DEFINITION 1.1 ([1]). Let X be a real linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real valued function on $X \times X$ satisfying the following four properties:

(G1) ||x, y|| = 0 if and only if the vectors x and y are linearly dependent;

- (G2) ||x, y|| = ||y, x||;
- (G3) $||x, \alpha y|| = |\alpha| \cdot ||x, y||$ for every real number α ;
- (G4) $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$.

The function $\|\cdot, \cdot\|$ will be called a 2-norm on X and the pair $(X, \|\cdot, \cdot\|)$ a linear 2-normed space.

In [3] and [4] we gave a generalization of the Gähler's 2-normed space. Namely a generalized 2-norm need not be symmetric and satisfy the first condition of the above definition.

Key words and phrases. 2-normed space, Banach-Steinhaus theorems, 2-norm in the space of linear operators.

²⁰⁰⁰ Mathematics Subject Classification. 46A99, 46A32.

DEFINITION 1.2 ([3]). Let X and Y be real linear spaces. Denote by \mathcal{D} a non-empty subset of $X \times Y$ such that for every $x \in X$, $y \in Y$ the sets $\mathcal{D}_x = \{y \in Y; (x, y) \in \mathcal{D}\}$ and $\mathcal{D}^y = \{x \in X; (x, y) \in \mathcal{D}\}$ are linear subspaces of the space Y and X, respectively.

A function $\|\cdot, \cdot\|: \mathcal{D} \to [0, \infty)$ will be called a generalized 2-norm on \mathcal{D} if it satisfies the following conditions:

- (N1) $||x, \alpha y|| = |\alpha| \cdot ||x, y|| = ||\alpha x, y||$ for any real number α and all $(x, y) \in \mathcal{D}$;
- (N2) $||x, y+z|| \le ||x, y|| + ||x, z||$ for $x \in X, y, z \in Y$ such that $(x, y), (x, z) \in \mathcal{D}$;
- (N3) $||x+y,z|| \le ||x,z|| + ||y,z||$ for $x, y \in X, z \in Y$ such that $(x,z), (y,z) \in \mathcal{D}$.

The set \mathcal{D} is called a 2-normed set.

In particular, if $\mathcal{D} = X \times Y$, the function $\|\cdot, \cdot\|$ will be called a generalized 2-norm on $X \times Y$ and the pair $(X \times Y, \|\cdot, \cdot\|)$ a generalized 2-normed space. Moreover, if X = Y, then the generalized 2-normed space will be denoted by $(X, \|\cdot, \cdot\|)$.

In [3] and [4] we considered properties of generalized 2-normed spaces on $X \times Y$. In what follows we shall use the following results:

THEOREM 1.3 ([3]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. Then the family \mathcal{B} of all sets defined by

$$\bigcap_{i=1}^{n} \{ x \in X; \ \|x, y_i\| < \varepsilon \},\$$

where $y_1, y_2, ..., y_n \in Y, n \in N$ and $\varepsilon > 0$, forms a complete system of neighborhoods of zero for a locally convex topology in X.

We will denote it by the symbol $\mathcal{T}(X, Y)$. Similarly, we have the preceding theorem for a topology $\mathcal{T}(Y, X)$ in the space Y. In the case when X = Y we will denote the above topologies as follows: $\mathcal{T}_1(X) = \mathcal{T}(X, Y)$ and $\mathcal{T}_2(X) = \mathcal{T}(Y, X)$.

THEOREM 1.4 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. Let Σ be a directed set.

- (a) A net $\{x_{\sigma}; \sigma \in \Sigma\}$ is convergent to $x_{o} \in X$ in $(X, \mathcal{T}(X, Y))$ if and only if for all $y \in Y$ and $\varepsilon > 0$ there exists $\sigma_{o} \in \Sigma$ such that $||x_{\sigma} - x_{o}, y|| < \varepsilon$ for all $\sigma \geq \sigma_{o}$.
- (b) A net $\{y_{\sigma}; \sigma \in \Sigma\}$ is convergent to $y_o \in Y$ in $(Y, \mathcal{T}(Y, X))$ if and only if for all $x \in X$ and $\varepsilon > 0$ there exists $\sigma_o \in \Sigma$ such that $||x, y_{\sigma} y_o|| < \varepsilon$ for all $\sigma \ge \sigma_o$.

THEOREM 1.5 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. If the generalized 2-norm $\| \cdot, \cdot \| : X \times Y \to [0, \infty)$ is jointly continuous and a sequence $\{(x_n, y_n); n \in N\} \subset X \times Y$ is convergent, then the sequence of 2-norms $\{||x_n, y_n||; n \in N\}$ is bounded.

