A FAN X ADMITS A WHITNEY MAP FOR C(X) IFF IT IS METRIZABLE

IVAN LONČAR

University of Zagreb, Croatia

ABSTRACT. Let X be a non-metric continuum, and C(X) be the hyperspace of subcontinua of X. It is known that there is no Whitney map on the hyperspace 2^X for non-metrizable Hausdorff compact spaces X. On the other hand, there exist non-metrizable continua which admit and ones which do not admit a Whitney map for C(X). In this paper we will show that a generalized fan X admits a Whitney map for C(X) if and only if it is metrizable.

1. INTRODUCTION

Introduction contains some basic definitions, results and notations. An external characterization of non-metric continua which admit a Whitney map is given in Section 2 (Theorem 2.3). In Section 3 we study hereditarily irreducible mappings onto a fan. The main theorem of this paper is Theorem 4.20.

All spaces in this paper are compact Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X). The cardinality of a set A is denoted by card(A). We shall use the notion of inverse system as in [3, pp. 135-142]. An inverse system is denoted by $\mathbf{X} = \{X_a, p_{ab}, A\}$.

A generalized arc is a Hausdorff continuum with exactly two nonseparating points. Each separable arc is homeomorphic to the closed interval I = [0, 1].

For a compact space X we denote by 2^X the hyperspace of all nonempty closed subsets of X equipped with the Vietoris topology. C(X) and X(n), where n is a positive integer, stand for the sets of all connected members of 2^X and of all nonempty subsets consisting of at most n points, respectively, both considered as subspaces of 2^X , see [6].

²⁰⁰⁰ Mathematics Subject Classification. 54F15, 54B20, 54B35.

Key words and phrases. Fan, hyperspace, inverse system, Whitney map.

For a mapping $f: X \to Y$ define $2^f: 2^X \to 2^Y$ by $2^f(F) = f(F)$ for $F \in 2^X$. By [14, 5.10] 2^f is continuous, $2^f(C(X)) \subset C(Y)$ and $2^f(X(n)) \subset Y(n)$. The restriction $2^f|C(X)$ is denoted by C(f).

An element $\{x_a\}$ of the Cartesian product $\prod\{X_a : a \in A\}$ is called a *thread* of **X** if $p_{ab}(x_b) = x_a$ for any $a, b \in A$ satisfying $a \leq b$. The subspace of $\prod\{X_a : a \in A\}$ consisting of all threads of **X** is called the limit of the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ and is denoted by $\lim \mathbf{X}$ or by $\lim\{X_a, p_{ab}, A\}$ [3, p. 135].

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of compact spaces with the natural projections $p_a : \lim \mathbf{X} \to X_a$, for $a \in A$. Then $2^{\mathbf{X}} = \{2^{X_a}, 2^{p_{ab}}, A\}$, $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ and $\mathbf{X}(n) = \{X_a(n), 2^{p_{ab}} | X_b(n), A\}$ form inverse systems. For each $F \in 2^{\lim \mathbf{X}}$, i.e., for each closed $F \subseteq \lim \mathbf{X}$ the set $p_a(F) \subseteq X_a$ is closed and compact. Thus, we have a mapping $2^{p_a} : 2^{\lim \mathbf{X}} \to 2^{X_a}$ induced by p_a for each $a \in A$. Define a mapping $M : 2^{\lim \mathbf{X}} \to \lim 2^{\mathbf{X}}$ by $M(F) = \{p_a(F) : a \in A\}$. Since $\{p_a(F) : a \in A\}$ is a thread of the system $2^{\mathbf{X}}$, the mapping M is continuous and one-to-one. It is also onto since for each thread $\{F_a : a \in A\}$ of the system $2^{\mathbf{X}}$ the set $F' = \bigcap\{p_a^{-1}(F_a) : a \in A\}$ is non-empty and $p_a(F') = F_a$. Thus, M is a homeomorphism. If P_a : $\lim 2^{\mathbf{X}} \to 2^{X_a}$, $a \in A$, are the projections, then $P_aM = 2^{p_a}$. Identifying F with M(F) we have $P_a = 2^{p_a}$.

