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THE EXPECTATION OF SOLUTION OF RANDOM
CONTINUITY EQUATION WITH GAUSSIAN VELOCITY

FIELD

Zoran Pasarić

Ruder Bošković Institute, Zagreb, Croatia

Abstract. The continuity equation in d-dimensional space with ran-
dom velocity field defined by means of a vector-valued Gaussian process is
studied. The expectation of corresponding evolution family of operators is
explicitly derived, generalizing in a sense the evolution family correspond-
ing to the conventional diffusion equation.

1. Introduction

In the previous paper [3] we studied the random linear differential equa-
tion:

(1)
∂u

∂t
=

d∑

i=1

vi(ω, t,x)
∂u

∂xi
+ b(ω, t,x)u+ f(ω, t,x).

From the physical point of view, equation (1) is the continuity equation
that describes the transport of substance in random velocity field v(ω, t,x) =
(vi(ω, t,x))di=1, in terms of concentration field u(ω, t,x). However, it is the
mean concentration Eu, and not the concentration u itself, that is of primary
interest.

From the mathematical point of view, we are required to consider a)
existence, uniqueness and measurability of solution, b) the existence of ex-
pectation of solution, Eu, and c) other properties of Eu.

2000 Mathematics Subject Classification. 46N20, 47B44, 60H25.
Key words and phrases. Random transport equation.
This work has been supported by the Ministry of Science of Republic of Croatia under

Program 009813.

361



362 Z. PASARIĆ

By using the random evolution family U(ω, t, s) associated with (1), i.e.
generated by

A(ω, t) =

d∑

i=1

vi(ω, t,x)
∂

∂xi
+ b(ω, t,x),

solution of (1) can be represented as

u(ω, t) = U(ω, t, s)u(ω, s) +

∫ t

s

drU(ω, t, r)f(ω, r),

so the problem of study of u is shifted to the study of the family U . In this way
in [3], working in Hilbert (Sobolev) spaces Hk, the existence, uniqueness and
measurability of solutions were proved without specific assumptions on the
underlying probability space. Next, also in [3], the existence of expectation of
solution was proved for the velocity field of the form vi(ω, t,x) = gi(ω, t) ai(x),
i = 1, . . . , d, where (gi(ω, t))

d
i=1 was d-dimensional Gaussian process. The

third problem, namely an explicit calculation of Eu, was worked out only for
the one-dimensional case:

∂u

∂t
= g(ω, t) a(x)

∂u

∂x
,

where g(ω, t) was scalar, Gaussian process. For the zero-mean process g with
covariation function R(t1, t2), the expectation of corresponding evolution fam-
ily was given by

(EU)(t, s) = exp
{1

2
h(t, s)

(
a(x)

d

dx

)2}
,

where h(t, s) =
∫ t
s
dr1

∫ t
s
dr2R(t1, t2). In [4] the physically more relevant situ-

ation dealing with concept of distributed dispersion was elaborated. Physical
consequences were elaborated in [2]. However, regarding the calculation of
expectation, both papers [3] and [4] essentially deal with scalar Gaussian pro-
cesses g(ω, t).

It is the goal of the present paper to generalize the calculation of Eu given
in [3] to the generators of the form

(2) A(ω, t) =

d∑

i=1

gi(ω, t)ai(t, xi)
∂

∂xi
,

where g = (gi)
d
i=1 is real, vector-valued Gaussian process, and a = (ai)

d
i=1 is

deterministic function. This choice enables an explicit calculation of EU , be-
sides keeping us close to the theory of conventional diffusion equation. First,
the problem is solved for bounded generators, i.e. generators of the form

A(ω, t) =
∑d

i=1 gi(ω, t)Ai(t), where Ai(·) are bounded, linear and commu-
tative operators defined on Banach space. In this case EU is obtained by
summing convergent series of bounded operators, using the commutativity in
an essential way. The proof then follows using the Yosida method similarly
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as in [3], with additional technical difficulties. Namely, Mercer theorem was
applied to the covariation function of g in order to prove that the generators
involved are regularly dissipative.

The paper is organized as follows. Section 2 contains all relevant state-
ments, i.e. necessary definitions, assumptions, results from [3] and [4] that
are required, and the two new theorems (Theorem 2.7 and the main Theorem
2.11). Section 3 contains the proofs. Nearly all the technical work is shifted
into the auxiliary Section 4.

Having in mind that the present paper deals with the exact calculation of
mean concentration field, we do not refer to the literature on homogenization
and renormalization theories of turbulence. (See, however, a recent review
[10], and the literature given therein.) Finally, let us mention that, without
commutativity explicit calculation become difficult due to the apparent terms
of lower order. Some results for bounded generators, within the framework
of Colombeau generalized functions, may be found in [7]. Results presented
here comprise a part of author’s doctoral dissertation [6].

2. Statements of results

In this section we recall first, the notion of random operator and the
notion of evolution family. Than we recall results on existence of random
evolution family U and it’s expectation EU , and finally state Theorem 2.7
giving the explicit formula for EU in the case of bounded generators. The
same pattern is then followed for the case of differential generators, finishing
with the main Theorem 2.11.

Let {Ω,F , P} be a probability space and X a separable Banach space.
We denote by BX the σ-algebra of Borel subsets of X .