DEFINITION 1.6 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. A sequence $\{x_n; n \in N\} \subset X$ is called a Cauchy sequence if for every $y \in Y$ and $\varepsilon > 0$ there exists a number $n_o \in N$ such that inequality $n, m > n_o$ implies $\|x_n - x_m, y\| < \varepsilon$.

DEFINITION 1.7 ([4]). Let $(X \times Y, \| \cdot, \cdot \|)$ be a generalized 2-normed space. A space $(X, \mathcal{T}(X, Y))$ is called sequentially complete if every Cauchy sequence in X is convergent in this space.

By analogy we obtain definitions of a Cauchy sequence in the space Y and the sequential completeness of the space $(Y, \mathcal{T}(Y, X))$.

In what follows L(X, Y) stands for the linear space of all linear operators from X with values in Y, where X, Y are real linear spaces.

DEFINITION 1.8 ([5]). Let X be a real normed space and $\mathcal{Y} \subset Y \times Y$ be a 2-normed set, where Y denotes a real linear space. A set \mathcal{M} is defined as follows:

$$\mathcal{M} = \{ (f,g) \in L(X,Y)^2; \forall_{x \in X} (f(x),g(x)) \in \mathcal{Y} \\ \wedge \exists_{M>0} \forall_{x \in X} \|f(x),g(x)\| \le M \cdot \|x\|^2 \}.$$

The set \mathcal{M} defined in Definition 1.8 has the following property: For every $f, g \in L(X, Y)$ the sets

 $\mathcal{M}^{g} = \{f^{'} \in L(X,Y); (f^{'},g) \in \mathcal{M}\} \text{ and } \mathcal{M}_{f} = \{g^{'} \in L(X,Y); (f,g^{'}) \in \mathcal{M}\}$

are linear subspaces of the space L(X, Y).

For $(f,g) \in \mathcal{M}$ we introduce the number

(1.1)
$$||f,g|| = \inf\{M > 0; \forall_{x \in X} ||f(x),g(x)|| \le M \cdot ||x||^2\}.$$

Then

(1.2)
$$||f(x), g(x)|| \le ||f, g|| \cdot ||x||^2 \text{ for all } x \in X;$$

(1.3)
$$\begin{aligned} \|f,g\| &= \sup\{\|f(x),g(x)\|; \ x \in X \land \|x\| = 1\} \\ &= \sup\{\|f(x),g(x)\|; \ x \in X \land \|x\| \le 1\} \\ &= \sup\left\{\frac{\|f(x),g(x)\|}{\|x\|^2}; \ x \in X \land \|x\| \ne 0\right. \end{aligned}$$

Moreover, the set \mathcal{M} is a 2-normed set with the 2-norm defined by the formula (1.1) (cf. [5]).

DEFINITION 1.9 ([5]). Let X be a real normed space and $\mathcal{Y} \subset Y \times Y$ be a 2-normed set, where Y denotes a real linear space. A set \mathcal{N} is defined as follows:

$$\mathcal{N} = \left\{ (f,g) \in L(X,Y)^2; \forall_{x,y \in X} (f(x),g(y)) \in \mathcal{Y} \right.$$

$$\wedge \exists_{M>0} \forall_{x,y \in X} \|f(x),g(y)\| \le M \cdot \|x\| \cdot \|y\| \right\}.$$

The set \mathcal{N} defined in Definition 1.9 has similar properties: For every $f,g\in L(X,Y)$ the sets

$$\mathcal{N}^{g} = \{f' \in L(X, Y); (f', g) \in \mathcal{N}\} \text{ and } \mathcal{N}_{f} = \{g' \in L(X, Y); (f, g') \in \mathcal{N}\}$$

are linear subspaces of the space L(X, Y).

For $(f,g) \in \mathcal{N}$ we introduce the number

(1.4)
$$||f,g|| = \inf\{M > 0; \forall_{x,y \in X} ||f(x),g(y)|| \le M \cdot ||x|| \cdot ||y||\}.$$

Then

(1.5)
$$\|f(x), g(y)\| \leq \|f, g\| \cdot \|x\| \cdot \|y\| \text{ for all } x, y \in X; \\ \|f, g\| = \sup\{\|f(x), g(y)\|; \ x, y \in X \land \|x\| = \|y\| = 1\} \\ = \sup\{\|f(x), g(y)\|; \ x, y \in X \land \|x\| \leq 1, \ \|y\| \leq 1\} \\ = \sup\left\{\frac{\|f(x), g(y)\|}{\|x\| \cdot \|y\|}; \ x, y \in X \land \|x\| \neq 0, \ \|y\| \neq 0\right\}$$

Moreover, the set \mathcal{N} is a 2-normed set with the 2-norm defined by the formula (1.4) (cf. [5]).

