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1. INTRODUCTION
The Bučim porphyry Cu deposit is located in the border area 
between the Serbo-Macedonian Massif (SMM) and the Vardar 
Zone (VZ). It is an integral part of the Bučim-Damjan-Borov 
Dol ore district located in the eastern part of the Republic of 
Macedonia. In terms of its metallogeny, it belongs to the Lece 
- Chalkidi metallogenic zone (SERAFIMOVSKI, 1990), 
which is a part of the Alpine-Balkan-Carpathian-Dinarides 
metallogenetic belt (HEINRICH & NEUBAUER, 2002). The 
intrusions of the district belong to the  Late Eocene-Oligocene 
magmatic zone (HARKOVSKA et al., 1989), which cross cuts 
older tectonic structures (SCHEFER et al., 2011), and occurs 
within the Circum Rhodope unit according to the compilation 
map of SCHMID et al. (2013). The Late Oligocene-Miocene 
intrusions are associated with both economic and uneconomic 
ore mineralization. Although the mine at Bučim has been 
known since ancient times, it was not explored in detail until 
the 1970’s (SERAFIMOVSKI et al., 2010).  

In terms of its output and ore reserves, it is a small porhyry 
deposit. Since 1979, 80 Mt of the 120 Mt estimated reserves 
(as mineral resources), have been mined, with a production 
dynamic of 4 000 000 tonnes ore annually and an average ore 
grade of 0.34% Cu and 0.35 g/t Au (ČIFLIGANEC, 1993; 

SERAFIMOVSKI et al., 1996, 2010; VOLKOV et al., 2010). 
It should also be mentioned that this is characteristic of all por-
phyry deposits determined in the border area between the 
SMM and the VZ or the Lece - Chalkidi zone. The deposit 
consists of four ore bodies, three of which are related to por-
phyry fingers and one is distinguished as a supergene minera-
lization (ČIFLIGANEC, 1993; SERAFIMOVSKI & BOEV, 
1996; SERAFIMOVSKI et al., 2010; VOLKOV et al., 2010). 
The intrusions are of andesitic to trachy-andesitic composition 
with crystallization ages ranging between 27.5 and 24.9 Ma 
(K/Ar whole rock ages) (ČIFLIGANEC, 1993; SERAFI-
MOVSKI et al., 2010).

Various mineralogical and fluid inclusion studies have been 
undertaken in the district but only a limited amount of data 
related to the magmatic-hydrothermal  history of the system 
have been published (ČIFLIGANEC, 1993; SERAFIMOV-
SKI & BOEV, 1996; SERAFIMOVSKI et al., 2010; 
STRASHIMIROV et al., 1996; VOLKOV et al., 2010).

2. REGIONAL GEOTECTONIC AND 
METALLOGENIC SETTING
The metallogeny of the southern Balkan Peninsula is deter-
mined by the geodynamic evolution of the Tethys-Eurasian 
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metallogenic belt (TEMB), as outlined by JANKOVIĆ (1997), 
and ancient crystalline massifs. The TEMB formed during 
post-Mesozoic times in the location of the former Jurassic 
Tethys palaeo-ocean, situated between the southern continen-
tal margin of Eurasia on one side, and the African-Arabian and 
Indian plate on the other side. The belt extends from the west-
ern Mediterranean, through the Alps and southeastern Europe 
via the Lesser Caucasus, Hindu Kush, and Tibetan Plateau, to 
Burma and northwestern Indonesia, where it joins the western 
segment of the Pacific metallogenic belt. The southern Balkan 
Peninsula, including the Republic of Macedonia, is a sector of 
the central TEMB (Fig. 1).

The formation of ore deposits 
was related to certain chronologi-
cal stages and geo dy na mic set-
tings: (1) Late Permian-Early Tri-
assic intracontinental rifting along 
the northern bou ndary of Gondwa-
na and/or its previously detached 
fragments; (2) Jurassic oceaniza-
tion marked by the ophiolitic com-
plex; (3) suprasubduction magma-
tism; and (4) a postcollisional 
(oroge nic) continental setting and 
related formation of various base- 
and noble-metal deposits (Pb-Zn-
Ag, Cu-Au, Au-As-Sb-TI, Au-Ag) 
(JANKOVIĆ, 1997). The Jurassic 
ophiolite belt extends for hundreds 
of kilometres within Macedonia 
and for a few thousand kilometres 
on a global scale via Greece, Tur-
key, the Caucasus, and Iran to the 
Himalayas. In Macedonia, the 
ophiolite complex occurs in the 
Vardar Zone (VZ) and the adjacent 
Serbo-Macedonian Massif (SMM) 
(KARAMATA & LO VRIĆ, 1978). 
The VZ extends in a NW-SE direc-
tion between the SMM and the Pe-
lagonian Massif (Fig. 1). Ophi-
olites of the VZ comprise the Ju-
rassic gabbro-peridotite complex, 
which is overlain by Cretaceous 
flysch. The SMM is located be-
tween the Carpathian Mountains 
and the Balkanides in the east and 
the VZ in the west. Dismembered 
peridotites in the form of pseudo-
dykes occur in the SMM along its 
contact with the VZ. The collision 
of the African and Eura s ian plates 
was accompanied by closure of the 
ocean and su b duction of the oce-
anic crust bene ath the SMM. Deep 
faults that formed along the active 
co ntinental margins have impor-
tant metallogenic implications. The 

regional te cto nic units listed above, extending parallel to the 
VZ, control regional metallogenic zones, ore districts, and ore 
fields (Fig. 1). Colli sion, post-collision processes, and Tertiary 
magmatism were crucial for localization of the base-metal ore 
mineralization (JANKOVIĆ, 1997; SERAFIMOVSKI et al., 
2010). 

Cenozoic reactivation embraced largely the eastern part of 
the Macedonian Arch and was expressed in the development 
of the NW-trending faults oriented obliquely to the VZ and the 
transverse NE-trending faults at the final stage (TOMSON et 
al., 1998; VOLKOV et al., 2006). The rocks of the Tertiary 
volcanic-plutonic complex and related base-metal mineraliza-
tion occur in four tectonic and metallogenic zones (Fig. 1): (1) 

Figure 1. Regional location of the Lece-Chalkidiki and Besna Kobila-Osogovo-Thassos metallo-
genic zones and area of interest (modified after SERAFIMOVSKI, 1990).
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the magmatic zone at the mobile northern, northeastern, and 
eastern margins of the Dinarides (Mala Kropa, Srebrenica, Bo-
ranja, Golija, Zeljin, Rogozna; PAMIĆ & JURKOVIĆ, 1997; 
JANKOVIĆ, 1997); (2) the magmatic zone in the severely tec-
tonized central part of the VZ (Kopaonik, Bukulja, Avala, Cer, 
Kožuf; JANKOVIĆ, 1997; JANKOVIĆ et al., 1997); (3) the 
Lece-Chalkidiki metallogenic zone at the contact between 
SMM and VZ (Zletovo, Plavica, Bučim, Borov Dol, Damjan, 
Borović; SERAFIMOVSKI, 1993; SERAFIMOVSKI et al., 
2000); (4) the Besna Kobila-Osogovo metallogenic zone 
(Sasa, Toranica, Kadica, Ilovica; SERAFIMOVSKI, 1990). 

The Precambrian metamorphic complex is the oldest in the 
SMM (Fig. 1). The complex is composed of biotite, muscovite, 
(two-mica), and gneisses, amphibolites, muscovite schists, and 
other kind of metamorphic rocks. Gneisses are widespread and 
favourable for the localization of ore. Palaeozoic rocks com-
prise chlorite-amphibole schists, slate-carbonate group, me-
tagabbro, and dolerite, which are less favourable for the lo-
calization of porphyry ore than the Precambrian rocks. The 
Mesozoic formations combine Jurassic ultramafic and granitic 
rocks. Serpentinized peridotites and pyroxenites are locally 
ove rla pped by volcanic flows and Quaternary sediments. 
Granite, granodiorite, and quartz monzo nite are accompanied 
by low-grade chalcopyrite mineralization. Palaeogene sedi-
mentary rocks (con glomerate, tuffaceous flysch, limestone) 
are cut through by Neogene subvolcanic intrusive bodies. 
These rocks, especially marlstone and shale, are favourable 
hosts for porphyry and skarn mineralization; they serve as 
screens for ore-bearing fluids and protoliths for metasomatic 
alteration. Neogene conglomerate, gravelstone, sandstone, 
limestone, and other sedimentary rocks are overlapped by 
Quaternary clayey and sandy sediments (fans, hillside, and al-
luvial facies) (e.g. DUMURDŽANOV et al., 2004). 

Three variably  oriented fault systems are recognized: the 
first NW-trending fault system coincides in the strike of the 
major tectonic units; while the second and third systems ex-
tend in the northeastern and meridional directions, respective-
ly. The third system has important implications for the deve-
lop ment of Ter tiary magmatism and related iron skarn and 
porphyry Cu mineralization. This system controls numerous 
volcanic domes and necks localized at intersections of near-
meridional and northeastern faults. Volcanic activity pro-
gressed from the beginning of the late Oligocene, and ore min-
eralization formed in Miocene times (SERAFIMOVSKI et al., 
2010). 

3. BUČIM-DAMJAN-BOROV DOL ORE DISTRICT
The Bučim-Damjan-Borov Dol ore district with porphyry Cu 
and iron skarn minerali za tion occupies the southwestern part 
of the Lece-Chalkidiki metallogenic zone and is about 50 km2 
in size. The ore mineralization is concentrated in the Bučim, 
Damjan, and Borov Dol ore fields (Fig. 2). Several NW–SE 
striking thrust faults divide the district into different te cto nic 
units (Fig. 2, see HRISTOV et al., 1973). 