Definition 2.1. a) A mapping u : Ω→ X defined on subset Ωu ⊆ Ω
is called (X-valued) random element if it is measurable with respect to
the σ-algebras F and BX , i.e. if for every open set O ⊂ BX it holds
u−1(O) = {ω ∈ Ωu;u(ω) ∈ O} ⊆ F .

b) Let Γ be an arbitrary set. A mapping A : Ω × Γ → X is said to be
a random operator if y(·) = A(·, γ) is X-valued random element for
every γ ∈ Γ. In general, domain Dω(A) = {γ ∈ Γ; A(ω, γ) ∈ X}
depends on ω ∈ Ω.

c) If Γ is a linear space then a random operator A : Ω× Γ→ X is linear
if the mapping A(ω) : Γ→ X is a linear operator for a.e. ω ∈ Ω.

Definition 2.2. Let X be a Banach space, T > 0, A(t) : X → X a
family of densely defined linear operators, 0 ≤ t ≤ T , and let U(t, s) ∈ L(X),
0 ≤ s ≤ t ≤ T , be a family of operators such that:

(a) U(t, s) are strongly continuous with respect to 0 ≤ s ≤ t ≤ T ,
(b) U(t, t) = I, U(t, s) = U(t, r)U(r, s), 0 ≤ s ≤ r ≤ t ≤ T ,
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(c) ‖U(t, s)‖X ≤ exp(β|t − s|), for some constant β that depends only on
T ,

(d) ∂/∂tU(t, s) = A(t)U(t, s) on a dense subset Y ⊂ X, s ≤ t < T ,
(e) ∂/∂sU(t, s) = −U(t, s)A(s) on a dense subset Y ⊂ X, 0 < s ≤ t.

Then U(t, s) is called the family of evolution operators generated by the family
A(t).

Next theorem gives the existence of random evolution family in the case
of bounded generators. It’s proof may be found in [4, Theorem 1.6].

Theorem 2.3. Let X be a separable Banach space and A : Ω× [−T, T ]→
L(X) a random operator such that A(ω, ·) ∈ C([−T, T ], L(X)) for a.e. ω ∈ Ω.
Then there exists a mapping U : Ω× [−T, T ]× [−T, T ]→ L(X) that fulfills:

(a) For a.e. ω ∈ Ω, (t, s) 7→ U(ω, t, s) is an evolution family with Y = X
and β(ω) = maxr∈[−T,T ] ‖A(ω, r)‖L(X). Moreover, all the properties
from Definition 2.1 remain valid if −T ≤ s ≤ t ≤ T is replaced
by −T ≤ s, t ≤ T . Thus, U(ω, t, s) is invertible and U(ω, t, s)−1 =
U(ω, s, t).

(b) For all t, s ∈ [−T, T ], the mapping U(·, t, s) : Ω → L(X) is a random
operator.

The family U(ω, t, s) is given by the following series:

(3) U(ω, t, s) = I +

∞∑

k=1

∫ t

s

dt1 · · ·
∫ tk−1

s

dtkA(ω, t1) · · ·A(ω, tk).

Definition 2.4. Let X be a Banach space and let u : Ω → X be a
Bochner integrable random element. The expectation Eu ∈ X of u is defined
by Eu =

∫
u(ω)dP (ω). Random operator A : Ω × X → X is said to have

expectation in strong sense if for any u ∈ X the random element Au has
expectation. We write (EA)u = E(Au).

In order to get the existence of expectation of evolution family, EU , we
have to specify the probability space more closely.

Supposition 2.5. By g : Ω × [−T, T ] → Rd, g(ω, t) = (gi(ω, t))
d
i=1, we

denote a real vector-valued Gaussian process with continuous paths.
The mean value of g is denoted by m(t) = (mi(t))

d
i=1 := E(g(·, t)), and

covariation function is denoted by R(t1, t2) = (µi,j(t1, t2))
d
i,j=1 := E

(
(g(·, t1)−

m(t))T(g(·, t2)−m(t))
)
.

The functions m(t) and R(t1, t2) are continuous which follows easily from
the continuity of paths.

The following proposition gives the existence of EU , in the case of bounded
generators. The proof is analogous to that of [3, Proposition 4.2].
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Proposition 2.6. Let

(4) A(ω, t) =

d∑

i=1

gi(ω, t)Ai(t),

where g is a Gaussian process from Supposition 2.5, and Ai(·) ∈ C
(
[−T, T ],

L(X)
)
, i = 1, . . . , d. Then, the evolution family U(ω, t, s) generated by A(ω, t)

has the expectation V := EU : [−T, T ]× [−T, T ]→ L(X) in strong sense and
the mapping (t, s) 7→ V (t, s) is continuous.

Next theorem, using the additional assumption of commutativity of gen-
erators, gives the explicit formula for EU in the case of bounded generators.
It’s proof is given in Section 3.