LEMMA 1.1 ([6, Lemma 2.]). Let $X = \lim \mathbf{X}$. Then $2^X = \lim 2^{\mathbf{X}}$, $C(X) = \lim C(\mathbf{X})$ and $X(n) = \lim \mathbf{X}(n)$.

An arboroid is an hereditarily unicoherent continuum which is arcwise connected by generalized arcs. A metrizable arboroid is a *dendroid*. If X is an arboroid and $x, y \in X$, then there exists a unique arc [x, y] in X with endpoints x and y. If [x, y] is an arc, then $[x, y] \setminus \{x, y\}$ is denoted by (x, y).

A point t of an arboroid X is said to be a ramification point of X if t is the only common point of some three arcs such that it is the only common point of any two, and an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no arc [a, b] in X such that $x \in [a, b] \setminus \{a, b\}$.

If an arboroid X has only one ramification point t, it is called a *generalized* fan with the top t. A metrizable generalized fan is called a fan.

We say that an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is σ -directed if for each sequence $a_1, a_2, ..., a_k, ...$ of the members of A there is an $a \in A$ such that $a \ge a_k$ for each $k \in \mathbb{N}$.

In the sequel we shall use the following theorem.

THEOREM 1.2 ([7, Lemma 2.2]). Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of compact spaces with surjective bonding mappings and the limit X. Let Y be a metric compact space. Then for each surjective mapping $f : X \to Y$ there exists an $a \in A$ such that for each $b \ge a$ there exists a mapping $g_b : X_b \to Y$ such that $f = g_b p_b$.

If the bonding mappings are not surjective, then we consider the inverse system $\{p_a(X), p_{ab}|p_b(X), A\}$ which has surjective bonding mappings. Moreover, $p_a(X) = \bigcap \{p_{ab}(X_b) : b \ge a\}$. Applying Theorem 1.2 we obtain the following theorem.

THEOREM 1.3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of compact spaces with the limit X. Let Y be a metric compact space. Then for each surjective mapping $f : X \to Y$ there exists an $a \in A$ such that for each $b \geq a$ there exists a mapping $g_b : p_b(X) \to Y$ such that $f = g_b p_b$.

In the sequel we shall use the following results.

LEMMA 1.4 ([3, Corollary 2.5.7]). Any closed subspace Y of the limit X of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is the limit of the inverse system $\mathbf{X}_Y = \{Cl(p_a(Y)), p_{ab}|Cl(p_b(Y)), A\}.$

LEMMA 1.5 ([3, Corollary 2.5.11]). Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system and B a subset cofinal in A. The mapping consisting in restricting all threads from $X = \lim \mathbf{X}$ to B is a homeomorphism of X onto the space $\lim \{X_b, p_{bc}, B\}$.

Now we will prove some expanding theorems of non-metric compact spaces into σ -directed inverse systems of compact metric spaces.

THEOREM 1.6. If X is the Cartesian product $X = \prod \{X_s : s \in S\}$, where $\operatorname{card}(S) > \aleph_0$ and each X_s is compact, then there exists a σ -directed inverse system $\mathbf{X} = \{Y_a, P_{ab}, A\}$ of the countable products $Y_a = \prod \{X_\mu : \mu \in a\}$, $\operatorname{card}(a) = \aleph_0$, such that X is homeomorphic to $\lim \mathbf{X}$.