The aforementioned thrust faults are related to Early Mio-
cene crustal shortening, which led to about 800 m of uplift of 
the Bučim region in the Borov Dol area, which in turn is up-
lifted 800 m relative to the area located to its west (based on 

field observations, there are different exposure levels between 
Bučim and Borov Dol, Fig. 2B). The preservation of Eocene 
strata decreases towards the NE due to erosion. Therefore, 
deeper geological units, such as Palaeozoic schists and Pre-
cambrian gneisses, are increasingly exposed towards the NE 
(Fig. 2). Numerous intrusions are found in the area, among 
them the Bučim, Damjan, Borov Dol and Black Hill intru-
sions. After the emplacement of the porphyry intrusions, a 
later period of thrust faulting led to uplift of the Bučim area in 
contrast to the Borov Dol–Damjan region (Figs. 1, 2, 3). Seve-
ral andesite/trachyandesite intrusions, which are embedded in 
the volcanic tuffs, host the Borov Dol Cu mineralization 
(ČIFLIGANEC, 1993; SERAFIMOVSKI et al., 2010), which 
offers a view into a shallow magma chamber. It is located 8 km 
SSW of Bučim also in the Circum Rhodope belt. ČIFLIGANEC 
(1993) dated the Bučim andesites by K–Ar whole rock me-
thods and they yielded ages between 27.5 and 24.9 Ma and the 
Damjan and Borov Dol andesites range in age from 28 to 26.5 
Ma. The faults in the area mostly trend NNW–SSE and NNE–
SSW, and the distribution of the intrusions largely follows 
them (SERAFIMOVSKI & BOEV, 1996).

The Bučim ore field is localized in the northern part of the 
ore district within the SMM and is characterized by (1) NW- 
and NE-trending low-order faults; (2) prevalence of latite and 
tra chy-latite dykes and minor intrusions as products of Tertiary 
volcanism; and (3) porphyry Cu mineralization. No volcanic 
domes or calderas expressed as landforms are known. Only 
small ring structures, a few hundreds of metres - 1.5 km in dia-
meter accompanied em p l a cement of the subvolcanic stocks. 
The outer parts of such structural forms are composed of gne-
iss, whereas the inner parts are composed of latitic stocks. 
Similar structural forms are wi de spread elsewhere in this ore 
district. In addition to the Bučim deposit, numerous po rphyry 
Cu-occurrences are known in the north of the district (Vranjak, 
Crn-Vrv-Kalapetrivci etc.). 

The Damjan ore field is localized in the southeastern part 
of the ore district at the contact between the Damjan horst and 
the Vardar Zone and is characterized by (1) NW-SE, NNW-
SSE, NE-SW striking fault structures; (2) prevalence of Juras-
sic ultrabasics, Palaeogene flysch sediments, Tertiary volca-
nics and newly formed metasomatic products, skarns; and (3) 
Fe-skarn mineralization. The intrusions are of variable size 
and created  diverse host rocks of different tectonic units. The 
Damjan Fe-skarn deposit is located about 4 km south of Bučim 
and is one of the rare skarn deposits, which formed at the con-
tact between the andesite and Palaeogene flysch. Mineraliza-
tion itself is hosted by skarns and is represented by rich mag-
netite-haematite parts (>40% Fe). 

The Borov Dol ore field is localized at the margin of a vol-
canic caldera in the southern part of the ore district within the 
VZ. The caldera, 5 km in diameter, is clearly expressed in 
topo gra phy and complicated by several volcanic domes and 
depressions 1.0-1.5 km in diameter. One of these depressions 
hosts the Borov Dol deposit. The NW-trending faults control 
the Neo gene latite and quartz latite dykes, necks, and extru-
sions. The Borov Dol deposit is related to this volcanic-pluto-
nic complex. The ore-bearing volcanic rocks are metaso ma-
tically altered. The volcanic rocks belong to the high-K sho-
shonitic series and correspond to monzodiorite and monzonite 
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in K2O-SiO2 discrimination. These are andesite, latite, trachyte, 
and rhyolite, inclu ding transitional varieties (SERAFIMOV-
SKI et al., 2010; LEHMANN et al., 2013). It is worth mention-
ing that the rocks of the shoshonitic series are typical of dis-
tricts with porphyry Cu mineralization at continental margins, 

e.g., Bajo Alumbrera, Gunumba, 
Bingham, Ok-Tedi, Grasberg, Cadia, 
etc. (MÜLLER & GROVES, 2000; 
BLEVIN, 2002).

3.1. GENERAL FEATURES
As previously mentioned the Bučim 
deposit, located in the northeast of 
the ore district (Fig. 2), has been 
reco gnised since ancient times, but 
was only explored in detail in the 
1970s. About 80 Mt of ore have been 
extracted, with an average grade of 
0.34% Cu and 0.35 g/t Au, from the 
120 Mt ore reserves, as determined 
in 1979. The annual exploitation ca-
pability of the mine is 4 Mt of ore. At 
present, ore with 0.21 % Cu, 0.2 g/t 
Au, and 0.8 g/t Ag is being mined. 
About 32 000 t of concentrate con-
taining 18-21 % Cu and 18 g/t Au 
(Au recovery is 50%) has been pro-
duced and delivered by trucks to 
smelters at Bor in Serbia and Pirdop 
in Bulgaria. At the moment, the 
Bučim Mine is owned by the Solway 
Investment Group Limited.

The Bučim deposit is likely the 
world’s smallest deposit of this type 
currently operated as a mine. The 
successful mining of this deposit for 
many years refutes the popular opin-
ion that the porphyry Cu deposits 
profitable for mining must contain 
no less than 2.5 Mt of Cu metal and 
the Cu grade in ore should be higher 
than 0.5% (SERAFIMOVSKI et al., 
2010).

3.2. GEOLOGY OF THE DEPOSIT
The first written data about the geo-
logical setting of the Bučim area can 
be found in the works of CVIJIĆ 
(1906, 1924) followed by publica-
tions by BONČEV (1920), PETU-
NIKOV (1940, 1944), PAVLOVIĆ 
(1939) and others. The geological 
setting of the immediate surround-
ings of the deposit includes the follo-
wing end members:
3.2.1. Precambrian metamorphic 
complex
This is the most domimant geologi-
cal unit in the area and is represented 

by its heterogenous lithological composition. Such a lithologi-
cal heterogenity resulted from the fact that the primary accu-
mulation of sedimentary and magmatic rocks was subjected to  
regional metamorphism as well as to later retrograde pro-
cesses, the influence of Precambrian granitoid magmatism and 

Figure 2. A: Geological map of the Bučim-Damjan-Borov Dol ore district, modified after an un-
published mine map of HRISTOV et al. (1973); B: Schematic cross section through the Bučim-
Damjan-Borov Dol ore district (modified by LEHMANN et al., 2013).
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 Jurassic granitoid magmatism associated with a progressive 
Abakuma type of  metamorphism and finally the influence of 
hydrothermal processes related to the Tertiary magmatism 
(PETKOVIĆ, 1966; PETKOVIĆ et al, 1968; 
DUMURDŽANOV et al., 1969; CULEV et al., 1970). 

Gneisses are the most widespread rocks in both the broader 
and immediate areas around the deposit. According to their 
mineral composition, several fa cies can be discriminated 
(which mutually replace each other): biotite gneisses, amphi-
bole-biotite gneisses, muscovite gneisses, two-mica gneisses, 
and metasomatic (leuco cratic) gneisses. During the exploita-
tion of the Central Part of the ore body, the variability in 
chemi cal composi tion of the gneisses was determined more 
accurate ly. They consist of bands of mica (biotite and musco-
vite) alternating with quartz bands. Garnet occurs as the domi-
nant mineral besides quartz, biotite and muscovite. Apatite is 
an accessory mineral. Mica-schists represent a normal litho-
logical member of the crystalline schists in which they occur 
as an inte rstratified facies. Consequently, they are of the same 
metamorphic age. From the aspect of mineralization, they rep-
resent an unfavourable environ ment, compared with the 
gneisses, being poorly per meable for hydrothermal solutions. 
Amphibolites occur in the crystalline schists in the form of 
lenses or strata and larger irregular mas ses. Generally, they are 
concordant to the crystalline schists and at places depart from 
their folia tion. They are characterized by their dark green colo-
ur and shaly texture.
3.2.2. Palaeozoic magmatic rocks
They occur in the form of small lenses dis tributed along clear-
ly pronounced ruptures. So far, the following have been recog-

nized (CULEV, 1970): Amphibolites, fine-grained rocks of a 
thin banded texture, which represent an unfavourable environ-
ment for deposition of the Cu mineraliza tion. They are com-
posed of hornblende, plagioclase, and partly, foliated biotite 
and chlorite aggregates (IVANOV, 1982; ČIFLIGANEC et al., 
1993). Serpentinites occur north of the Vršnik orebody. They 
have significant size and thickness (about 10 m), and are dis-
tributed along the rupture zone. Serpentinites, although 
grouped into the Palaeozoic age, are more probably of Jurassic 
age and represent the remaining parts of the Vardar-lzmir 
Ocean. Their position along the rim of the Serbo-Macedonian 
massif can be explained by diapiric and/or tectonic intrusion. 
Such serpentinite dykes (in the form of stratified series, some-
times even subparallel) occur in the vicinity of porphyry de-
posits at Chalkidiki, Greece (SERAFIMOVSKI, 1990). Fine-
grained to po rphyroid gabbros are very compact, dark green to 
black. Their structure suggests their veined character and pe-
ripherial position within the in trusive massif.
3.2.3. Tertiary volcanic rocks
Tertiary magmatic rocks played an important role in the geo-
logical setting of the Bučim deposit (MAJER, 1958; KARA-
MATA 1983; ČIFLIGANEC, 1987, 1993; DE NKO VSKI et 
al., 1983; DENKOVSKI & BANDILOV, 1985; SERAFIMOV-
SKI 1990; 1993; STOJANOV & SERAFIMOVSKI, 1990; 
STOJANOV & BOEV, 1993; BOEV & YANEV, 2001). They 
occur as minor intrusives within the Precambrian meta mo r-
phic co mplex. During the Neogene, tectonic and magmatic 
processes resulted in widespread magmatism. At the pre sent 
ero  sion level it is represented by sub-volcanic and volcanic 

facies of latite and andesite in the form of 
dy kes and necks. In the intrusive level the 
rocks range in co mpo si tion from quartz 
diorite to granodiorite. In terms of chemi-
stry, they belong to calk-alka  line and al-
kaline affinity. At later stages, they were 
enriched in potassium. 