Theorem 2.7. Let the family A(ω, t) be given by (4) where g is a
Gaussian process from Supposition 2.5, and Ai(·) ∈ C

(
[−T, T ], L(X)

)
,

i = 1, . . . , d commute with each other. Put A(t) := (Ai(t))
d
i=1, M(t) =

m(t)TA(t) =
∑d

i=1 mi(t)Ai(t), and R(t1, t2) = A(t2)
TR(t1, t2)A(t1) =∑d

i,j=1 µij(t1, t2)Aj(t2)Ai(t1). Then, M(·) and R(·, ·) are L(X)-valued con-

tinuous functions and the expectation V (t, s) of evolution family U(ω, t, s) is
given by

V (t, s) = exp

{∫ t

s

dt1M(t1) +
1

2

∫ t

s

dt1

∫ t

s

dt2R(t1, t2)

}
, for s ≤ t,(5)

V (t, s) = exp

{∫ t

s

dt1M(t1) +
1

2

∫ s

t

dt1

∫ s

t

dt2R(t1, t2)

}
, for t ≤ s.(6)

Finally, we turn to the case of differential operators that is connected with
the random linear transport equation. Here, the processes are considered on
D̃ = [−T, T ]× Rd. Elements of D̃ are denoted by {t,x}, where t ∈ [−T, T ]
denotes “time”, and x = (xi)

d
i=1 = (x1, . . . , xd)

T denotes “space”. The differ-
entiation with respect to xi is denoted by ∂/∂xi or by ∂i. Scalar product in Rd

is denoted by xTy :=
∑d
i=1 xiyi, and in Cd by x∗y :=

∑d
i=1 xiyi. By a vector

valued function u = (ui)
d
i=1 we mean a sequence of d functions u1, . . . , ud on

D̃. The gradient of function

u ∈ L∞,1(Rd) = {u ∈ L∞(Rd); ∂iu ∈ L∞(Rd)}

is defined by ∇u = (∂iu)
d
i=1 ∈

(
L∞(Rd)

)d
. Then uT∇v =

∑
ui∂vi. The

divergence of a vector valued function u ∈
(
L∞,1(Rd)

)d
is defined by divu =∑

∂iui.
For a Banach space X the norm is denoted by ‖ ·‖X . Only for the Hilbert

spaces Hk defined inductively by:

H0 = L2(Rd), Hk = {u ∈ Hk−1, ∂iu ∈ Hk−1}, for k = 1, 2, . . . ,
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the norms and scalar products are denoted by ‖ · ‖k and (·, ·)k, respectively.
In particular (u, v)1 = (u, v)0 +

∑
(∂iu, ∂iv)0. Then we put H∞ = ∩k≥0Hk.

Furthermore, the Banach algebras of all bounded linear operators defined on
Hk, k = 0, 1 are denoted by L(Hk) and corresponding norms also by ‖ · ‖k,
since no ambiguity can occur.

By D′(Rd) we denote the space of Schwartz distributions. We shall also
need the space L∞,2(Rd) = {u ∈ L∞,1(Rd); ∂iu ∈ L∞,1(Rd)}. The commu-
tator of operators A and B is denoted by [A,B] := AB −BA.

Again, we recall the results on existence of random evolution family and
it’s expectation.

Supposition 2.8. The functions ai : Ω → C
(
[−T, T ], L∞,1(Rd)

)
, i =

1, . . . , d and b : Ω → C
(
[−T, T ], L∞(Rd)

)
are random elements. In addition,

∂ib ∈ L∞
(
(−T, T )× Rd

)
for a.e. ω ∈ Ω.

For a.e. ω ∈ Ω we define the quantities:

λ(ω, t) =‖ − div a(ω, t) + 2b(ω, t)‖L∞(Rd)(7)

β(ω) = sup
r∈[−T,T ]

λ(ω, r).(8)

Theorem 2.9. Let X = H0(Rd) and let the Supposition 2.8 be valid.
Then there exists a mapping U : Ω× [−T, T ]× [−T, T ]×H0 → H0 such that:

(a) For a.e. ω ∈ Ω, U(ω, ·, ·) is an evolution family with Y = H1(Rd) and
β(ω) given by (8). Moreover, all the properties from Definition 2.1
remain valid if −T ≤ s ≤ t ≤ T is replaced by −T ≤ s, t ≤ T . Thus
U(ω, t, s) is invertible and U(ω, t, s)−1 = U(ω, s, t).

(b) For all t, s ∈ [−T, T ], the mapping U(·, t, s) : Ω → H0 is a random
operator.

Proof may be found in [3, Theorem 3.5].

Proposition 2.10. Let the family A(ω, t) be given by (2) with g =
(gi)

d
i=1 being a Gaussian process from Supposition 2.5 and ai(·) ∈ C

(
[−T, T ],

L∞,1(R)
)
, i = 1, . . . , d. Then, the evolution family U(ω, t, s) generated by

A(ω, t) has the expectation V : [−T, T ] × [−T, T ] × X → X in strong sense
and V (t, s) is strongly continuous (with respect to t, s) family of bounded,
linear operators.

The proof is the same as in [3, Proposition 4.2]. Before stating the main
result, we need some preliminary notions.

Let us denote:

(9) Â(t) := (Âi(t))
d
i=1, where Âi(t) := ai(t,x)

∂

∂xi
.



THE EXPECTATION OF SOLUTION OF RANDOM CONTINUITY EQUATION 367

For u ∈ H2 the operator B : H2 ⊂ H0 → H0 is defined by (Bochner
integrals in H0)

B(t, s)u =

∫ t

s

dt1

∫ t

s

dt2Â
T(t1)R(t1, t2)Â(t2)u

=

∫ t

s

dt1

∫ t

s

dt2

d∑

i,j=1

µi,j(t1, t2)aj(t2,x)
∂

∂xj
ai(t1,x)

∂

∂xi
u.