PROOF. Let A be the set of all subsets of S of the cardinality \aleph_0 ordered by inclusion. If $a \subseteq b$, then we write $a \leq b$. It is clear that A is σ -directed. For each $a \in A$ there exists the product $Y_a = \prod \{X_\mu : \mu \in a\}$. If $a, b \in A$ and $a \leq b$, then there exists the projection $P_{ab} : Y_b \to Y_a$. Finally, we have the system $\mathbf{X} = \{Y_a, P_{ab}, A\}$. Let us prove that X is homeomorphic to $\lim \mathbf{X}$. Let $x \in X$. It is clear that $P_a(x) = x_a$ is a point of Y_a and that $P_{ab}(x_b) = x_a$ if $a \leq b$. This means that (x_a) is a thread in $\mathbf{X} = \{Y_a, P_{ab}, A\}$. Set $H(x) = (x_a)$. We have the mapping $H : X \to \lim \mathbf{X}$. It is clear that H is continuous, 1-1 and onto. Hence, H is a homeomorphism.

COROLLARY 1.7. For each Tychonoff cube I^m , $m \geq \aleph_1$, there exists a σ -directed inverse system $\mathbf{I} = \{I^a, P_{ab}, A\}$ of the Hilbert cubes I^a such that I^m is homeomorphic to $\lim \mathbf{I}$.

THEOREM 1.8. Let X be a compact Hausdorff space such that $w(X) \ge \aleph_1$. There exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric compacta X_a such that X is homeomorphic to $\lim \mathbf{X}$.

PROOF. By [3, Theorem 2.3.23.] the space X is embeddable in $I^{w(X)}$. From Corollary 1.7 it follows that $I^{w(X)}$ is a limit of $\mathbf{I} = \{I^a, P_{ab}, A\}$, where every I^a is the Hilbert cube. Now, X is a closed subspace of lim \mathbf{I} . Let $X_a = P_m(X)$, where $P_m : I^m \to I^a$ is a projection of the Tychonoff cube I^m onto the Hilbert cube I^a . Let p_{ab} be the restriction of P_{ab} on X_b . We have the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that $w(X_a) \leq \aleph_0$. By virtue of Lemma 1.4 X is homeomorphic to lim \mathbf{X} . Moreover, \mathbf{X} is a σ -directed inverse system since $\mathbf{I} = \{I^a, P_{ab}, A\}$ is a σ -directed inverse system.

2. Whitney map and hereditarily irreducible mappings

The notion of an irreducible mapping was introduced by Whyburn [21, p. 162]. If X is a continuum, a surjection $f: X \to Y$ is *irreducible* provided no proper subcontinuum of X maps onto all of Y under f. Some theorems for the case when X is semi-locally-connected are given in [21, p. 163].

A mapping $f : X \to Y$ is said to be *hereditarily irreducible* [15, p. 204, (1.212.3)] provided that for any given subcontinuum Z of X, no proper subcontinuum of Z maps onto f(Z).

A mapping $f : X \to Y$ is light (zero-dimensional) if all fibers $f^{-1}(y)$ are hereditarily disconnected (zero-dimensional or empty) [3, p. 450], i.e., if $f^{-1}(y)$ does not contain any connected subsets of cardinality larger that one (dim $f^{-1}(y) \leq 0$). Every zero-dimensional mapping is light, and in the realm of mappings with compact fibers the two classes of mappings coincide.

LEMMA 2.1. Every hereditarily irreducible mapping is light.

LEMMA 2.2. If $f: X \to Y$ is monotone and hereditarily irreducible, then f is 1-1.

Let Λ be a subspace of 2^X . By a Whitney map for Λ [15, p. 24, (0.50)] we will mean any mapping $g : \Lambda \to [0, +\infty)$ satisfying

a) if $\{A\}, \{B\} \in \Lambda$ such that $A \subset B, A \neq B$, then $g(\{A\}) < g(\{B\})$ and b) $g(\{x\}) = 0$ for each $x \in X$ such that $\{x\} \in \Lambda$.