The ore deposition is genetically co -
nne  cted to the emplacement of Tertiary, 
Oligocene-Miocene subvolcanic latitic 
and latite-ande sitic bodies within Pre-
cambrian metamorphic rocks-gneisses, 
micashists, and amphi bolites (27.5–24.5 
m.y., SERAFIMOVSKI, 1993, or 24.5–
24.0 m.y., LEHMANN et al., 2013).

3.3. ORE MINERALIZATION
The Bučim deposit is composed of a 
magmatic complex consisting of three 
proven fi n ger-like porphyry stocks (Cen-
tral Part, Vršnik and Bunardžik) while the 
Čukar ore body, a su pergene mineraliza-
tion developed in gneiss, has already 
been mined out (ČIFLIGANEC, 1993, 
Figure 3). 

The morphology of the Čukar orebody 
was closely related to the structural-tex-
tural features which controlled penetra-
tion of the descedent solution responsible 

Figure 3. Geological scheme and cross section through the Bučim ore deposit  
(SERAFIMOVSKI & BOEV, 1996).
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for supergene processes on the primary ore mineralization. 
The shape of the orebody resembles a lense stri king north-
south, while the thickness of the supergene sulfide ore-bearing 
zone does not exceed 60 m (the ab solute height of the super-
gene mineralization was between 645-505 m a.s.l.). The length 
and width of the ore body were 400 and 200 m, respectively. 
According to new geo lo gical field obse rva tions a magmatic 
stock is assumed to sit below the Čukar ore body (personal 
communi ca tion with local mining geologists; Figure 3A). Un-
fortunately, drill cores are now unavailable and the pile of 
waste from the open pit has accumulated on the remains of the 
body.

The mineralization of the Central ore body porphyry is cut 
by the Vršnik intrusion. This relationship is visible in minera-
lized gneiss clasts, which contain veins that are cut off by the 
magmatic intrusion. Accordingly, the Central intrusion is older 
than the Vršnik intrusion (Figure 3B). The Central Part ore 
body is emplaced in various Precambrian gneisses of the Cir-
cum-Rhodope unit. 

The morphology of the ore body, conformable with the in-
trusion (stock) almost isometrically on plane, resembles re-
verse or trun cated cones emplaced mutually into each other 
(with a diameter of 500 m, surrounding an andesitic stock with 
a vertical depth of more than 500 m, see Fig. 3B). The interior 
cone has smaller angles of overlap of the conical surfaces, 
while the outer cone, in relation to the andesite intrusion, is 
more inclined. The Cu mineralization is primary (hypogene).
The most significant ore mineral is chalcopyrite, which is ac-
companied by pyrite, magnetite, haematite, cubanite, valerite, 
native Au, bornite and others (SERAFIMOVSKI & BOEV, 
1996). Gneiss xenolithes in the magmatic stock contain pyrite 
in veinlets, which are cut through by the magmatic intrusion. 
Therefore, the present magmatic rock overprints an earlier 
magmatic and hydrothermal event. 

The Bunardžik ore body (Fig. 3) shows the same minerali-
zation as the Central Part ore body, but the ore-minerals are 
scarcer (ČIFLIGANEC, 1993). The mineralization of the 
Bunardžik ore body is hosted by Precambrian gneisses. In con-
trast to the Central ore body, however, the Bunardžik ore body 
is crescent shaped adjacent to the andesitic intrusion and far 
from being symmetrical in relation to the andesite intrusion. 
The angles of dip of the outer surfaces outlining the orebody 
are smaller than the angles of the dip of the contact andesite 
intrusion. The andesite intrusion, also non-mineral ized, is situ-
ated outside the orebody (Figure 3). The morphology of the 
Bunardžik orebody is mostly affected by the posi tion of the 
andesite intrusion. On plane, the Bunardžik orebody resembles 
a horse-shoe positioned around the southern part of the an-
desite intrusion emplaced in gneiss. The dimensions of the 
body are 300 × 100 m at the surface with a 300 m depth 
(ČIFLIGANEC, 1993). 

The Vršnik ore body (Figure 3), which is located east of the 
Central ore body, is ellipsoidal in shape. In contrast to the 
afore-mentioned bodies, emplaced into gneiss, the Vršnik ore-
body  features mineralization chiefly hosted by the intrusions 
(andesite) and partly by the gneiss (Figure 3). In cer tain places, 
this is a single  unique orebody, while elsewhere two parts can 
be distinguished. This orebody stretches over an interval of 
about 80 m (at the absolute height of 680-600 m). Its longer 

axis, in the N-S direction is 300 m long, while the width of the 
orebody centres around 200 m. The given parameters indicate 
that this orebody is very small in size (ČIFLIGANEC, 1993).

3.4. ANALYTICAL METHODS
The numerous enclosed analytical data of samples from the 
Central ore body in the Buchim mine are taken between mine 
levels 680-560 m and ocassional samples from the Vršnik ore 
body between levels 685-650 m. The whole rock analyses 
(n=14) for major elements were carried out on Li-tetraborate 
pellets (lithium-tetraborate with a 1:5 mixture of Claisse M4 
fluxer) using the X-ray fluorescence method (XRF; Institute 
of Geochemistry and Petrology; ETH Zürich). Trace element 
and REE determinations were conducted, also at the ETH 
Zürich, with laser abla tion-inductively coupled plasma-mass 
spectrometry (LA-ICP-MS) on the same Li-tetra borate pellets 
and on the zircon grains. The machine is equipped with an 
Excimer laser (ArF 193 nm) and a PE SCIEX Elan 6100 DRC 
ICP-MS. The spot size of the laser was 40 μm, and for calibra-
tion the NIST 610 sta n da rd was used (GÜNTHER et al., 2001; 
HALTER et al., 2004). Isotopic analysis for Sr and Nd (iso-
topic composition of Sr and Nd and Rb, Sr, Sm and Nd con-
centrations) was mea su red at ETH Zürich using a TritonPlus 
Mass spectrometer (thermal ionisation mass spe ctro meter-
TIMS) and at the Royal Holloway University of London 
(RHUL) using a VG354 TIMS with five movable Faraday 
cups and a Daly detector and ancilliary clean preparation la-
boratories.  

Quantitative elemental analyses of the most interesting ore 
mineralization samples were pe r f o rmed under a JEOL JXA-
8200 Electron Probe Micro-Analyser WD/ED Combined 
Micro a na lyser (equipped with a SE- and BSE-detector, five-
WDS crystal spectrometer and an EDS analyser) in the ana-
lytical facilities at the Institute of Geochemistry and Petrolo-
gy, ETH Zürich, Switzerland. The selected electron beam 
condi ti ons were a beam current of 20 nA at an acceleration 
voltage of 15 kV. An Optima dual inlet mass spectrometer was 
used with the following preparation systems attached to it: 
LaserPrep, de si gned and built at RHUL for laser heating of 
minerals in an atmosphere of BrF5 to release oxygen for the 
measurement of 18O/16O and 17O/16O ratios and Fisons (NCS 
EA1500 series 2), an ele me ntal analyser for flash co mbu stion 
of rocks, soils and vegetation in an oxygen atmo sphere to re-
lease CO2, N2 or SO2 for isotopic analysis. With regard to δ13C 
and δ18O, syngenetic calcites were analyzed, while δ34S analy-
sis was performed on hypogene sulfides (chalcopyrite, pyrite 
±galena).  

Fluid inclusion studies were conducted at the Geological 
Department of the Royal Holloway University of London in 
the UK, on samples of doubly polished transparent wafers of 
quartz and calcite (150 μm thick), where for each sample, at 
least 20 inclusions were analysed. Microthermometric data 
were obtained using a Li nkam THMSG600 heating-freezing 
stage (temperature range –196°C to +600°C) and TMS 90 
controller attached to a conventional petrographic microscope 
(Nikon and Olympus BX51). The stage was calibrated using 
the Synflinc synthetic fluid inclusions (pre ci s i on ± 0.1°C for 
freezing runs and ± 5°C for temperatures near to or higher 
than 360°C). Fluid inclusion homo genization temperatures 
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were measured at least twice. The second measurement was 
carried out at a slow rate (4°C step per minute) close to the 
last 20°C approaching the previous mea su rement of homoge-
nization temperature.  