In the next section it will be shown that B has unique, regularly dissi-
pative extension (still denoted by) B : D(B) → H0. Hence, the exponential
function of B is defined via the Dunford integral.

Theorem 2.11. Let

A(ω, t) =

d∑

i=1

gi(ω, t)ai(t, xi)
∂

∂xi
,

with g = (gi)
d
i=1 being a Gaussian process from Supposition 2.5 and ai(·) ∈

C
(
[−T, T ], L∞,2(R)

)
, i = 1, . . . , d. Suppose that the process g is centered,

i.e. m(t) = 0. Then the expectation of the evolution family U(ω, t, s) (whose
existence and other properties are given in Theorem 2.9) generated by A(ω, t)
is given by V (t, s) = exp{1/2B(t, s)}, for s ≤ t and V (t, s) = V (s, t), for
t < s.

3. Proofs

Proof of Theorem 2.7. Continuity of functions M(t) and R(t1, t2)
follows easily from the continuity of m(t), R(t1, t2).

Suppose that m(t) = 0, and take s ≤ t. From (3) we have:

U(ω, t, s) = I +

∞∑

k=1

∫ t

s

dt1 · · ·
∫ tk−1

s

dtk

d∑

i1 ,...,ik

gi1(ω, t1) · · · gik(ω, tk)Ai1(t1) · · ·Aik (tk).

Before applying the expectation operator, note that the moments of odd order
of centered Gaussian process vanish, while the moments of even order are given
by (see [1])

(10) E(gi1(ω, t1) · · · gi2k
(ω, t2k)) =

∑

s∈S2k

∏

{j1,j2}∈s

µij1 ij2 (tj1 , tj2).

Here, S2k denotes the collection of all partitions of the set {1, . . . , 2k} in two-
element subsets. It is easily seen that there are exactly (2k−1)!! = (2k)!/2kk!
such partitions.
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A straightforward calculation now gives:

V (t, s) = EU(·, t, s)

= I +

∞∑

k=1

∫ t

s

dt1

∫ t1

s

dt2 · · ·
∫ t2k−1

s

dt2k

d∑

i1,...,i2k

∑

s∈S2k

∏

{j1,j2}∈s

µij1 ij2 (tj1 , tj2)Aij1 (tj1)Aij2 (tj2)

= I +

∞∑

k=1

1

(2k)!

∫ t

s

dt1

∫ t

s

dt2 · · ·
∫ t

s

dt2k
∑

s∈S2k

∏

{j1,j2}∈s

R(tj1 , tj2)

= I +

∞∑

k=1

1

k!

[
1

2

∫ t

s

dt1

∫ t

s

dt2R(t1, t2)

]k

= exp

{
1

2

∫ t

s

dt1

∫ t

s

dt2R(t1, t2)

}
.

The second equality is obtained by using Fubini theorem, the above men-
tioned structure of moments and commutativity of families Ai(·). The same
argument gives the symmetry of the function under the integral sign which
implies the third equality. Fourth equality follows from Fubini theorem while
the last one is obvious.

In the same way, for t ≤ s we obtain:

V (t, s) = exp

{
1

2

∫ s

t

dt1

∫ s

t

dt2R(t1, t2)

}
.

Now, we consider the case m(t) 6= 0. Generators A(ω, t) are split in

two parts, A(ω, t) = A(1)(t) + A(2)(ω, t), where A(1)(t) =
∑d
i=1 mi(t)Ai(t),

and A(2)(ω, t) =
∑d
i=1(gi(ω, t)−mi(t))Ai(t). According to Theorem 2.3 op-

erators A(ω, ·) and A(2)(ω, ·) generate random evolution families U(ω, ·, ·),
U (2)(ω, ·, ·), respectively. Operators A(1)(t) generate deterministic evolu-

tion family U (1)(t, s) = exp{
∫ t
s
drM(r)}, for −T ≤ s, t ≤ T . Because of

commutativity of the operators A(1)(·) and A(2)(ω, ·) we have U(ω, t, s) =
U (1)(t, s)U (2)(ω, t, s). Applying expectation operator and utilizing linearity
and continuity, problem is reduced to the case m(t) = 0.

Proof of Theorem 2.11. Let ψ ∈ C∞
0 (R) be an even function such

that suppψ = [−1, 1], ψ(x) ≥ 0 and
∫
dxψ(x) = 1. For n ∈ N and 1 ≤

i ≤ d, let Jn,i, Jn : H0 → H0 be the operators of convolution with functions

ψn,i(x) = nψ(nxi), ψn(x) = nd
∏d
i=1 ψ(nxi), respectively. Jn is the so called
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Friedrichs mollifier. Now, we define a family of bounded operators

An(t) =

d∑

i=1

gi(ω, t)Jn,iai(t, xi)
∂

∂xi
Jn,i ∈ L(H0)

and also

Bn(t, s) =

∫ t

s

dt1

∫ t

s

dt2Â
T

n(t1)R(t1, t2)Ân(t2)

=

∫ t

s

dt1

∫ t

s

dt2

d∑

i,j=1

µi,j(t1, t2)Ân,j(t2)Ân,i(t1),

(11)

where

Ân(t) := (Ân,i(t))
d
i=1, Ân,i(t) := Jn,iai(t, xi)∂/∂xiJn,i.