If X is a metric continuum, then there exists a Whitney map for 2^X and C(X) ([15, pp. 24-26], [5, p. 106]). On the other hand, if X is non-metrizable, then it admits no Whitney map for 2^X [2]. It is known that there exist non-metrizable continua which admit and ones which do not admit a Whitney map for C(X) [2]. Moreover, if X is a non-metrizable locally connected or a rim-metrizable continuum, then X admits no Whitney map for C(X) [9, Theorem 8, Theorem 11]. In what follows we shall show that a generalized fan X does not admit any Whitney map for C(X).

The first step in proving this statement is an external characterization of non-metric continua which admit a Whitney map.

THEOREM 2.3. Let X be a non-metric continuum. Then X admits a Whitney map for C(X) if and only if for each σ -directed inverse system $\mathbf{X} =$

 $\{X_a, p_{ab}, A\}$ of continua which admit Whitney maps for $C(X_a)$ and $X = \lim \mathbf{X}$ there exists a cofinal subset $B \subset A$ such that for every $b \in B$ the projection $p_b : \lim \mathbf{X} \to X_b$ is hereditarily irreducible.

PROOF. Necessity. Consider inverse system $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ whose limit is C(X) (Lemma 1.1). If $\mu : C(X) \to [0, \infty)$ is a Whitney map for C(X), then, by Theorem 1.3, there exists a cofinal subset B of A such that for every $b \in B$ there is a mapping $\mu_b : C(p_b)(X) \to [0, \infty)$ with $\mu = \mu_b C(p_b)$. Suppose that p_b is not hereditarily irreducible. Then there exists a pair F, Gof subcontinua of X with $F \subseteq G$, $F \neq G$, (i.e., F is a proper subcontinuum of G) such that $p_b(F) = p_b(G)$. It is clear that $C(p_b)(\{F\}) = C(p_b)(\{G\})$. This means that $\mu_b C(p_b)(\{F\}) = \mu_b C(p_b)(\{G\})$. From $\mu = \mu_b C(p_b)$ it follows that $\mu(\{F\}) = \mu(\{G\})$. This is impossible since μ is a Whitney map for C(X) and from $F \subseteq G$, $F \neq G$ it follows $\mu(\{F\}) < \mu(\{G\})$.

Sufficiency. Suppose that there exists a cofinal subset $B \subset A$ such that for every $b \in B$ the projection $p_b : \lim \mathbf{X} \to X_b$ is hereditarily irreducible. Consider inverse system $C(\mathbf{X}) = \{C(X_a), C(p_{ab}), A\}$ whose limit is C(X)(Lemma 1.1). Let $\mu_b : C(X_b) \to [0, \infty)$ be a Whitney map for $C(X_b)$, where $b \in B$ is fixed. We shall prove that $\mu = \mu_b C(p_b) : C(X) \to [0, \infty)$ is a Whitney map for C(X). Let F, G be a pair of subcontinua of X with $F \subseteq G, F \neq G$. We must prove that $\mu(\{F\}) < \mu(\{G\})$. Now, $p_b(F) \subset p_b(G)$ and $p_b(F) \neq p_b(G)$ since p_b is hereditarily irreducible. We infer that $\mu_b(\{p_b(F)\}) < \mu_b(\{p_b(G)\})$ since μ_b is a Whitney map for $C(X_b)$. Moreover, $\{p_b(F)\} = C(p_b)(\{F\})$ and $\{p_b(G)\} = C(p_b)(\{G\})M$. From $\mu_b(\{p_b(F)\}) < \mu_b(\{p_b(G)\})$ we have $\mu_b(C(p_b)(\{F\})) < \mu_b(C(p_b)(\{G\}))$, i.e., $\mu_bC(p_b)(\{F\}) < \mu_bC(p_b)(\{G\})$. Finally, $\mu(\{F\}) < \mu(\{G\})$ since $\mu = \mu_bC(p_b)$.

REMARK 2.4. It follows from Theorem 2.3 and Lemma 2.1 that the projections p_b are light for every $b \in B$. It is a question are the bonding mappings p_{ab} light mappings. The following theorem shows that it is possible to find such inverse system which has the light bonding mappings.