2. BANACH-STEINHAUS THEOREMS FOR BOUNDED LINEAR OPERATORS

In this section we will consider properties of sequences of operators, which are contained in $\mathcal{M}^g, \mathcal{M}_f$ or $\mathcal{N}^g, \mathcal{N}_f$ for some $f, g \in L(X, Y)$. Moreover we will investigate sequences $\{(f_n, g_n); n \in N\}$ from \mathcal{M} or \mathcal{N} . In every case we will formulate Banach-Steinhaus Theorems. Because any theorem for sequences of operators from \mathcal{M}^g or \mathcal{N}^g is also true (after making necessary changes) for sequences of operators from \mathcal{M}_f or \mathcal{N}_f , we will give only one version of theorems.

THEOREM 2.1. Let $(X, \|\cdot\|)$ be a normed space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space and $g \in L(X, Y)$. Then:

- (a) If a sequence $\{f_n, n \in N\} \subset \mathcal{M}^g$ and the sequence of 2 -norms $\{\|f_n, g\|; n \in N\}$ is bounded, then for every $x \in X$ the sequence $\{\|f_n(x), g(x)\|, n \in N\}$ is bounded.
- (b) If a sequence $\{f_n, n \in N\} \subset \mathcal{N}^g$ and the sequence of 2 -norms $\{\|f_n, g\|; n \in N\}$ is bounded, then for every $x, y \in X$ the sequence $\{\|f_n(x), g(y)\|, n \in N\}$ is bounded.

PROOF. (a) Let $||f_n, q|| \leq M$ for every $n \in N$. Then for $x \in X$ we have $||f_n(x), g(x)|| \le ||f_n, g|| \cdot ||x||^2 \le M \cdot ||x||^2.$

Hence for every $x \in X$ the sequence $\{||f_n(x), g(x)||; n \in N\}$ is bounded by the number $M \cdot ||x||^2$.

(b) If $||f_n, g|| \leq M$ for every $n \in N$, then for $x, y \in X$ we have

 $||f_n(x), g(y)|| \le ||f_n, g|| \cdot ||x|| \cdot ||y|| \le M \cdot ||x|| \cdot ||y||.$

Thus for every $x, y \in X$ the sequence $\{||f_n(x), g(y)||; n \in N\}$ is bounded by the number $M \cdot ||x|| \cdot ||y||$. п

THEOREM 2.2. Let $(X, \|\cdot\|)$ be a Banach space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space and $\{f_n; n \in N\}$ a sequence of elements from \mathcal{N}^g for some $g \in L(X, Y)$. Then the following conditions are equivalent:

- (a) The sequence of 2-norms $\{||f_n, g||; n \in N\}$ is bounded;
- (b) $\exists_{M>0} \forall_{x,y \in X, \|x\| \le 1, \|y\| \le 1} \forall_{n \in N} \|f_n(x), g(y)\| \le M;$ (c) The following conditions are true:
- - (i) $\forall_{x \in X} \exists_{M_x > 0} \forall_{y \in X, \|y\| \le 1} \forall_{n \in N} \|f_n(x), g(y)\| \le M_x;$ (ii) $\forall_{y \in X} \exists_{M_y > 0} \forall_{x \in X, \|x\| \le 1} \forall_{n \in N} \|f_n(x), g(y)\| \le M_y.$

PROOF. At first let us suppose that the sequence of 2-norms $\{||f_n, g||; n \in$ N is bounded. From this it follows that there exists a positive number M such that $||f_n, g|| \leq M$ for each $n \in N$. Thus for $x, y \in X, ||x|| \leq 1, ||y|| \leq 1$ and $n \in N$ we have $||f_n(x), g(y)|| \le ||f_n, g|| \cdot ||x|| \cdot ||y|| \le M$.

Now, let the condition (b) be satisfied. We fix $x \in X \setminus \{0\}$. Then for each $y \in X, ||y|| \leq 1$ and $n \in N$ we obtain the inequalities:

$$\|f_n(x), g(y)\| = \left\|f_n\left(\frac{x}{\|x\|} \cdot \|x\|\right), g(y)\right\| = \|x\| \cdot \left\|f_n\left(\frac{x}{\|x\|}\right), g(y)\right\| \le M \cdot \|x\|.$$

If we choose $M_x = M \cdot ||x||$, then we have the condition (i). Moreover, for x = 0 the condition (i) is satisfied for every positive number M_x . Analogously, taking $M_y = M \cdot ||y||$ for each $y \in X \setminus \{0\}$ and any positive number for y = 0 we obtain (ii).