3.5. ORE MINERALOGY
More than three decades of study of this deposit have shown 
that it is characterized by a complex mineral assemblage and 
mineral paragenesis. Numerous authors have studied the 
mine ral association in the Bučim deposit: IVANOV & JAS-
MAKOVSKI (1970), ZARIĆ (1974), PA VI ČEVIĆ & RAKIĆ 
(1983), NEVENIĆ (1984), ČIFLIGANEC (1987), SERAFI-
MOVSKI (1990, 1993); SERA FI MO VSKI et al. (1990); 
ČIFLIGANEC et al. (1997), TASEV (2003); SERAFIMOVS-
KI et al. (2006); VOLKOV et al. (2010); SERAFIMOVSKI et 
al. (2013); LEHMANN et al. (2013) etc. A wide variety of 

minerals have been recognized in the Bučim deposit – both 
ore bearing and gangue minerals (Fig. 4). The mineral compo-
sition of orebodies explored so far does not substantially dif-
fer, although there are certain peculiarities in the mineral as-
semblages. 

The major ore mineral is chalcopyrite accompanied by py-
rite, magnetite, haematite, cubanite, valleriite, native Au and 
bornite. The ore mineralization in the Central Part, in the 
Bunardžik and Vršnik ore bodies, in terms of mode of occur-
rence, mineral composition, association of elements, etc., is 
very similar. Differences can be seen only in the Čukar ore 
body. The Čukar ore body is a typical example of supergene 
mineralization in the deposit characterized by the increased 
grade of Cu but low ore reserves. The major ore minerals are 
chalcocite and covellite always accompanied by pyrite, teno-
rite, rarely native Cu, malachite, azurite etc. Titanite, rutile, 

magnetite, haematite, chalcopyrite, pyrite, 
bornite, native Au, molybdenite, petzite, cala-
verite, and argentite were identified as ore 
minerals. Enargite, tetrahedrite, galena, and 
sphalerite are less abundant. The ore minerali-
zation was formed in the following sequence: 
titanite, rutile, and magnetite crystallized first, 
followed by pyrrhotite, cubanite, valleriite, 
and the early generation of chalcopyrite. After 
deposition of these minerals, the hydro ther-
mal ore forming solution became enriched in 
sulfur, giving rise to pyrite crystallization. 
The late chalcopyrite and galena formed as 
the final stage of ore deposition (SERAFI-
MOVSKI, 1993). 

The recent ore microscope study and elec-
tron microprobe analyses have revealed that in 
the Bučim deposit, in addition to the previ-
ously identified minerals of native Au and its 
tellurides (calaverite and krennerite (SERAFI-
MOVSKI et al., 1992; SERAFIMOVSKI et 
al., 2006), electrum and petzite also occur (Ta-
ble 1; Fig. 5). 

Gold content, within coarse-grained chal-
copyrite, even in single grains of native Au 
show a large variation, ranging from 80% up 
to 92% Au (JEOL JXA-8200 Electron Probe; 
ETH Zürich). The content of Au within a sin-
gle native Au grain may vary from 80.30% in 
the rim, up to 86% Au in the central part of the 
grain. It reflects changes in the physico-
chemi cal conditions within the hydrothermal 
fluids during the mineralization. The most 
common form of Au is as native Au, electrum 
and petzite.

Certain bismuth±selenium minerals (bis-
muthinite, galenobismutite, krupkaite, frie-
drichite, emplectite, cosalite, laitakarite and 
native bismuth) were also identified (Table 1; 
JEOL JXA-8200 Electron Probe; ETH 
Zürich). Bismuth-selenium minerals (contain-
ing 41.7-99.5% Bi and 0.3-13.4% Se) appear 

Figure 4. Diagram of mineral successions that genetically belong to the Bučim porphyry 
hydrothermal Cu-deposit.
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a)

d)

b)

e)

c)

f)

to be characteristic of the Au-bearing mineralization of the 
Bučim Cu porphyry deposit. 

Selenium is not common in the early paragenesis, whereas 
it is present in krupkaite up to 1.1% Se, emplectite 1.9-2.5% 
Se, while its highest concentration was determined in laitaka-
rite at 13.5% Se. It is quite possible that during the deposition 
of laitakarite  an influx of Se occurred in the hydrothermal 
solutions. Within the second ore paragenesis, which also con-
tains particular amounts of bismuth, there are significant 
amounts of silver - up to 5.0% Ag, as well as low amounts of 
selenium, 0.3% Se.

The most common mineral in the Bučim porphyry Cu de-
posit is pyrite present at 3%, while chalcopyrite is the ma jor 
be a rer of Cu mineralization with a presence of 1%. The Au-
Pd association has been determined within the pyrite and 
chalcopyrite of the major ore-bearing phase in the Central 
Part orebody. The studied pyrites belong to four different 
generations and increased concentrations of Au and Pd were 
determined in the so-called blocky pyrites or massive py rites. 
The latest microscope and micro probe study have de te rmined 
two main mineral assemblages: magnetite-py rite-chalcopyrite 
(mt-py-cp) and pyrite-chalcopyrite (py-cp), as the major 
hosts of Au and Pd. The high degree of geo che mical corre-
lation between Au, Pd and As in py rite and chalcopyrite 

Figure 5. .Electron microprobe photographs of Au and Bi-Se minerals from the Bučim deposit: a) Electrum (white) in chalcopyrite (dark grey), 
x182; b) Petzite (white-whitegrey) in cha lco py rite (dark), x401; c) Laitakarite-emplectite (whitegrey) in hydrothermally-altered rock (dark), 
ba cksca ttered electron image, x300; d) Bismuthinite (white) along chalcopyrite (grey) in hydrothermally-altered rock (dark), x600; e) Zoned 
aikinite-bismuthinite aggregate (grey) hosting galena (white) tri angular form, x3000; f) Needle-like cosalite crystals, scanning electron micro-
scope. x301.

Table 1.  Quantitative microanalyses of newly determined Bi, Bi-Se and Au±Te minerals in the Bučim deposit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bi (%) 99.52 97.43 78.32 79.83 54.67 52.92 55.38 61.65 64.81 41.69 42.63 80.11 - -
Pb (%) 0.18 - 1.62 - 26.64 20.68 21.05 - - 33.38 30.03 2.21 - -
Cu (%) - 0.42 0.47 1.82 0.92 6.28 6.55 15.06 13.9 - 9.5 - 1.26 0.52
Au (%) - - - - - - - - - - - - 72.53 26.84
Ag (%) - - - - - 0.99 1.59 4.96 0.7 - - -
Fe (%) 1.14 - 1 01 - - - 1.9 1.07 - - - 0.68 -
As (%) - - - - 0.32 - - - - - - 25.42 41.09
Se (%) - - - 1.12 - 1.85 2.57 0.26 - 13.41 - -
Te (%) - - - - - - - - - - 1.1 - 31.23
S (%) - 19.17 17.26 18.42 17.53 17.71 18.42 15.9 16.84 17.2 34 - -
Σsum 99.7 98.99 99.58 99.92 100.75 99.75 100.69 99.87 99.84 97.13 100.06 99 93 99.89 99.68

1. Native bismuth; 2. Native bismuth; 3. Bismuthinite; 4. Bismuthinite; 5. Galenobismutite; 6. Krupkaite; 7. Krupkaite; 8. Emplectite; 9. Emplectite; 10. Cosalite; 
11. Friedrichite; 12. Laitakarite; 13. Electrum; 14. Petzite.
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points to a wide range of physico-chemical conditions and 
the inter play between ma gma tic and hydrothermal processes 
during formation of the deposit.

The Au-Pd phase occurs as a separate mineral phase, which 
is disti ngu ished by a special colour (pink grey; Fi g . 6a). The 
Au content in the studied pyrite is within the range of 0.12–
7.54% Au while the Pd content is within the ra nge 0.01–6.33% 
Pd, and they are   presented as a special mixture of mineral 
phases characterized by their gray colour (Figure 6a; Table 2).

Increased concentrations of Au-Pd in chalcopyrite are re-
lated to the massive, medium-to-high temperature, coarse-
graind chalcopyrite, which constitutes the major ore phase 
within the Bučim deposit (Table 2). Ho we ver, As in chalcopy-
rite shows lower values here compa red to those in pyrite. The 
inc r ea sed content of Pd as well as Pd-minerali zation in the 

 Cu-Au ores of the deposit in Bučim, Macedonia has also been 
determined in Bor-Ma j da npek, Se r bia (JANKOVIĆ, 1990), 
Skouries, Greece (TARKIAN et al., 1991; ECO NO MOU-
ELIO PO ULOS, 2010), and Ela tsite, Bulgaria (PETRU NOV et 
al., 1992), wh ere the Cu-po  rphyry style of hydrothermal PGE 
has also be en observed. Platinum concentrations were deter-
mined only as trace amounts. 