THEOREM 2.5. If X is a non-metric continuum which admits a Whitney map for C(X), then there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric continua X_a such that the bonding mappings p_{ab} are light and $X = \lim \mathbf{X}$.

PROOF. By virtue of Theorem 1.8 there exists a σ -directed inverse system $\mathbf{Y} = \{Y_a, q_{ab}, B\}$ of metric compact spaces Y_a such that $X = \lim \mathbf{Y}$. From Remark 2.4 it follows that there exists a metric space Y_b such that the projection $q_b : X \to Y_b$ is light. Using [18, p. 204, Theorem 7.10] we obtain an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric compact spaces and zero-dimensional bonding mappings such that $X = \lim \mathbf{X}$. Since every zero-dimensional mapping is light, and in the realm of mappings with compact fibers the two classes of mappings coincide [3, p. 450], we infer that p_{ab} are

light. Applying Theorem 2.3 we conclude that there exists a $B \subset A$ which is cofinal in A and such that the projections p_b are light for every $b \in B$.

We close this section with the following theorem.

THEOREM 2.6. If X is the Cartesian product $X = \prod \{X_s : s \in S\}$, where $\operatorname{card}(S) > \aleph_0$ and each X_s is a continuum, then there is no Whitney map for C(X).

PROOF. By virtue of Theorem 1.6 it follows that for the Cartesian product $X = \prod\{X_s : s \in S\}$, $\operatorname{card}(S) > \aleph_0$, there exists a σ -directed inverse system $\mathbf{X} = \{Y_a, P_{ab}, A\}$ of the products $Y_a = \prod\{X_\mu : \mu \in a\}$, $\operatorname{card}(a) = \aleph_0$, such that X is homeomorphic to $\lim \mathbf{X}$. If every $X_s : s \in S$, is a continuum, then every bonding mapping P_{ab} in $\mathbf{X} = \{Y_a, P_{ab}, A\}$ is monotone since $P_{ab}^{-1}(x)$ is the product of all X_s which are factors in Y_b but not factors in Y_a . The statement of Theorem follows from Theorem 2.3.

3. Hereditarily irreducible mappings onto arboroids

Theorem 2.3 suggests the study of hereditarily irreducible mappings. In this section we will consider hereditarily irreducible mappings onto arboroids.

A continuum X is said to be *arcwise connected* provided for every two points $x, y \in X, x \neq y$, there is a generalized or a metrizable arc $[x, y] \subset X$.

LEMMA 3.1. If X is an arboroid and if Y is an arboroid which contains finitely many ramification points, then every hereditarily irreducible mapping $f: X \to Y$ is a homeomorphism.

PROOF. Suppose that f is not a homeomorphism. Then there exists a point $y \in Y$ such that $f^{-1}(y)$ is not a single point. This means that there exist points $x_1, x_2 \in X$ such that $f(x_1) = f(x_2) = y$. Since X is an arboroid there exists the unique generalized arc Z in X such that x_1, x_2 are end points of Z.

CLAIM 1. There exists a segment [a, b] of Z such that $f^{-1}(y) \cap (a, b) = \emptyset$ and $f^{-1}(y) \cap [a, b] = \{a, b\}.$

It is clear that $f^{-1}(y)$ is not dense in Z. In the opposite case we have that Z is a proper subcontinuum of $f^{-1}(y)$. This is impossible since $f^{-1}(y)$ contains no continuum. It follows that there exists a segment $[c, d] \subset Z$ such that $f^{-1}(y) \cap Z \subset [c, d]$ and $\{c, d\} \subset f^{-1}(y) \cap Z$. It is again clear that there exists a subinterval (a_1, b_1) of [c, d] such that $f^{-1}(y) \cap (a_1, b_1) = \emptyset$. Let \mathcal{A} be a family of all segments (a_α, b_α) which contains (a_1, b_1) and $f^{-1}(y) \cap (a_\alpha, b_\alpha) = \emptyset$. It is clear that the union of all elements of \mathcal{A} is a subsegment (a, b) of [c, d]. Let us prove that $a, b \in f^{-1}(y)$. Suppose that $a \notin f^{-1}(y)$. Then $f(a) \neq y$. There exists an open set U containing a such that f(U) does not contain the point y. It is clear that there exists a segment (e, h) contained in U. Then $(a, b) \cup (e, h)$ is a segment which contains (a_1, b_1) . It is clear that $(a, b) \cup (e, h)$ is not in \mathcal{A} , a contradiction. Hence, $a \in f^{-1}(y)$. Similarly, one can prove that $b \in f^{-1}(y)$.