Conversely, let (i) and (ii) be satisfied. In $X \times X$ let us define a norm by the formula:

$$||(x,y)||_{\star} = ||x|| + ||y||$$
 for each $(x,y) \in X \times X$

It is easy to verify that $(X \times X, \|\cdot\|_*)$ is a Banach space. Put

$$A_{nm} = \{(x, y) \in X \times X; \|f_n(x), g(y)\| \le m\}$$

and

$$B_m = \bigcap_{n=1}^{\infty} A_{nm}$$

for $m, n \in N$. We shall show that sets B_m are closed in $(X \times X, \|\cdot\|_*)$ for each $m \in N$.

Z. LEWANDOWSKA

At first we shall show that sets A_{nm} are closed in this space. Let $m, n \in N$ and let $\{(x_k, y_k); k \in N\} \subset A_{nm}$ be a sequence converging to $(x', y') \in X \times X$. Then

$$\|f_n(x_k), g(y_k)\| \le m \text{ and } \|(x_k, y_k) - (x', y')\|_{\star} \longrightarrow 0, k \to \infty$$

The last condition is equivalent to the following: $||x_k - x'|| \to 0$ and $||y_k - y'|| \to 0$, which implies the convergence of the sequences $\{x_k; k \in N\}, \{y_k; k \in N\}$. As a consequence these sequences are bounded. There exists K > 0 such that the inequalities $||x_k|| \leq K$, $||y_k|| \leq K$ are true for each $k \in N$. Using these results we get

$$||f_n(x'), g(y')|| \le m + K \cdot ||f_n, g|| \cdot ||x_k - x'|| + K \cdot ||f_n, g|| \cdot ||y_k - y'|| + ||f_n, g|| \cdot ||x_k - x'|| \cdot ||y_k - y'||.$$

Letting $k \to \infty$ we obtain $||f_n(x'), g(y')|| \le m$, which means that $(x', y') \in A_{nm}$. Therefore the sets A_{nm} are closed for each $n, m \in N$, and hence the sets B_m are also closed in $(X \times X, \|\cdot\|_*)$.

Now, we shall show that the equality

$$X \times X = \bigcup_{m=1}^{\infty} B_m$$

is true. Let $x, y \in X, x \neq 0$. Then $\|\frac{x}{\|x\|}\| = 1$. By virtue (ii) there exists $M_y > 0$ such that

$$\left\| f_n\left(\frac{x}{\|x\|}\right), g(y) \right\| \le M_y \text{ for each } n \in N.$$

Thus $||f_n(x), g(y)|| \le M_y \cdot ||x||$ for each $n \in N$.

If x = 0, then $||x|| \le 1$ and $||f_n(x), g(y)|| = ||0, g(y)|| = 0 = M_y \cdot ||0||$. As a consequence, for every $x, y \in X$ the sequence $\{||f_n(x), g(y)||; n \in N\}$ is bounded. From this it follows that for any point $(x, y) \in X \times X$ there exists $n \in N$ such that $||f_n(x), g(y)|| \le m$ for every $m \in N$, i.e.

$$(x,y) \in \bigcup_{m=1}^{\infty} B_m.$$

Thus

$$X \times X = \bigcup_{m=1}^{\infty} B_m.$$

By the well known Baire theorem there exists a set B_{m_o} with non-empty interior. Therefore B_{m_o} contains some closed ball with the center (x_o, y_o) and radius r. Denote it by $\mathcal{K}((x_o, y_o), r)$. Thus for each $n \in N$ and $(x, y) \in \mathcal{K}((x_o, y_o), r)$ we have $||f_n(x), g(y)|| \leq m_o$.