Proof of the Theorem is based on the diagram of Figure 1. The op-

An −−−−→ Un −−−−→ Vn := EUny
y

y

A −−−−→ U −−−−→ V := EU

= exp 1
2Bny

↔ exp 1
2B

Figure 1. Schematic presentation of the method used to
calculate the expectation of evolution family.

erators An(ω, t) generate random evolution families Un(ω, t, s), n ∈ N,
with expectation Vn(t, s) := EUn(ω, t, s) ∈ L(H0) (Theorem 2.3). Since
by the construction, operators An(ω, t) commute with each other, we have
Vn(t, s) = exp{1/2Bn(t, s)} (Theorem 2.7).

On the other side, the family A(ω, t) generate random evolution family
U(ω, t, s) (Theorem 2.9) with expectation V (t, s) in the strong sense. We
know that Un(ω, t, s)→ U(ω, t, s) strongly in H0 for a.e. ω ∈ Ω (see Theorem
2.5 in [3]). Next, evolution families Un(ω, t, s), n ∈ N and U(ω, t, s) have
the same constants β(ω) given by (8) (see [3], Lemma 2.4) and the function
ω 7→ exp{Cβ(ω)} is integrable for any constant C (see [3, Proposition 4.2]).
Lebesgue theorem implies that Vn(t, s) → V (t, s), strongly in H0, when n→
∞.

Thus, it is enough to prove that exp{1/2Bn(t, s)} → exp{1/2B(t, s)}
strongly in H0, when n → ∞. Let Σ be the sector from Proposition 4.7 and
let Γ : R → C be a positively oriented, continuous path in Σ such that for
|s| > 1, Γ(s) = λ̃′ + s · exp{±i(π/2 + ε′′)} for some ε′′ < ε′, where the −
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sign corresponds to s ≤ −1, and the + sign corresponds to s ≥ 1. Utilizing
Proposition 4.7 the following representation is valid:

V (t, s)u = exp
{1

2
B(t, s)

}
u =

1

2πi

∫

Γ

dz exp
{1

2
z
}

(B(t, s)− z)−1u.

By changing B(t, s) to Bn(t, s), the representation for Vn(t, s) is obtained
(Theorem 2.7 and Proposition 4.7). Thus,

(V (t, s)− Vn(t, s))u =

1

2πi

∫

Γ

dz exp
{1

2
z
} [

(B(t, s)− z)−1 − (Bn(t, s)− z)−1
]
u =(12)

1

2πi

∫

Γ

dz exp
{1

2
z
} [

(Bn(t, s)− z)−1(Bn −B)(B(t, s) − z)−1
]
u.(13)

Now, let u ∈ B(H∞), so we have v := (B − z)−1u ∈ H∞. Lemma 4.8
and Proposition 4.7 imply that integrand in (13) tends to zero in H0 for
every z ∈ Γ. Proposition 4.7 implies that the sequence

[
(B(t, s) − z)−1 −

(Bn(t, s)−z)−1
]
u is bounded in H0, uniformly in z ∈ Γ. By Lebesgue theorem

Vn(t, s)→ V (t, s) strongly on B(H∞). Because the set B(H∞) ⊆ H0 is dense
(lemma 4.4), we finally obtain that Vn(t, s)→ V (t, s) strongly on H0.

Corollary 3.1. Let the assumptions of Theorem 2.11 be valid, except
that the expectation m(t) = Eg(ω, t) is allowed to be different from zero. Then
the family V (t, s) having all the properties from Theorem 2.11, is given by:

V (t, s) = exp

{∫ t

s

mT(t1)Â(t1) +
1

2
B(t, s)

}
for − T ≤ s ≤ t ≤ T,

V (t, s) = exp

{∫ t

s

mT(t1)Â(t1) +
1

2
B(s, t)

}
for − T ≤ t ≤ s ≤ T.

Proof. The proof is analogous to the proof of Corollary 4.4 in [3].

We may think of B(t, s) as a generalized diffusion operator. However,
there is no differential equation governing the expectation of solution of (1),
as has been explained in [3, 4]. When the covariation function of g tends to
δ(t)I , which means that g itself become the Gaussian white noise, formally,
the diffusion equation is obtained. Some results in this direction may be found
in [6, 7].

4. Auxiliary results

This section contains technical results regarding operators B and Bn from
Sections 2 and 3. The two of them are the most important. First result states
that B(t, s) may be extended uniquely to the regularly dissipative operator
(Proposition 4.3), while the second one states that the image B(H∞) is dense
in H0 (Lemma 4.4).
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Let Supposition 2.5 be valid. Then the covariation function R(t1, t2) is
a positive definite, continuous function of it’s arguments. According to the
classical Mercer theorem (e.g. [8]), for fixed s < t there is a sequence of

continuous, L2-orthonormal vector functions φ(j) =
(
φ

(j)
i

)d
i=1

: [s, t] → Rd

and a sequence of real numbers λj > 0, such that:

(14) R(t1, t2) =

∞∑

j=1

λjφ
(j)(t1)φ

(j)T(t2), t1, t2 ∈ [s, t].

The series (14) converges uniformly in t1, t2 ∈ [s, t]. Moreover, the series
obtained by taking the L2-norm of each member converges uniformly, too.

From now on, up to Lemma 4.5, we suppose that ai(t,x) ∈ C
(
[−T, T ],

L∞,1(Rd)
)
.