In the remaining part of the proof we shall consider the restriction g = f|[a, b]. Let us recall that g is hereditarily irreducible and that W = f([a, b]), as a subcontinuum of Y, is an arboroid. Thus we have a hereditarily irreducible surjection g of the arc [a, b] onto a dendroid W such that $g^{-1}(y) = \{a, b\}$.

CLAIM 2. There exist subarcs [a, x] and [z, b] such that $g([a, x]) \subset g([z, b])$ or $g([a, x]) \supseteq g([z, b])$.

Let U_y be a neighborhood of y such that $U_y \setminus \{y\}$ does not contain ramification points. There exist segments [a, x] and [z, b] such that $g([a, x]) \subset U_y$ and $g([z, b]) \subset U_y$. It follows that g([a, x]) and g([z, b]) are arcs since g((a, x]) and g([z, b)) do not contain ramification points. Suppose that $g([a, x]) \cap g([z, b]) = \{y\}$. Then $C = g([a, x]) \cup g([z, b])$ is a continuum. Because of Claim 1, g([x, z]) is a continuum not containing the point y. It follows that $C \cap g([x, z])$ is not a continuum since $C \cap g([x, z])$ contains $\{y\}$ and two disjoint subsets $g([a, x]) \cap g([x, z] \supseteq \{g(x)\}$ and $g([x, z]) \cap g([z, b] \supseteq \{g(z)\}$ not containing $\{y\}$. This is impossible since is W is hereditarily unicoherent. Hence, $D = g([a, x]) \cap g([z, b])$ is a non-degenerate continuum containing the point $\{y\}$. It is clear that D does not contain ramification points. It follows that $g([a, x]) \subset g([z, b])$ or $g([a, x]) \supseteq g([z, b])$ since in the opposite case we obtain a triod in U_y .

CLAIM 3. We may assume that $g([a, x]) \supseteq g([z, b])$.

Now, g([a, z]) = g([a, b]) since $g([a, x]) \supseteq g([z, b])$. This is impossible since g is hereditarily irreducible.

COROLLARY 3.2. If X is an arboroid and if Y is a generalized fan, then every hereditarily irreducible mapping $f: X \to Y$ is a homeomorphism.

Now we are ready to prove the following theorem.

THEOREM 3.3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of fans. If $X = \lim \mathbf{X}$ is arcwise connected, then X admits a Whitney map for C(X) if and only if X is metrizable.

PROOF. If X is metrizable, then it admits a Whitney map for C(X) [15, pp. 24-26]. Suppose now that X admits a Whitney map for C(X). From Theorem 2.3 it follows that there exists a cofinal subset B of A such that for every $b \in B$ the projection p_b is hereditarily irreducible. By Corollary 3.2 we infer that p_b is a homeomorphism. Hence, X is metrizable since each X_b is metrizable.

4. AM-fans

We say that an arboroid X is an AM-arboroid if each arc in X is metrizable. Now we shall prove that every arboroid is a limit of a σ -directed inverse systems of AM-arboroids.

THEOREM 4.1. Let X be an arboroid. There exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is an AM-arboroid, every p_{ab} is monotone and X is homeomorphic to $\lim \mathbf{X}$.