Let us take $x, y \in X$ such that $||x|| \leq \frac{r}{2}$ and $||y|| \leq \frac{r}{2}$. Then

 $||(x,y)||_{\star} = ||x|| + ||y|| \le r \text{ and } ||(x,y)||_{\star} = ||(x+x_o, y+y_o) - (x_o, y_o)||_{\star} \le r.$

336

Therefore $||f_n(x+x_o), g(y+y_o)|| \le m_o$. In particular $||f_n(x_o), g(y_o)|| \le m_o$. Thus

$$\begin{aligned} \|f_n(x), g(y)\| &\leq \|f_n(x+x_o), g(y+y_o)\| + \|f_n(x+x_o), g(y_o)\| \\ &+ \|f_n(x_o), g(y+y_o)\| + \|f_n(x_o), g(y_o)\| \\ &\leq 2m_o + \|f_n(x) + f_n(x_o), g(y_o)\| + \|f_n(x_o), g(y) + g(y_o)\| \\ &\leq 4m_o + \|f_n(x), g(y_o)\| + \|f_n(x_o), g(y)\|. \end{aligned}$$

So we have shown that the inequalities $\|x\| \leq \frac{r}{2}$ and $\|y\| \leq \frac{r}{2}$ imply the condition

$$||f_n(x), g(y)|| \le 4m_o + ||f_n(x), g(y_o)|| + ||f_n(x_o), g(y)||.$$

Now, let $x, y \in X$, $||x|| \le 1$ and $||y|| \le 1$. Because $||\frac{r}{2}x|| \le \frac{r}{2}$ and $||\frac{r}{2}y|| \le \frac{r}{2}$, then

$$\|f_n(\frac{r}{2}x), g(\frac{r}{2}y)\| \le 4m_o + \|f_n(\frac{r}{2}x), g(y_o)\| + \|f_n(x_o), g(\frac{r}{2}y)\|.$$

As a consequence we obtain

$$||f_n(x), g(y)|| \le \frac{16m_o}{r^2} + \frac{2}{r}(||f_n(x), g(y_o)|| + ||f_n(x_o), g(y)||)$$

for each $n \in N$. Applying (i) we have that there exists $M_{x_o} > 0$ such that for every $y \in X$, $||y|| \le 1$ and $n \in N$ the inequality $||f_n(x_o), g(y)|| \le M_{x_o}$ is true. However the assumption (ii) implies there exists $M_{y_o} > 0$ such that for every $x \in X$, $||x|| \le 1$ and $n \in N$ the inequality $||f_n(x), g(y_o)|| \le M_{y_o}$ is satisfied. So

$$||f_n(x), g(y)|| \le \frac{16m_o}{r^2} + \frac{2}{r} \cdot (M_{y_o} + M_{x_o})$$

for each $n \in N$ and $x, y \in X$ such that $||x|| \le 1, ||y|| \le 1$. Therefore

$$||f_n, g|| = \sup\{||f_n(x), g(y)||; x, y \in X \land ||x|| \le 1, ||y|| \le 1\}$$

$$\le \frac{16m_o + 2r(M_{x_o} + M_{y_o})}{r^2}$$

for each $n \in N$. So the sequence $\{||f_n, g||; n \in N\}$ is bounded and the proof is completed.

Let $g \in L(X, Y)$. A sequence $\{f_n; n \in N\} \subset \mathcal{N}^g$ is pointwise convergent to $f \in L(X, Y)$, if

$$\forall_{x \in X} \forall_{z \in Y} \lim_{n \to \infty} \|f_n(x) - f(x), z\| = 0$$

(cf. [4]). However, if g is the operator from X on Y, then the sequence $\{f_n; n \in N\} \subset \mathcal{N}^g$ is pointwise convergent to $f \in L(X, Y)$, if

$$\forall_{x \in X} \forall_{y \in Y} \lim_{n \to \infty} \|f_n(x) - f(x), g(y)\| = 0.$$

We will use the above note in the following theorem.

THEOREM 2.3. Let $(X, \|\cdot\|)$ be a Banach space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space and g a linear operator from X on Y. If $\{f_n; n \in N\} \subset \mathcal{N}^g$ is pointwise convergent to $f \in L(X, Y)$ and satisfies one of the conditions (a), (b), (c) from Theorem 2.2, then $f \in \mathcal{N}^g$.

PROOF. From Theorem 2.2 the sequence of 2-norms $\{||f_n, g||; n \in N\}$ is bounded. Thus there exists M > 0 such that $||f_n, g|| \leq M$ for each $n \in N$. For points $x, y \in X$ we have

$$||f_n(x), g(y)|| \le ||f_n, g|| \cdot ||x|| \cdot ||y|| \le M \cdot ||x|| \cdot ||y||.$$

So $||f(x), g(y)|| \le ||f(x) - f_n(x), g(y)|| + M \cdot ||x|| \cdot ||y||$. Letting $n \to \infty$ in the above inequality we obtain

$$||f(x), g(y)|| \le M \cdot ||x|| \cdot ||y||,$$

which implies $f \in \mathcal{N}^g$.

DEFINITION 2.4 ([6]). A set A of elements of a normed space X is said to be linearly dense in X, if the set X_o of all linear combinations of elements from A is dense in X.