3.6. STABLE ISOTOPE DATA
3.6.1. Sulfur Isotope Composition Data
Sulfur isotope compositions (δ34S ‰) normalized to the Can-
yon Diablo Meteorite (CDM, δ34S=0.0‰) show a narrow 
range of variance from +6 ‰ to –4 ‰, po inting to a sulfur ori-
gin from the upper mantle, (the fractionation sulfur which has 
ori gi nated from the Upper Mantle or deep homogenized parts 

Figure 6.  a) Electron microprobe photograph of pyrite (dark) and Au-Pd phases (light grey) and b) Electron microprobe photograph of chalco-
pyrite, with point analysis.

a) b)

1 2 3 4 5 6 7 8 9 10 11 12
Au (%) 6.98 0.21 7.75 6.51 0.12 7.54 6.34 0 6.46 0.29 9.1 7.29
Fe (%) 39.29 43.64 39.18 39.98 45.46 43.56 25.92 29.08 25.13 29.11 25.97 25.73
S (%) 44.65 53.93 46.17 44.4 53.53 47.34 28.74 34.32 29.74 33.6 26.96 28.64
Cu (%) <d. l. <d. l. 0.03 0.02 0.06 0.01 29.46 33.68 28.68 33.51 26.64 28.91
As (%) 0.16 <d. l. 0.03 0.68 0.14 0.02 <d. l. 0.02 0.05 <d. l. 0.05 0.01
Ag (%) <d. l. <d. l. <d. l. 0 0 0.73 <d. l. <d. l. <d. l. <d. l. <d. l. <d.l.
Pd (%) 6.64 0.01 6.02 5.65 1.23 0.04 7.38 0.02 8.11 0.3 7.97 6.81
Ge (%) 0.31 0.45 0.25 <d. l. <d. l. 0.21 0.22 <d. l. <d. l. 0.38 0.42 0.35
Zn (%) 0.42 0 0.26 <d. l. <d. l. <d. l. 0.35 <d. l. <d. l. 0.44 0.36 0.41
V (%) 0.53 0.25 0.21 0.21 <d. l. 0.22 0.38 0.37 <d. l. 0.42 0.44 0.45
Ni (%) 0.24 0.67 0.15 <d. l. <d. l. 0.21 0.33 <d. l. <d. l. 0.35 0.41 0.48
Se (%) 0.09 0 <d. l. 0.52 <d. l. <d. l. <d. l. 0.33 0.22 <d. l. <d. l. <d. l.
Bi (%) < d.l. <d. l. <d. l. 0.65 <d. l. <d. l. <d. l. 0.42 0.31 <d. l. <d. l. <d. l.
Te (%) <d. l. <d. l. <d. l. 0.39 <d. l. <d. l. <d. l. 0.35 0.25 <d. l. 0.22 <d. l.
Σ sum 99.07 99.16 100.04 99.01 100.55 99.88 99.12 98.59 98.94 98.4 98.53 99.08

Table 2.  Electron microprobe analyses of pyrites and chalcopyrites from the Bučim Cu porphyry deposit.

Note: 1-6. Electron microprobe analysis data of pyrite; 7-12. Electron microprobe analysis data of chalcopyrite; <d. l. below detection limit. 
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of the Earth’s crust varies within narrow range of ±10‰ com-
pared with the CDM standard, (JENSEN,1959; SAKAI, 1968; 
GRINENKO & GRINENKO, 1974; JANKOVIĆ, 1981; 
SHELTON & RYE, 1982; ANDREW et al., 1989; and others).

A preliminary study performed on 10 pyrite samples was 
done by MUDRINIĆ & PE TKO VIĆ (1974). Preceeding ana-
lyses confirmed the general trend of sulfur isotope values (TA-
SEV, 2003; SERA FI MO VSKI & TASEV, 2005). Sulfur iso-
tope composition of the pyrites show little variation, with a 
slight increase of the heavy sulfur isotope v the meteoritic one 
(Table 3).

Variations of the δ34S values for the whole Bučim ore de-
posit were in the range of +0.2 ‰ to +2.5 ‰, with an average 
value of +1.0 ‰ (Fig. 7). There is some variation in the δ34S 
values for particular ore bodies.

The variation in the δ34S values for the different ore bodies 
was probably caused by the small differences in fracionation 

grade due to the slight changes of physico-chemical conditions 
of the ore fluids along  the mineralization path.

3.6.2. Carbon and Oxygen Isotope Composition
Determination of the origin of the water in hydrothermal solu-
tions relies mainly on data from oxy gen fractionation. Isotopic 
compositions of carbon 13C/12C and oxy gen 18O/16O were ana-
lyzed in calcite samples taken from the Central Part and Čukar 
ore bodies (Table 4). 

The results show narrow ranges for both isotopes, carbon 
and oxygen, from -10.8 to -3.8‰ and from +14.0 to +22.7 ‰, 
respectively. A uniformity in their values, suggests fractiona-
tion and a change of the primary isotope compositions of car-
bon and oxygen from a homogeneous source within a wider 
porphyry complex.

3.7. FLUID INCLUSIONS DATA 
Study of fluid inclusions (BLEČIĆ, 1974; STRASHIMIROV 
et al., 1996, PALINKAŠ et al., 2008) in quartz from the 

No. Ore body Horizon δ34S‰
1 Čukar 630 +2.5
2 Čukar 630 +0.2
3 Čukar 630 +1.0
4 Central ore body 605 +1.5
5 Central ore body 605 +0.4
6 Central ore body 605 +0.7
7 Vršnik 650 +0.0
8 Vršnik 650 +0.4
9 Vršnik 650 +0.8
10 Vršnik 650 +2.1
11 Central ore body 590 +1.0
12 Central ore body 590 +1.2

Table 3. Isotopic composition of sulfur in minerals from the  
Bučim ore field.

Figure 7.  a) Frequency distribution of sulfur isotope values for sulfides from the Bučim Cu-porphyry deposit and b) sulfur isotope values in 
particular ore bodies at particular mine levels.

a) b)

Table 4. Isotopic composition of d13C (PDB) and d18O (SMOW) in 
calcite from the ore bodies in the Central Part and Čukar.

No. Sample Mineral δ13C‰ δ18O‰
1 Central ore body Calcite -10.4 +17.6
2 Central ore body Calcite -7.8 +22.6
3 Central ore body Calcite -6.9 +18.9
4 Central ore body Calcite -6.4 +20.5
5 Central ore body Calcite -5.8 +21.4
6 Central ore body Calcite -3.8 +19.7
7 Central ore body Calcite -4 +22.7
8 Central ore body Calcite -6.4 +17.1
9 Central ore body Calcite - +21.4
10 Čukar Calcite -10.8 14
11 Central ore body Calcite -6 +21.7

Note: Data numbered 1-10 from SERAFIMOVSKI et al. (1996), 11 from 
TASEV (2003).Note: Data numbered 1-10 from SERAFIMOVSKI et al. 

(1996), 11-12 from TASEV (2003).
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Bučim deposit indicated that ore-bearing Cu-Au solutions 
were pre do mi na ntly of the Na-Cl type, in which concentra-
tion of dissolved salts varies between 10 and 25 % wt eq. 
NaCl, with density from 0.6 to 0.8 g/cm3 (according to meth-
ods given in ROEDDER, 1984; STE RNER et al., 1988; 
VANKO et al., 1988 and BODNAR, 1993). The low content 
of post-ore ca l cite in veinlets in the Bučim deposit indicates 
the more basic nature of the hydrothermal solutions (pH 
greater than 7). 

The latest study of fluid inclusions was conducted on 
transparent polished sections made from samples of quartz 
veinlets and nests, from the primary mineralization. Although 
quartz is widely distributed in the ore field, it generally forms 
translucent gray aggregates, and therefore suitable material 
for the fluid inclusion study is very rare. The majority of fluid 
inclusions were found in samples from the Central ore body 
at horizon 540. About 540 different individual measurements 
were made on the most representative fluid inclusions (Table 
5).

As indicated, the well-faceted quartz crystals are not typi-
cal of the Bučim deposit, which complicates the use of known 
criteria for inclusion division into primary and seco n dary 
types. By the de finition of ERMAKOV & DOLGOV (1979), 
the majority of the studied fluid inclusions were un zo  ned pri-
mary inclusions. Besides the dominant gas-liquid, two-phase 
inclusions, there are also three-phase fluid inclusions (gas + 
liquid + solid phase). The latter were usually larger in size 
(1-35 μm) and contain dark gas bu bbles and dark, transparent 
or opaque solids. The number of solids reached up to five 
(STRASHIMIROV et al., 1996). Tra n s pa  rent solid phases, 
probably KCl (STRASHIMIROV et al., 1996), generally 
were well faceted (Figure 8a). Flat hexagonal flake-like crys-
tals of haematite (probably specularite; Figure 8b), were evi-
denced by their shape and pinkish-red color. Where present, 
at the highest recorded temperatures (500-550°C), specula-
rite also dissolved.  

The shape of three-phase inclusions was usually isometric, 
rarely triangular (Fig. 8c), elo ngated or having negative face-
ted crystal forms (Fig. 8d). Some two-phase inclusions co-
ntain dark gas bubbles, and the ratio between gas and liquid 
in them varies from 1.1 to 1.6. Secondary inclusions are elon-
gated and irregular in shape and contain smaller bubbles. 

Homogenization temperatures measured in different types 
of inclusions were classified into several distinct ranges. 
Highest temperatures (500°C-550°C) were measured in the 
three-phase inclusions containing more than one solid phase 
(Table 5). Several inclusions of this group did not experience 
homogenization at temperatures more than 580°C. 

Homogenization temperatures of fluid inclusions with one 
solid phase were in the range 500-530°C. The majority of 
transparent solids disappear in the range from 350 to 400°C, 
which confirms the presence of halide crystals. High-tem-
perature three-phase inclusions were present in the quartz, 
associated with haematite, magnetite and rutile in the ore 
sample. A small group of two-phase inclusions homogenized 
at temperature ranges from 490 to 460°C. They co ntain large 
dark bubbles (gas: liquid ratio is from 1.1 to 3.1) and some-
times homo ge nized into gas (a sign of boiling!). Mineral 
para genesis includes quartz, pyrrhotite, pyrite and chalcopy-
rite. The largest group of two-phase inclusions homogenized 
at temperatures of 430-400°C. They apparently reflect the 
temperature range of massive chalcopyrite deposition from 

Table 5. Temperatures of homogenization in different types of inclusions in quartz.