Lemma 4.1. For j ∈ N let f (j) :=
(
f

(j)
i

)d
i=1

=
(∫ t

s dt1φ
(j)
i (t1)ai(t1,x)

)d
i=1

be a vector function and let us define the operator F (j) : H2 ⊂ H0 → H0, by

F (j) = f (j)T∇. Then we have Bu =
∑∞

j=1 λjF
(j)2

u in H0, for all u ∈ H2.

Proof. Let u ∈ H2. Then
∥∥∥∥
∫ t

s

dt2

[
R(t1, t2)Â(t2)−

N∑

j=1

λjφ
(j)(t1)φ

(j)T(t2)Â(t2)

]
u

∥∥∥∥
1

≤

≤
∫ t

s

dt2 max
t1,t2∈[s,t]

∥∥∥∥R(t1, t2)−
N∑

j=1

λjφ
(j)(t1)φ

(j)T(t2)

∥∥∥∥
L(Rd)

‖Â(t2)u‖1 → 0

uniformly in t1, as N →∞. Thus

N∑

j=1

λjF
(j)2

u =

N∑

j=1

λj

[∫ t

s

dt1φ
(j)(t1)Â(t1)

]2

u

=

∫ t

s

dt1Â
T(t1)

[ N∑

j=1

λjφ
(j)(t1)

∫ t

s

dt2 φ
(j)T(t2)Â(t2)

]
u→ B(t, s)u

in H0 as N →∞.

Now, the space V ⊂ H0 is defined by the closure of H∞ in the norm

‖u‖2V :=

∞∑

j=1

λj‖F (j)u‖20 + ‖u‖20.

Then bilinear form b : V× V→ C is defined by:

b(u, v) := −
∞∑

j=1

λj(F
(j)u, F (j)v)0 −

∞∑

j=1

λj(F
(j)u, div f (j) · v)0.
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Next lemma guarantees that the above definitions are correct and gives much
more.

Lemma 4.2. (a) For every u ∈ H∞ (even for u ∈ H1) it holds ‖u‖V <
∞,

(b) the form b(·, ·) is well defined and continuous,

(c) there are constants ϑ > 0 and λ̃ > 0 such that for all u ∈ V it holds

Re b(u, u) ≤ −ϑ‖u‖2
V

+ λ̃‖u‖20,
(d) for u ∈ H2, v ∈ V it holds (Bu, v)0 = b(u, v).

Proof. (a) For fixed N ∈ N and u ∈ H∞ (or H1) it holds:

N∑

j=1

λj‖F (j)u‖20 =

∫ t

s

dt2

(∫ t

s

dt1

N∑

j=1

λjφ
(j)(t2)φ

(j)T(t1)Â(t1)u, Â(t2)u
)

0
.

The assertion follows from Mercer theorem (uniform convergence) and the

continuity of function t 7→ Â(t)u : R→ (H0)
d, for fixed u ∈ H1 ⊃ H∞.

(b) Let us denote ∂a(t) := (∂xiai(t, ·))di=1. Similarly as in (a) we have

N∑

j=1

λj‖div f (j) · u‖20 →
([ ∫ t

s

dt2

∫ t

s

dt1∂a(t1)
T
R(t1, t2)∂a(t2)

]
u, u

)
0
,

as N →∞. Now, for u, v ∈ V it holds

N∑

j=M

λj |(F (j)u, F (j)v)0|+
N∑

j=M

λj |(F (j)u, div f (j) · v)0| ≤

( N∑

j=M

λj‖F (j)u‖20
)1/2[( N∑

j=M

λj‖F (j)v‖20
)1/2

+

( N∑

j=M

λj‖div f (j) · v‖20
)1/2]

,

whereat the right-hand side tends to zero as M,N →∞. This shows that the
form b is well defined.

Put M = 1 and let N →∞. It follows

|b(u, v)| ≤ ‖u‖V
[
‖v‖V + C1‖v‖0

]
≤ C‖u‖V‖v‖V,

where

(15) C1 =

∥∥∥∥
∫ t

s

dt2

∫ t

s

dt1∂a(t1)
T
R(t1, t2)∂a(t2)

∥∥∥∥
1/2

L∞(Rd)

,

so b is continuous.
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(c) Let u ∈ V. Then we have

Re b(u, u) = −
∞∑

j=1

λj‖F (j)u‖20 −Re

∞∑

j=1

λj(F
(j)u, div f (j) · u)0

≤ −
∞∑

j=1

λj‖F (j)u‖20 +

( ∞∑

j=1

λj‖F (j)u‖20
)1/2

·
( ∞∑

j=1

λj‖div f (j) · u‖20
)1/2

≤ −
∞∑

j=1

λj‖F (j)u‖20 +
ε

2

∞∑

j=1

λj‖F (j)u‖20 +
1

2ε

∞∑

j=1

λj‖div f (j) · u‖20

≤ −
(
1− ε

2

)
‖u‖2V +

(
C2

1

2ε
+
(
1− ε

2

))
‖u‖20,

whereat C1 is constant (15), and ε ∈ (0, 2) is any number.
(d) Let u ∈ H2 and v ∈ V. Then we have

(Bu, v)0 = lim
N→∞

( N∑

j=1

λjF
(j)2

u, v

)

0

=

lim
N→∞

[
−

N∑

j=1

λj(F
(j)u, F (j)v)0 −

N∑

j=1

λj(F
(j)u, div f (j) · v)

]
= b(u, v).