THEOREM 2.5. Let A be a linearly dense set in a Banach space $(X, \|\cdot\|)$, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space such that $(Y, \mathcal{T}_1(Y))$ is a Hausdorff sequentially complete space. Let g be a linear operator from X on Y and $\{f_n; n \in N\} \subset \mathcal{N}^g$. The following conditions are equivalent:

- (a) The sequence $\{f_n; n \in N\}$ is pointwise convergent to $f \in L(X, Y)$ and the conditions (i),(ii) from Theorem 2.2 are satisfied.
- (b) The sequence $\{f_n; n \in N\}$ is pointwise convergent to $f \in \mathcal{N}^g$ on the set A and the sequence of 2-norms $\{||f_n, g||; n \in N\}$ is bounded.

PROOF. If the sequence $\{f_n(x); n \in N\}$ is convergent to $f(x) \in Y$ for each $x \in X$, then it is convergent also for $x \in A \subset X$. Moreover - this follows from Theorem 2.2 and Theorem 2.3 - the sequence $\{||f_n, g||; n \in N\}$ is bounded and $f \in \mathcal{N}^g$.

Now, we will suppose that the sequence $\{f_n; n \in N\}$ is pointwise convergent to $f \in \mathcal{N}^g$ on the set A and the sequence of 2-norms $\{||f_n, g||; n \in N\}$ is bounded. By Theorem 2.2 the conditions (i),(ii) hold. Let X_o be the vector subspace of the Banach space X generated by A. So X_o is a normed space.

Let $x, y \in X_o$. Then $x = a_1x_1 + \cdots + a_kx_k$, $y = b_1y_1 + \cdots + b_ty_t$, where $a_i, b_j \in \mathcal{R}, x_i, y_j \in A, i = 1, 2, \dots, k, j = 1, 2, \dots, t, k, t \in N$. Thus, it follows from assumptions on f_n, f, g that

$$\|f_n(x) - f(x), g(y)\| =$$

= $\|a_1(f_n(x_1) - f(x_1)) + \dots + a_k(f_n(x_k) - f(x_k)), b_1g(y_1) + \dots + b_tg(y_t)\|.$

338

Π

Using properties of 2-norms we get:

$$\|f_n(x) - f(x), g(y)\| \le \sum_{i=1}^k \sum_{j=1}^t |a_i b_j| \cdot \|f_n(x_i) - f(x_i), g(y_j)\|.$$

Because

$$\lim_{n \to \infty} \|f_n(x_i) - f(x_i), g(y_j)\| = 0 \text{ for each } x_i, y_j \in A,$$

then

$$\lim_{n \to \infty} \|f_n(x) - f(x), g(y)\| = 0,$$

i.e. the sequence $\{f_n; n \in N\}$ is convergent to f on X_o .

Let $||f_n, g|| \leq M$ for every $n \in N$. Let us take a number $\varepsilon > 0, x \in X$ and $y \in X$ such that $y \neq 0$. Since X_o is a dense set in X, we can choose $x_o \in X_o, x_o \neq 0$ such that

$$\|x - x_o\| < \frac{\varepsilon}{6M \cdot \|y\|}.$$

Moreover there exists $y_o \in X_o$ with the property

$$\|y - y_o\| < \frac{\varepsilon}{6M \cdot \|x_o\|}.$$

The sequence $\{f_n(x_o); n \in N\}$ is convergent in $(Y, \mathcal{T}_1(Y))$, so it is a Cauchy sequence in this space. Therefore there exists a number n_o such that

$$||f_n(x_o) - f_m(x_o), g(y_o)|| < \frac{\varepsilon}{3}$$
 for each $n, m \ge n_o$.