Mineral association Inclusion type No. of measured 
inclusions

Homogenization  
temperatures range (OC)

Quartz, K-feldspar Three phases with 2, 3 or more solid phases 7 over 580
Quartz, magnetite, haematite, rutile Three phases, solid phase halite-haematite 25 500-550
Quartz, magnetite, haematite, rutile Three phases 58 530-550
Quartz, pyrrhotite, chalcopyrite ± 
cubanite, valleriite

Two phases fluid inclu sions, large gas bubble 22 430-490

Quartz, pyrite, chalcopyrite Two phases 80 400-430
Quartz, pyrite, chalcopyrite ± bis-
muthinite, enargite 

Two phases, rela ti vely small bubble 21 320-370

Quartz, pyrite Two phases, probably secondary origin 17 180-200

Figure 8. Different types of inclusions in quartz from the Bučim deposit 
(scale bar = 10 μm). a) three-phase fluid inclusion (liquid+gas+solid), 
containing a well-faceted crystal of NaCl, dark gas bubble, liquid and 
an opaque mineral; b) three-phase fluid inclusion with haematite (hm) 
and a rounded NaCl crystal (hl); c) three phase fluid inclusion with a 
triangular shape; d) three-phase primary fluid inclusion having nega-
tive crystal faces in the quartz.
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solutions. The temperature intervals 320-360°C and 200-
180°C correspond to the influx of the hydrothermal fluids 
with increased influence of terrestrial waters.

3.8. GEOCHRONOLOGICAL AND Sr-Nd DATA
The Tertiary magmatism and its products in the area of inte-
rest, are described in extensive literature (KARAMATA, 1974; 
JANKOVIĆ & PETKOVIĆ, 1974; JANKOVIĆ, 1977; KA-
RAMATA & DJORDJEVIĆ, 1980; BOEV et al., 1992; 
KNEŽEVIĆ et al., 1989; SERAFIMOVSKI, 1990, 1993, 
1996; BOEV & YANEV, 2001; SE  RAFIMOVSKI et al., 2010; 
and LEHMANN et al., 2013). 

Timing of the intrusions in the Bučim deposit have been 
studied on several occasions. The analysis of K/Ar whole rock 
ages of andesitic to trachyandesitic intrusions ranged between 
27.5 and 24.7 Ma (SERAFIMOVSKI, 1990; ČIFLIGANEC, 
1993; SERAFIMOVSKI et al., 2010). Later studies of the 
magmatism age at the Bučim area narrowed the age span to 
between  24.51 ± 0.89 and 24.04 ± 0.77 Ma, as indicated by 
chemical-annealing (CA)-LA ICP-MS zircon dating (LEH-
MANN et al., 2013). 

Recent data (Table 6) reported in the works of BOEV et al. 
(1992), SERAFIMOVSKI (1990, 1993), SERAFIMOVSKI et 
al. (1996) and TASEV (2003) based on isotopes of 87Sr/86Sr 
(0.705040-0.706980) as well as contents of rare earth elements 
(REE; Table 8), indicated that ensuing magmas in the vicinity 
of Bučim and its surroundings probably developed by mixing 
of melts from the contact between the conti nental crust and the 
upper mantle. The content of micro- and rare earth  e le me nts 
point to a great similarity with the rock types formed in active 
continental margins (SERAFIMOVSKI, 1990; BOEV et al., 
1992; TASEV, 2003; SERAFIMOVSKI et al., 2010). 

Also, the recent Sr and Nd isotope ratios (87Sr/86Sr 0.70666-
0.70741 and 143Nd/144Nd 0.512487–0.512489; Table 7) show 
that the magmatic products were slightly contaminated by con-
tinental crust material, due to  partial melting of the deep parts 
of continental crust underthrust by collison of continetal 
blocks. 

In the Late Eocene-Oligocene belt,  magmatism between 29 
and 35 Ma is dominated by crustal melting with increased 
mantle contribution between 20 and 27 Ma. 

3.9. RARE EARTH ELEMENTS
Rare earth elements (REE) analyses have been performed on 
various rocks from the Bučim deposit (Table 8). 

Calculated Eu anomaly values ranged from 0.7409 to 
0.9036 (TASEV, 2003; SERAFIMOVSKI et al., 2010), which 
implies a negative Eu anomaly (ROLLINSON, 1992), and is 
very similar to the recent Eu anomaly data which range be-
tween 0.68893-0.91251 determined by LEHMANN et al. 
(2013). Distribution of the trace elements, enrichment of large 
ion lithophile elements (LILE) and depletion in high field 
strength elements (HFSE), indicates subduction-related mag-
matism. Most of the magmas follow a calc-alkaline fractiona-
tion trend with shoshonitic affinities. Additionally, Sr/Y (7 to 
70) and La/Yb ratios (9 to 46) show some similarities  with 
adakite type magmas (SERAFIMOVSKI et al., 2010). 

4. DISCUSSION
Interpretation of the evolution of the Bučim porphyry Cu de-
posit is based on the detailed studies of SMIRNOV (1976), 
OVTCHINIKOV (1976); JANKOVIĆ (1981, 1990), KRIVT-
SOV (1983), MITCHEL & GARSON (1984), OHMOTO 
(1986), ČIFLIGANEC (1987, 1993), SOTNIKOV et al. 
(1988), SERAFIMOVSKI (1990, 1993) and others.

A general model of the development of the Bučim poprhyry 
Cu deposit which considers ore components from their ulti-
mate source to the place of deposition relies on the following 
issues: origin of the ore metals; origin of ore-bearing solutions; 
physical-chemical conditions for ore-bearing fluids; deposi-
tion of ore components; occu rre nces which accompany the 
formation of ore deposits as well as the origin of the magma. 
This pa per gives a brief account of all these phenomena exem-
plified on the Bučim porphyry Cu deposit.

The major ore mineral is chalcopyrite accompanied by py-
rite, magnetite, haematite, cuba nite, valleriite, native Au, and 
bornite. The ore mineralization in the Central Part, Bunardžik 
and Vršnik ore bodies is very similar in terms of the mode of 
occurrence, mineral compo sition, association of elements etc. 
Differences can only be seen in the Čukar ore body. The Čukar 
ore body is a typical example of supergene mineralization 
characterized by inc re ased grade of Cu but low ore reserves. 
The major ore minerals are chalcocite and covellite, always 
accompanied by pyrite, tenorite, rarely native Cu, malachite, 
azurite etc. Tita nite, rutile, magnetite, haematite, chalcopyrite, 
pyrite, bornite, native Au, molybdenite, pe tzite, calaverite, and 
argentite were identified as ore minerals. Enargite, tetrahedrite, 
ga l ena, and sphalerite are less abundant.

Genesis of the bismuth±selenium minerals (bismuthinite, 
galenobismutite, krupkaite, fri edri chite, emplectite, cosalite, 

No. Sample Rock type 87Sr/86Sr
1 BMS1 Latite 0.707
2 BMS2 Andesite 0.707
3 BMS3 Andesite 0.707
4 BMK27 Trachy-

andesite
0.705

5 BMK31 Trachy-
dacite

0.707

Table 6. 87Sr/86Sr data for magmatic rocks from 
the Bučim deposit.

Table 7. 87Sr/86Sr and 143Nd/144Nd data for magmatic rocks from the Bučim deposit.

Sample 87Sr/86Sr 87Sr/86Sr 
 (corrected 
 at 24 Ma)

143Nd/144Nd 143Nd/144Nd  
(corrected 
at 24 Ma)

ε-Nd 
(at 24 Ma)

268-1-A 0.707 0.707 0.513 0.512 -2.31
248-2 0.707 0.707 0.513 0.512 -2.31
059-1 0.707 0.707 0.513 0.512 -2.3
238-3 0.708 0.707 0.513 0.512 -2.34
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laitakarite and native bismuth) within the deposit has been re-
lated to two stages of the mineralizing process. The first one: 
bismuthinite, gale no bismutite, friedrichite, krupkaite, emplec-
tite and native bismuth is related to the formation of quartz-
pyrite-chalcopyrite paragenesis.The second one: bismuthinite, 
gale no bismutite, friedrichite, krupkaite, emplectite, native bis-
muth and cosalite is associated with a later paragenesis of 
quartz, pyrite, marcasite and chalcopyrite, (but earlier than the 
quartz-galena-chalcopyrite stage). Increased Cu and Fe co nce-
ntrations in the Bi-Se minerals could be related to the corrosive 
alteration of chalcopyrite (SERAFIMOVSKI et al., 1990), al-
though numerous examples of isomorphism were determined 
too. Also, the Bi±Se mineralization could be prudently consi-
dered as the typomorph of endogene Au mineralization in the 
Bučim deposit.

The Au-Pd association has been determined within the py-
rite and chalcopyrite of the major ore-bearing phase in the 
Central Part orebody in the Bučim deposit. Increased Au and 
palladium concentrations within pyrite are directly associated 
with decreased conce ntra tions of iron and sulfur as the major 
constituents of pyrite, which in practice means that there is su-
bsti tution of major pyrite constituents by Au and Pd.