The first equality follows from Lemma 4.1, while the second one is obtained
by using integration by parts.

Via the form b, regularly dissipative operator (an extension of B, hence
the same letter) B : H0 → H0 is defined by: D(B) := {u ∈ H0; there is a
f ∈ H0, such that b(u, v) = (f, v)0, for every v ∈ V} and Bu := f for such a
pair {u, f}. From the previous lemma and [9, Section 2.2, Remark 3.3.2 and
Example 3.6] we have:

Proposition 4.3. The operator B is well defined, closed operator such
that the domain D(B) is dense in V as well as in H0. Moreover, 0 ∈ C is

contained in the resolvent set of the operator B − λ̃I, i.e. 0 ∈ ρ(B − λ̃I), and

B − λ̃I is maximal dissipative.

Lemma 4.4. Suppose that a = (ai)
d
i=1 ∈

(
L∞,2(Rd)

)d
. Then, the image

B(H∞) is dense in H0.

Proof. It is enough to show that H∞ is dense in D(B) equipped with
the graph norm. We have to consider the commutators [B, Jn], where Jn is
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the Friedrichs mollifier. For u ∈ H∞ we have:

[B, Jn] =
∞∑

j=1

λj [F
(j)2

, Jn]u

=
∞∑

j=1

λj
[
F (j), [F (j), Jn]

]
u+ 2

∞∑

j=1

λj [F
(j), Jn]F

(j)u.

The proof is now split in three steps.

(i) We claim that the operator R
(1)
n :=

∑∞
j=1 λj

[
F (j), [F (j), Jn]

]
: H∞ ⊂

H0 → H0 is well defined, bounded uniformly with respect to n and that it
converges to zero strongly in H0, as n→∞. For u ∈ H∞ it holds:

[F (j), [F (j), Jn]]u =

[∫ t

s

dt1φ
(j)T(t1)Â(t1),

[∫ t

s

dt2φ
(j)T(t2)Â(t2), Jn

]]
u

=

∫ t

s

dt1

∫ t

s

dt2
∑

i,i′

φ
(j)
i (t1)φ

(j)
i′ (t1)

[
Âi(t1),

[
Âi′(t1), Jn

]]
u.

According to Lemma 4.5, below, there is a constant C(t1) that depends only

on ‖a(t1)‖L∞,2(Rd), such that ‖
[
Âi(t1), [Âi′ (t1), Jn]

]
‖L(H0) ≤ C(t1), and also

‖
[
Âi(t1), [Âi′(t1), Jn]

]
u‖L(H0) ≤ C(t1)η1/n(u), for u ∈ H∞. As is well known,

η1/n(u) → 0 in H0 for every u ∈ H0 (see [5]). Thus, by Mercer theorem, the

operator R
(1)
n satisfies all the three claims.

(ii) Let us prove that R
(2)
n :=

∑∞
j=1 λj [F

(j), Jn]F
(j) : V → H0 is well

defined, continuous (in the pair of norms ‖ · ‖0, ‖ · ‖V), and that it converges
to zero strongly in H0, as n→∞.

First, it is easily seen that there is a constant C > 0 such that

(16)

∞∑

j=1

λj
∥∥[F (j), Jn]

∥∥2

0
≤ C

for every n ∈ N. Now, for u ∈ V we have:

∥∥∥
∞∑

j=1

λj [F
(j), Jn]F

(j)u
∥∥∥

0
≤

≤
( ∞∑

j=1

λj
∥∥[F (j), Jn]

∥∥2

0

)1/2( ∞∑

j=1

λj
∥∥F (j)u

∥∥2

0

)1/2

≤ C‖u‖V,
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which shows that R
(2)
n is well defined and continuous. Furthermore, for any

N ∈ N it holds:
∥∥∥

∞∑

j=1

λj [F
(j), Jn]F

(j)u
∥∥∥

0
≤

≤
N∑

j=1

λj
∥∥[F (j), Jn]F

(j)u
∥∥

0

+

( ∞∑

j=N+1

λj‖[F (j), Jn]‖20
)1/2( ∞∑

j=N+1

λj‖F (j)u‖20
)1/2

.

The second term on the right side tends to zero as N →∞ (uniformly in n),
while the first one tends to zero (for fixed N) as n → ∞ because of the well
known Friedrichs lemma [5, Lemma 6.1].

(iii) So far we have shown that the commutator [B, Jn] defined on H∞ is

extended to the continuous operator Rn := R
(1)
n +R

(2)
n : V→ H0, and Rn → 0

strongly in H0. Now we show that the commutator [B, Jn] = BJn − JnB,
which is defined naturally on D(B), coincide with Rn. For u ∈ D(B) there is
a sequence uk ∈ H∞, such that uk → u in V. From

[B, Jn]uk = BJnuk − JnBuk = Rnuk

it follows that JnBuk converges in H0, as k → ∞. On the other side, for
v ∈ V we have

lim
k→∞

(JnBuk, v)0 = lim
k→∞

(Buk, J
∗
nv)0 = lim

k→∞
b(uk, J

∗
nv)

= b(u, J∗
nv) = (Bu, J∗

nv) = (JnBu, v),

hence JnBuk → JnBu in D′, and consequently also in H0.
Now, we conclude the proof of lemma. For u ∈ D(B), it holds Jnu → u

in H0, and
Bu−BJnu = (I − Jn)Bu− [B, Jn]u→ 0

in H0 as n→∞. Hence, Jnu→ u in the graph norm.