As a consequence we obtain

$$\begin{split} \|f_{n}(x) - f_{m}(x), g(y)\| &\leq \\ &\leq \|f_{n}(x) - f_{n}(x_{o}), g(y)\| + \|f_{n}(x_{o}) - f_{m}(x_{o}), g(y)\| \\ &+ \|f_{m}(x_{o}) - f_{m}(x), g(y)\| \\ &\leq \|f_{n}, g\| \cdot \|x - x_{o}\| \cdot \|y\| + \|f_{n}(x_{o}) - f_{m}(x_{o}), g(y - y_{o}) + g(y_{o})\| \\ &+ \|f_{m}, g\| \cdot \|x - x_{o}\| \cdot \|y\| \\ &\leq 2M \|x - x_{o}\| \cdot \|y\| + \|f_{n}(x_{o}) - f_{m}(x_{o}), g(y - y_{o})\| \\ &+ \|f_{n}(x_{o}) - f_{m}(x_{o}), g(y_{o})\| \\ &< 2M \|x - x_{o}\| \cdot \|y\| + \|f_{n}(x_{o}), g(y - y_{o})\| + \|f_{m}(x_{o}), g(y - y_{o})\| + \frac{\varepsilon}{3} \\ &< 2M \frac{\varepsilon}{6M \|y\|} \|y\| + \|f_{n}, g\| \cdot \|x_{o}\| \cdot \|y - y_{o}\| \\ &+ \|f_{m}, g\| \cdot \|x_{o}\| \cdot \|y - y_{o}\| + \frac{\varepsilon}{3} \\ &< \frac{2}{3}\varepsilon + 2M \|x_{o}\| \cdot \|y - y_{o}\| < \frac{2}{3}\varepsilon + 2M \|x_{o}\| \frac{\varepsilon}{6M \|x_{o}\|} = \varepsilon \end{split}$$

for $n, m \ge n_o$. If y = 0, then the inequality $||f_n(x) - f_m(x), g(y)|| = 0 < \varepsilon$ is also true.

Hence we have shown that $\{f_n(x); n \in N\}$ is a Cauchy sequence in $(Y, \mathcal{T}_1(Y))$ for every $x \in X$. Because $(Y, \mathcal{T}_1(Y))$ is a sequentially complete space, then the sequence $\{f_n; n \in N\}$ is pointwise convergent.

Let us denote

$$h(x) = \lim_{n \to \infty} f_n(x)$$
 for every $x \in X$.

The fact that $(Y, \mathcal{T}_1(Y))$ is a Hausdorff space implies h(x) = f(x) for $x \in A$, i.e. (h - f)(x) = 0 for $x \in A$. The operator h - f is linear, thus (h - f)(x) = 0for every $x \in X_o$. Using Theorem 2.3 we see that $h \in \mathcal{N}^g$. Because \mathcal{N}^g is a linear subspace, then $h - f \in \mathcal{N}^g$. Thus there exists a positive number Ksuch that

$$||(h-f)(x), g(y)|| \le K \cdot ||x|| \cdot ||y|| \text{ for every } x, y \in X.$$

Let $\varepsilon > 0, x, y \in X, y \neq 0$. Since the set X_o is dense in X we can choose $x_o \in X_o$ such that

$$\|x-x_o\| < \frac{\varepsilon}{K \cdot \|y\|}.$$

Then

$$0 \le \|(h-f)(x), g(y)\| = \|(h-f)(x-x_o) + (h-f)(x_o), g(y)\| = \\ = \|(h-f)(x-x_o), g(y)\| \le K \cdot \|x-x_o\| \cdot \|y\| < \varepsilon$$

This gives ||(h - f)(x), g(y)|| = 0 for each $x \in X, y \in X \setminus \{0\}$. Thus h(x) = f(x) for every $x \in X$. As a consequence we have shown that the sequence $\{f_n; n \in N\}$ is pointwise convergent to f, which finishes the proof.

THEOREM 2.6. Let $(X, \| \cdot \|)$ be a Banach space, $(Y, \| \cdot , \cdot \|)$ a generalized 2-normed space such that $(Y, T_1(Y))$ is a Hausdorff sequentially complete space. Let g be a linear operator from X on Y. If a sequence $\{f_n; n \in N\} \subset \mathcal{N}^g$ is pointwise convergent to $f \in \mathcal{N}^g$ on a linearly dense set A in X and the sequence of 2-norms $\{\|f_n, g\|; n \in N\}$ is bounded, then $\{f_n; n \in N\}$ is pointwise convergent to f and $\|f, g\| \leq \sup\{\|f_n, g\|; n \in N\}$.

PROOF. It follows from Theorem 2.5 that the sequence $\{f_n(x); n \in N\}$ is convergent in Y to f(x) for every $x \in X$. Let us denote $M = \sup\{||f_n, g||; n \in N\}$. Then for every $n \in N$ and $x, y \in X$ such that $||x|| \leq 1, ||y|| \leq 1$ we have $||f_n(x), g(y)|| \leq M$. Thus

 $\|f(x), g(y)\| \le \|f_n(x) - f(x), g(y)\| + \|f_n(x), g(y)\| \le \|f_n(x) - f(x), g(y)\| + M.$ By letting $n \to \infty$ we obtain

$$\|f(x),g(y)\| \le M \text{ for } x,y \in X, \|x\| \le 1, \|y\| \le 1.$$

Π

This implies $||f,g|| \leq M$, which finishes the proof.