PROOF. If X is an AM-dendroid, then it has metrizable arcs and Theorem is obvious. If X is not an AM-dendroid, then there exists an inverse σ -system $\mathbf{Y} = \{Y_a, q_{ab}, A\}$ of metric continua X_a such that X is homeomorphic to $\lim \mathbf{Y}$ (Theorem 1.8). It is clear that the projections q_a are not light since then the restrictions $q_a|L$ are light for every arc L in X. Then from [10, Theorem 1] it follows that L is metrizable. Hence, q_a is not light. Let q_a be the natural projection of X onto Y_a . Applying the monotone-light factorization [3, pp. 450-451] to q_a , we get compact spaces X_a , monotone surjections $m_a : X \to X_a$ and light surjections $l_a : X_a \to Y_a$ such that $q_a = l_a m_a$. By [10, Lemma 8] there exist monotone surjections $p_{ab}: X_b \to X_a$ such that $p_{ab}m_b = m_a, a \leq b$. It follows that $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an inverse system such that X is homeomorphic to $\lim \mathbf{X}$. Let us prove that X_a is an AM-arboroid. The space X_a is hereditarily unicoherent since m_a is monotone. Moreover, X_a is arcwise connected. Namely, if x_a, y_a are distinct points of X_a , then there exists a pair x, y of points of X such that $x_a = m_a(x)$ and $y_a = m_a(y)$. Let L be the arc with end points x and y. Now, $m_a(L)$ is a continuous image of an arc and, consequently, arcwise connected [19]. Hence, X_a is an arboroid. Since every map l_a is light, we infer that each arc in X_a is metrizable (by [20, Theorem 1.2, p. 464] saying that if X is rim-metrizable and a surjective mapping $l: X \to Y$ is light, then w(X) = w(Y); compare also [10, Theorem 1]). Hence, every X_a is an AM-arboroid. Π

COROLLARY 4.2. Let X be a generalized fan. There exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is an AM-fan, every p_{ab} is monotone and X is homeomorphic to $\lim \mathbf{X}$.

PROOF. By Theorem 4.1 there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is an AM-arboroid, every p_{ab} is monotone and X is homeomorphic to $\lim \mathbf{X}$. Let us observe that the projections $p_a : X \to X_a$ are monotone [3, 6.3.16.(a), pp. 462-463]. It remains to prove that each X_a is an AM-fan. Suppose that some X_a is not AM-fan. This means that X_a has two different ramification points. It follows that X_a contains two different triods T_1 and T_2 . Hence, there is a triod, say T_2 , such that $p_a^{-1}(T_2)$ is a subset of some arc L in X since X is a generalized fan. It is clear that this impossible since $p_a^{-1}(T_2)$ is a continuum.

THEOREM 4.3. If a generalized fan X admits a Whitney map for C(X), then X is an AM-fan.

PROOF. It follows from Corollary 4.2 that there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is an AM-fan, every p_{ab} is monotone and X is homeomorphic to $\lim \mathbf{X}$. If X admits a Whitney map for C(X), then there exists a cofinal subset B of A such that p_b is hereditarily irreducible for every $b \in B$ (Theorem 2.3). From Lemma 2.2 we infer that p_b is 1-1. Hence, p_b is a homeomorphism. This means that X is an AM-fan.

Now we shall expand every non-metric AM-fan into inverse system of a metric finite fan. This is done in Theorem 4.19. The proof of this Theorem requires some preliminary definitions and results which are straightforward modifications of [4].

A chain, in a topological space, is a collection $\mathcal{E} = \{E_1, ..., E_m\}$ of open sets E_i such that $E_i \cap E_j \neq \emptyset$ if and only if $|i - j| \leq 1$. The elements of \mathcal{E} are links. Let \mathcal{U} be an open cover of a space X. We say that a chain $\mathcal{E} = \{E_1, ..., E_m\}$ is a \mathcal{U} -chain if each link E_i of \mathcal{E} is contained in some member U of \mathcal{U} .