Lemma 4.5. Let a = (ai)
d
i=1 ∈

(
L∞,2(Rd)

)d
, Âi = ai∂/∂xi, A =

∑d
i=1 Âi

and Rn := [A, [A, Jn]]. Then there is a constant C > 0 that depends only on
‖a‖L∞,2(Rd), such that for all n ∈ N and u ∈ H∞ it holds:

(a) ‖Rnu‖0 ≤ C‖u‖0,
(b) ‖Rnu‖0 ≤ Cη1/n(u)1/2,

with

η1/n(u) := sup
|y|<1/n

∫

Rd

dx|u(x− y) − u(x)|2.

The notion of Âi and A used only in this lemma should not be confused with
corresponding notions in (2) and (9).



376 Z. PASARIĆ

Proof. Let u ∈ H∞. Then we have [A, [A, Jn]]u =
∑d
i,j=1[Âi, [Âj , Jn]]u.

A straightforward calculation gives [Âi, [Âj , Jn]]u =
∑4

k=1 R
(k)
n,i,ju, where the

operators R
(k)
n,i,j , k = 1, 2, 3, 4 are given by:

R
(1)
n,i,ju = −

∫
dy

∂

∂yj

{∂ψn
∂xi

(x− y)(aj(x) − aj(y)) (ai(x)− ai(y))
}
u(y),

R
(2)
n,i,ju = −

∫
dy

∂

∂yj

{
ψn(x− y)

(∂aj
∂xi

(x)ai(x)− ∂aj
∂yi

(y)ai(y)
)}
u(y),

R
(3)
n,i,ju = −

∫
dy

∂

∂yj

{
ψn(x− y)

(
aj(x) − aj(y)

)∂ai
∂yi

}
u(y),

R
(4)
n,i,ju =

∫
dy

∂

∂yi

{
ψn(x − y)

(
aj(x) − aj(y)

)∂ai
∂yj

}
u(y).

Hence, the same method of proof as in [5, Lemma 6.1] may be used.

Previous lemma is the only place where we need the L2,∞-regularity,
instead of L1,∞-regularity needed in general theory of evolution equations
(e.g. [9]).

In the sequel we suppose that ai(t,x) = ai(t, xi), i = 1, . . . , d and consider
operators Bn(t, s) given by (11). Similarly as in Lemma 4.1 we have Bnu =
∑∞

j=1 λjF
(j)
n

2
u in L(H0), where the operators F

(j)
n are given by

F (j)
n =

∫ t

s

dt1φ
(j)T(t1)Ân(t1)

=
d∑

i=1

[ ∫ t

s

dt1φ
(j)
i (t1)Jn,iai(t1, xi)

∂

∂xi
Jn,i

]
∈ L(H0).

For every n ∈ N the space Vn is defined in analogy with V, replacing operators

F (j) by F
(j)
n . Norm in Vn is denoted by ‖ · ‖Vn .

Lemma 4.6. There are constants ϑ > 0 (the same as in Lemma 4.2(c))

and λ̃∗ such that for every n ∈ N, it holds:

Re(Bnu, u) ≤ −ϑ‖u‖Vn + λ̃∗‖u‖20.
Proof. Let us denote

(div f (j))n :=

d∑

i=1

Jn,i
∂f

(j)
i

∂xi
Jn,i.

In the same way as in the proof of Lemma 4.2(c), for u ∈ H0 we obtain

Re(Bnu, u) ≤ −
(
1− ε

2

)
‖u‖2Vn

+

(
C2

1,n

2ε
+
(
1− ε

2

))
‖u‖20,
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where the constant C1 reads:

C1,n :=

∥∥∥∥
∫ t

s

dt2

∫ t

s

dt1∂a
T

n(t1)R(t1, t2)∂an(t2)

∥∥∥∥
1/2

L∞(Rd)

,

∂an(t) = (Jn,i∂xiai(t, ·)Jn,i)di=1 and ε ∈ (0, 2). Since the operators Jn,i are
bounded in L∞(Rd) uniformly in n, there is a constant C such that C1,n ≤ C
for all n ∈ N. Hence, we may take ϑ = 1− ε/2, and λ̃∗ = C2/2ε+ ϑ.

Proposition 4.7. There are constants ε′ > 0 and λ̃′ such that the sector

(17) Σ = {λ ∈ C; |arg (λ− λ̃′)| ≤ π/2 + ε′}
is contained in resolvent sets ρ(B), and ρ(Bn) for all n ∈ N. Furthermore,

there is a constant C̃ > 0 such that for every λ ∈ Σ it holds:

‖(B − λI)−1‖0 ≤ C̃(λ− λ̃′)−1,

‖(Bn − λI)−1‖0 ≤ C̃(λ − λ̃′)−1, for all n ∈ N.

Proof. The proposition follows from Lemma 4.2(c), Lemma 4.6 and [9,
Section 2.2, Remark 3.3.2, and Example 3.6].

Next lemma explains the relationship between operators Bn and B on a
“nice” domain. The proof is obvious.

Lemma 4.8. Bnu→ Bu in H0 for every u ∈ H∞ (or H2).
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