Now, let us consider sequences $\{(f_n, g_n); n \in N\}$ from \mathcal{M} or \mathcal{N} . Using analogous arguments as in proofs of the foregoing theorems we can show that the following theorems are true.

340

THEOREM 2.7. Let $(X, \| \cdot \|)$ be a normed space and $(Y, \| \cdot , \cdot \|)$ a generalized 2-normed space.

- (a) If $\{(f_n, g_n); n \in N\} \subset \mathcal{M}$ and the sequence of 2-norms $\{||f_n, g_n||; n \in N\}$ is bounded, then for every $x \in X$ the sequence $\{||f_n(x), g_n(x)||; n \in N\}$ is bounded.
- (b) If $\{(f_n, g_n); n \in N\} \subset \mathcal{N}$ and the sequence of 2-norms $\{||f_n, g_n||; n \in N\}$ is bounded, then for every $x, y \in X$ the sequence $\{||f_n(x), g_n(y)||; n \in N\}$ is bounded.

THEOREM 2.8. Let $(X, \|\cdot\|)$ be a Banach space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space and $\{(f_n, g_n); n \in N\}$ a sequence of elements from \mathcal{N} . Then the following conditions are equivalent:

- (a) The sequence of 2-norms $\{||f_n, g_n||; n \in N\}$ is bounded;
- (b) $\exists_{M>0} \forall_{x,y \in X, \|x\| \le 1, \|y\| \le 1} \forall_{n \in N} \|f_n(x), g_n(y)\| \le M;$
- (c) The following conditions are satisfied:
 - (i) $\forall_{x \in X} \exists_{M_x > 0} \forall_{y \in X, \|y\| \le 1} \forall_{n \in N} \|f_n(x), g_n(y)\| \le M_x;$ (ii) $\forall_{y \in X} \exists_{M_y > 0} \forall_{x \in X, \|x\| < 1} \forall_{n \in N} \|f_n(x), g_n(y)\| \le M_y.$

THEOREM 2.9. Let $(X, \|\cdot\|)$ be a Banach space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space with the continuous 2-norm. If a sequence $\{(f_n, g_n); n \in N\} \subset \mathcal{N}$ is pointwise convergent to $(f, g) \in L(X, Y)^2$ and one of three conditions (a), (b), (c) of Theorem 2.8 is true, then $(f, g) \in \mathcal{N}$.

PROOF. Using Theorem 2.8 we have that the sequence of 2-norms $\{||f_n, g_n||; n \in N\}$ is bounded, i.e. there exists M > 0 such that $||f_n, g_n|| \leq M$ for each $n \in N$. Let $x, y \in X$ be arbitrary. Then

$$||f_n(x), g_n(y)|| \le ||f_n, g_n|| \cdot ||x|| \cdot ||y|| \le M ||x|| \cdot ||y||.$$

Since the 2-norm is continuous, then

$$||f(x), g(y)|| = \lim_{n \to \infty} ||f_n(x), g_n(y)|| \le M ||x|| \cdot ||y||,$$

i.e. $(f,g) \in \mathcal{N}$.

Π

From Theorem 1.5 the following follows

THEOREM 2.10. Let $(X, \|\cdot\|)$ be a normed space, $(Y, \|\cdot, \cdot\|)$ a generalized 2-normed space. If a sequence $\{(f_n, g_n); n \in N\} \subset \mathcal{N}$ is pointwise convergent to $(f, g) \in L(X, Y) \times L(X, Y)$ and the 2-norm is continuous, then the sequence $\{\|f_n(x), g_n(y)\|; n \in N\}$ is bounded for each $x, y \in X$.

References

[1] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1-43.

[2] S. Gähler, Über 2-Banach Räume, Math. Nachr. 42 (1969), 335–347.

 [3] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie 42 (4) (1999), 353–368.

Z. LEWANDOWSKA

- [4] Z. Lewandowska, Generalized 2-normed spaces, Słupskie Prace Matematyczno-Fizyczne 1 (2001), 33–40.
- [5] Z. Lewandowska, On 2-normed sets, Glasnik Mat. 38(58) (2003), 99–110.
- [6] J. Musielak, Introduction to functional analysis, PWN, Warszawa, 1989 (in Polish).

Z. Lewandowska Department of Mathematics Pedagogical University Arciszewskiego 22 b Pl-76-200 Slupsk Poland *E-mail*: Lewandowscy@rene.com.pl, lewandow@pap.edu.pl *Received*: 11.07.2002.

342