The Au-Pd concentrations in chalcopyrite are pro bably re-
lated to the mixed mineral phases that were unable to discrimi-
nate fully. Beside the presence of Au-Pd in chalcopyrite, con-
firmed by SERAFI MO VSKI (1993) and SERAFIMOVSKI et 
al. (2006),  in the present study there is confirmation of nume-
rous mineral pha ses such as Bi-Se minerals, lai ta karite, frie-
drichite, cosalite, and others. 

Gold and Pd form such a mixture in the main mineral phase 
in pyrite and chalcopyrite equally (temperatures around 
250ºC). Their absence in the following phases of the ore-bear-
ing process could indicate stabilization of the crystal lattice of 
pyrite and chalcopyrite in the later stage of the deposit evo-
lution (TARKIAN et al., 1991; PETRUNOV et al., 2001; 
ECO NO MOU-ELIO PO ULOS, 2010).  

The very narrow δ34S interval (+0.2 up to +2.5‰, averaging 
+1.0‰), is a direct consequence of the homogeneous and quite 
similar physico-chemical conditions during the formation of 
sulfide parageneses in all of the three ore bodies in the deposit. 
The range of δ34S values in pyrites from all three ore bodies 
points to an endogeneous origin of the sulfur. A dominantly 
magmatic source of sulfur in porphyry deposits is consistent 
with the source rocks for porphyry magmas discussed below 
(87Sr/86Sr i 144Nd/143Nd ratios, MISRA, 2000, LEHMANN et 
al., 2013). Owing to higher sulfur solubilities, predominantly 
as SH-, in more oxidized I-type hydrous magmas (BURNHAM 
& OHMOTO, 1980), the degree of partial melting is sufficient 
to extract all of the sulfur from the source rocks, and such mag-
mas may commonly contain in excess of 0.2 wt% S (comparEd 
with perhaps an order of magnitude less sulfur in low fO2, S-
type magmas).    

In accordance with existing classifications and the results 
obtained for δ34S, this deposit could be classified in the first 
group with an interval from 0.0 up to 0.5‰ δ34S. OHMOTO & 
RYE (1979) pointed out that the deposits which belong to this 
group of values are closely re la ted to felsic igneous rocks 
(MISRA, 2000; Fig. 9). The sulfur in the deposit is of igneous 
origin and was obta ined during release from the silicate melt or 
from sulfides in igneous rocks. Nevertheless, the origin of the 
Cu in the Bučim deposit has been related to the primary mag-
matic intrusion. Since the igneous bodies (dykes and small 
stocks) were too small for mobilization of the hydrothermal 
convective systems, the source of  Cu should be related to the 
existence of deeper and larger igneous bodies.

The fact that Cu could be mobilized from the serpentinites, 
which are lying in the basement of the area where ophiolitic 
comple xes were embedded, should also be taken into conside-
ration. This scenario is of special interest if we keep in mind 
that the Neogene calc-alkaline igneous complexes of the Ser-
bo-Macedonian province are poor with respect to Cu. 

Table 8. Contents of rare earth elements in intrusive and volcanic rocks of the Bučim deposit (ppm).

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Sample MK27 MK30 MK31 MK32 059/3 

Bun.
059/1 
Bun.

268/1/A 
Cen. P

238/3 
Vrš

238/4 
Vrš

228/1 
Vrš

248/2 
Vrš

248/1 
Vrš

056/3 
Cent. P

056/5 
Cent. P

La 32.78 68.27 44.86 67.52 67.3 78.7 59.7 69.3 83.6 58.4 80.7 75.4 35.1 57.1
Ce 59.54 119.26 86.72 118.34 124 141 113 149 170 126 155 141 81.3 125
Pr 7.12 13.64 10.47 12.99 13.6 14.9 12 16.2 16.5 13.7 15.8 14.7 9.4 14.9
Nd 27.07 48.2 38.8 45.95 53 54.8 45.4 59.2 60.3 50.4 59.3 54 38.7 60.5
Sm 5.14 8.32 7 7.66 8.5 9.7 7.9 8.9 9.7 9.3 10.5 9.2 7.7 9.6
Eu 1.45 2 1.52 1.86 1.8 2 1.8 2.1 2.3 1.9 2.2 2 1.5 1.9
Gd 4.7 6.79 5.56 6.14 6.8 6.4 6 6.3 6.2 5.9 7.2 6.4 5.5 7.5
Tb 0.71 0.88 0.75 0.8 0.9 0.9 0.7 0.8 0.9 0.9 1 0.9 0.8 0.9
Dy 3.87 4.51 3.78 4.3 4.4 4.5 4.2 4.5 4.2 5.1 5.5 4.9 5.1 4.6
Ho 0.78 0.83 0.69 0.8 0.8 0.8 0.8 0.7 0.8 0.9 0.9 0.8 0.8 1.1
Er 2.25 2.33 1.91 2.34 2.2 2.6 2.3 2.2 2.3 2.8 2.6 2.4 3 2.9
Tm 0.34 0.33 0.28 0.33 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.3 0.4
Yb 2.26 2.3 1.89 2.31 2.6 2.3 2.2 2.3 1.8 2.5 2.9 2.7 3.7 2.7
Y 23.05 24.57 20.43 24.84 25.7 243 24.2 22.9 23.6 28.4 30.2 25.6 23.4 27.7
Lu 0.33 0.34 0.28 0.34 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.3 0.5 0.4

Note: MK-27 Trachyandesite; MK-30 Trachyandesite; MK-31 Trachydacite; MK-32 Trachydacite ; 059-3 Bun. Trachyandesite; 059-1 Bun. Trachyandesite; 268-
1-A Cen.P Trachyandesite; 238-3 Vrš. Trachyandesite; 228-1 Vrš. Trachyandesite; 248-2 Vrš. Trachyandesite; 248-1 Vrš. Trachyte; 056-3 Cent. P  Trachyte; 056-5 
Cent. P Trachyandesite. Data 1-4 from TASEV (2003); 5-14 from LEHMANN et al. (2013).
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Temperatures of the hydrothermal solutions during the for-
mation of ore minerals ranged from 200-300OC to 600OC, with 
figures as low as 100OC for the latest  ore occurrences compris-
ing pyrite micro fillings. 

Temperature calculations from the values of sulfur isotope 
composition (mineral pairs: galena-chalcopyrite) were in the 
range of 110 OC - 160OC, which in general does not correspond 
with the majority of temperatures obtained during the fluid-
inclusion analysis (200÷580 OC, BLEČIĆ, 1974; STRASHIMI-
ROV et al., 1996). The isotopic temperatures usually do not 
correspond with the formation temperatures of the hydrother-
mal ore deposits, that was well established from fluid inclusion 
studies elsewhere (BEHR & GERLER, 1987; BEHR et al., 
1987; WERNER et al., 1990; HOFMANN & EIKENBERG, 
1991; GERMAN et al., 1994; LIPPOLT & WERNER, 1994; 
LÜDERS, 1994; RITTER, 1995; WEBER, 1997; WERNER et 
al., 2000). This indicates that ore precipitation occurred under 
conditions where sulfur isotope equilibrium was not estab-
lished. This could be possible if we take into account that hy-
drothermal solutions had near-neutral pH and the total sulfur 
concentration was around 500–1000 ppm (STRASHIMIROV 
et al., 1996). An additional  fact comes from the time required 
to establish a degree of equilibrium of 95% at 300–350OC, 
which is less than one year. In contrast, at temperatures of 
150–200OC, which corre spond to the fo rmation temperatures 
of the sulfide-su lfate pairs, equilibriation needs 3000-7000 
years (SCHWINN et al., 2006). Considering the hydrodyna-
mics of fluid migration wi thin the fault zones, it appears plau-
sible that fluid mixing and mineral deposition processes were 
too rapid for equilibration of sulfur isotopes at formation tem-
peratures. A re la ti vely fast ascent of fluids from a deep source 
through open fractures is consistent with the tectonic setting of 
the hydrothermal mineralizations in the Bučim deposit 

(SERAFIMOVSKI, 1993). Temperature discrepancies be-
tween sulfur isotope calculations and those obtained from flu-
id-inclusions studies indicate an open system, at least in the 
final stages, which resulted in disequilibrium sulfur fractiona-
tion. In this case we may speak about the existence of kinetic 
fractionation reactions. So, the S-isotopic equili bri um 
fractiona tions between galena and chalcopyrite at the Bučim 
deposit gave low temperatures that might reflect cooling dur-
ing the development of the paragenesis (HILL et al., 2015).

Values of δ13C range from -3.84‰ to -10.83‰, which sug-
gests intensive car bon fractionation and enrichment with the 
lighter carbon isotope. This is common for high temperature 
calcites (RYE et al., 1974) whereas the carbon isotopic compo-
sition chan ges can be interpreted as a consequence of increase 
of oxidation potential of hydro ther mal solutions and oxidation 
of CH4 which has a light isotope signature.

The variation of oxygen δ18O values in the studied calcites 
are within the range of +13.98‰ to +22.70‰.  Heavier δ18O 
isotope values in calcite, around +23‰, are close to equilibrim 
fracionation due to the participation of meteoric water. How-
ever, the value of 13.98‰ is low and reflects a lowered fra-
cionation factor due to a high formation temperature. Besides, 
there is significant fractionation of oxygen from the place of 
formation of the hy d r o  thermal fluid to the place of deposition 
of mineralization and ore associated carbonates. It should be 
pointed out that such values are common in hydrothermal car-
bonates, since they have passed through different tectono-
magmatic and geochemical settings. There were real condi ti-
ons for change of the isotopic composition especially if  hydro-
thermal fluids have different sali nity, acidity, concentration, 
different water/rock ratio etc. 

The oxygen variation (δ18O) in samples is in the range that 
suggests intensive oxygen fractionation and a change of iso-
topic composition by way of enrichment with the lighter iso-
tope. 

The results of fluid inclusions analyses suggest a large tem-
perature range for mineral deposition. Initially, hydrothermal 
fluids caused a change in the host rocks (replacement of quartz 
and K-feldspar) at temperatures of 500-600°C. Fe-Ti oxide 
mineralization was formed in the same temperature range. So-
lutions probably were of high salinity (~30-40 or more %wt 
eq. NaCl), as evidenced by the prevalence of three-phase in-
clusions, with halides, and often with more than one solid 
phase. As solutions cooled, the role of sulfide in the solution 
increased, due to disproportionation of sulfur compounds 
which caused the precipitation of sulphide minerals, pyrrho-
tite, cubanite, valleriite and small quantities of pyrite and chal-
copyrite. Simultaneous fluid inclusion homogenization in the 
same sample, into gas and liquid, indicates boiling of the hy-
drothermal solutions in the system. The significant role of sul-
fur in the solutions is confirmed by the precipitation of pyrite 
and chalcopyrite in a wide temperature range of fluid homo-
genization temperatures (430-400 and 490-400°C). The ab-
sence of three phase inclusions indicates lower salinity at that 
time. The latest mineral assemblages, containing bismuthinite, 
enargite, petzite and other minerals, were formed at tempera-
tures of 360-320°C and below. The presene of chloride in fluid 
inclusions suggests the transport of ore components by chlo-

Figure 9.  δ34S values in sulfides and sulfates from the porphyry 
ore deposits. Bučim values of sulfides are included for comparison 
(modi fied after OHMOTO & RYE (1979)).
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ride complexes. Circulation of hydrothermal ore-bearing solu-
tions was conducted through the spaces of increased permea-
bility. They are fractured, tectonized, with dense joint-fissure 
systems, initiated by penetration of primary intrusions 
(HRKOVIĆ, 1985). 

These data indicate the similarity of the formation tempera-
ture of the Bučim deposit and the Cu-porphyry deposits Ela-
tsite (in the Panagyuriysky ore district, Bulgaria) and Majdan-
pek (in the ore district of Bor, Serbia) (STRASHIMIROV & 
KOVAČEV, 1992). Common features of these deposits are 
high temperatures at the beginning of mineralization and the 
fact that extensive three-phase inclusions in quartz are associ-
ated with Fe-Ti mineralizations. The formation temperature of 
the main Cu mineralization is well above those in the Medet 
and Assarel deposits (Panagurishte ore district). The reason for 
the higher temperatures of ore deposition could be a shorter 
distance from the source of ore-forming fluids. Hydrothermal 
systems were relatively closed at the beginning of the process 
of mineralization, and the influence of meteoric water was also 
limited. Preliminary isotope data of the sulfide minerals sup-
ports the assumption of the endogenous origin of hydrothermal 
fluids. This data relates mainly to the samples from the central 
part of the deposit. Additional studies of the upper and mar-
ginal portions of the ore field can provide more detailed infor-
mation on the development and zoning of the hydrothermal 
system in the Bučim Cu porphyry deposit.

Based on the age (K/Ar whole rock ages from 27.5 to 24.7 
Ma and narrowed age span obtained by the latest data from 
24.51 to 24.04 Ma), Strontium isotopes 87Sr/86Sr (0.705040-
0.707410) and corrected data of Neodimium isotopes 
143Nd/144Nd (0.512487-0.512489), we suggest the following 
scenario for the magmatic history of the Bučim-Damjan-Borov 
Dol ore district. A rollback of an oceanic slab located further to 
the SW, led to extensional and compressional features in the 
upper levels of the continental crust. In the middle to upper 
crust, three consecutive crystallization stages occurred at vari-
able depths as indicated by amphibole zonation. The ascent of 
the magma through a complex assemblage of continental crust 
and newly formed crust with mantle affinities in variable de-
grees explains all the geochemical characteristics. The magma 

crystallized as dykes or stocks near the Earth’s surface after  its 
final emplacement and contemporaneous hydrothermal ac ti-
vity led to different mineralization styles depending on the 
 lithology of the host rocks.

Whole rock 87Sr/86Sr (0.706660-0.707410) and 143Nd/144Nd  
(0.512487-0.512489) isotopic compositions from the recent 
study are presented in Figure 11. The proposed mixing curve is 
in agreement with the data from PE-PIPER & PIPER (2001), 
as well as with several isotopic analyses available for young 
magmatic rocks of this region (intrusive rocks from Macedo-
nia, Serbia and Bulgaria (YANEV et al., 2008; PRELEVIĆ et 
al., 2005; MARCHEV et al., 2004; CVETKOVIĆ et al., 2004 
and LEHMANN et al., 2013).

A hyperbolic mixing curve for different ratios of (Sr/Nd)
EMII/(Sr/Nd)DM shows mixing  between a depleted mantle 
(DM) and an enriched mantle (EMII) source. It illustrates that 
the measured Sr-Nd isotopic ratio is a result of magma mixing 
or crustal contamination as determined elsewhere in the region 
(CVETKOVIĆ et al., 2004; DEPAOLO & WASSERBURG, 
1979; MARCHEV et al., 2004; PRELEVIĆ et al., 2005; ROL-
LINSON, 1992; YANEV et al., 2008).

REE data, the high contents of large ion lithophile elements 
(LILE), a high Ba/Nb ratio (116.72-190.72) and depletion in 
high field strength elements (HFSE), appropriate to mixing of 
asthenospheric melts and metasomatized magma (DOWNES 
et al., 1995), could easily be connected to subduction-related 
arc magmatism (BOEV et al., 1992; STOLZ et al., 1996). The 
origin of fluids from metasomatized magma is also indicated 
by the the REE chondrite normalized pattern  (Figure 12), 
simi lar to those of KONONOVA et al. (1989) and BOEV & 
YANEV (2001), which is close to the theoretical curve of their 
affinity to an aqueous fluid, reflecting the mobility of elements 
in this fluid (PEARCE et al., 1981; BOEV & YANEV, 2001). 

Also, we point out that most of the magmas follow a calc-
alkaline fractionation trend with shoshonitic affinities. 

Accordingly, the data for Europium in analyzed samples 
and its negative anomaly (0.68893-0.91251; Figure 12), sug-
gest that Eu was removed from the melt as a compatible Eu2+, 

Figure 10. Distribution of δ13CPDB vs. δ18OSMOW showing probable 
environment of origin (M-V Mantle derived hydrothermal calcites). 
Isotopic composition from some carbon reservoirs has been shown on 
the plot (data fields from ROLLINSON, 1992 and RAY et al., 2000).

Figure 11.  Initial 87Sr/86Sr vs. initial 143Nd/144Nd correlation diagram.
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by the processes of crystal fractionation of plagioclases (ROL-
LINSON, 1992; TASEV et al., 2005).  

Most of the samples have a high Sr/Y and La/Yb ratio, and 
their multi-element patterns were characterized by depletion in 
Nb, Ta and Zr, and enrichment of Pb and Sr (Table 1). the LILE 
were enriched relative to the HFSE (Table 2). All these para-
meters, togehter with several plots Zr/Y vs. Zr, Ce/P2O5 vs. Zr/
TiO2 and Ti vs. Zr (MÜLLER et al., 1992; PEARCE, 1983) 
point to an apparent continental arc setting (BOEV & JANEV, 
2001).

5. CONCLUSIONS
The porphyry Cu mineralization within the Bučim deposit is 
spatially and gene ti ca lly closely related to the small Tertiary 
volcanic intrusions that have protruded through the Pre ca m-
brian complex of the Serbo-Macedonian Massif within a time 
frame of 27.50-24.04 Ma. Spatially, the porphyry Cu minerali-
zation is followed by Au, ocassionally platinum and PGE 
group and Bi-Se minerals localized as rings around the ande-
site-latite necks and dykes. The major ore-bearing mineral is 
chalcopyrite followed by a series of sulfides and sulfosalts.

Ore mineralization mostly is of endogeneous origin as sug-
gested by the stable istopes of sulfur (δ34S from +0.16 up to 
+2.53‰ averaging +1.06‰). The origin of ore metals and 
their evolution in the hydrothermal system from magma to the 
site of deposition has been defined by the stable isotopes of 
carbon (δ13C in the range from -3.84 to -10.83‰) and oxygen 
(δ18O within the range from +13.98 to +22.70‰), which can be 
interpreted as being representative of magmatic hydrothermal 
fluids with a pronounced contribution from meteoric water. 

Temperatures of deposition of the major mineralizing para-
genesis were defined by a fluid inclusions study, and are within 
the range of: 500-600°C (Fe-Ti oxide mineralization), 400-
490°C (precipitation of pyrite and chalcopyrite) and 360-
320°C and below (responsible for the late mineral assemblages 
of bismuthinite, enargite, petzite and some other minerals. 
Fluid inclusions suggest that the transport of compo ne nts was 

most probably by water fluids in the form of chloride com-
plexes and very seldom sulphate and carbonate. 

The evolution of the Tertiary magmatism and magma origin 
was indicated through the 87Sr/86Sr isotope (0.705040-
0.707410) and 143Nd/144Nd isotope ratios (0.512487-0.512489) 
which confirm magma mixing or crustal contamination. This is 
in favour of the mixing of asthenospheric me lts and metaso-
matized magma, which could easily be linked to subduction-
related arc ma gmatism. 
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