Let $\mathcal{E} = \{E_1, ..., E_m\}$ be a chain; frequently we denote \mathcal{E} by E(1, m) and denote $\cup \{E_i : 1 \le i \le m\}$ by $E^*(1, m)$ or by \mathcal{E}^* .

DEFINITION 4.4. If [a, b] is an arc and $\mathcal{E} = E(1, m)$ is a chain covering [a, b] then [a, b] is straight in \mathcal{E} provided:

- 1. \mathcal{E} is a chain from a to b i.e. $a \in E_1 \setminus Cl E_2, b \in E_m \setminus Cl E_{m-1},$
- 2. $(\partial E_i \cap [a, b])$ is a one point set if i = 1 or i = m and a two point set otherwise.

LEMMA 4.5. Suppose that X is an AM-arboroid, Y is a finite tree, $Y \subset X$ and $p \in Y$. Let $\mathcal{K} = \{K : K \text{ is a component of } Y \setminus \{p\}\}$. Then for each open set U such that $p \in U$ there exists an open set V such that $p \in V \subset U$ and $\operatorname{card}(Y \cap \partial V) = \operatorname{card}(\mathcal{K})$.

PROOF. The proof is the same as the proof of Lemma 1 of [4] since X has metrizable arcs and Y is metrizable. Namely, \mathcal{K} is a finite set, since each component of $Y \setminus \{p\}$ contains an end point of Y. This follows from the fact that if $K \in \mathcal{K}$, then K is arcwise connected, because Y is locally connected. The end points of Y are precisely the end points of maximal arcs in Y. Since $K \cup \{p\}$ is a tree and K is arcwise connected, then if A is a maximal arc in $K \cup \{p\}$, at least one end point of A is an end point of Y. Suppose $\mathcal{K} = \{K_1, ..., K_n\}$. According to [21, p. 88] there is a set V', open in Y such that $p \in V' \subset U$, and $\partial_Y V'$, the boundary of V' relative to Y, contains exactly n points. Now V' must be connected, since if V'' is the component of V' containing p, then V'' is open in Y and $\partial_Y V'' \subset \partial_Y V'$. Since we may assume that for each $i, K_i \nsubseteq Cl U, \partial_Y V''$ contains a point from each K_i .

Since $\partial_Y V'$ contains only *n* points, V' = V''. Thus $Y \setminus \partial_Y V'$ is the union of two separated sets, one of which is V' and the other contains $Y \setminus U$. There are disjoint sets *S* and *T*, open in *X*, such that $V' \subset S$ and $Y \setminus U \subset T$. Now let $V = U \setminus Cl T$. Then $(\partial V) \cap Y = (\partial T) \cap Y = \partial_Y V'$, an *n*-point set.

LEMMA 4.6. Suppose [a, b] is straight in $\mathcal{E} = E(1, m)$ and W is an open set containing [a, b]. Then [a, b] is straight in $\{E_1 \cap W, E_2 \cap W, ..., E_m \cap W\}$.

PROOF. This is Lemma 2 of [4]. It is clear from the definition of straightness that for each $i, \partial(E_i \cap W)$ contains at least as many points of [a, b] as ∂E_i does. Conversely, since $\partial(E_i \cap W) \subset (\partial E_i) \cap (\partial W)$ and $[a, b] \subset W, (\partial(E_i \cap W)) \cap [a, b] \subset (\partial E_i) \cap [a, b]$. Thus $\partial(E_i \cap W)$ contains exactly as many points of [a, b] as ∂E_i does. That is, [a, b] is straight in $\{E_1 \cap W, E_2 \cap W, ..., E_m \cap W\}$.

We now show that each arc in AM-arboroid can be covered by chains in which that arc is straight.

LEMMA 4.7. If [a, b] is an arc in an AM-dendroid X and U an open covering of X, then there an chain $\mathcal{E} = E(1,m)$ of sets open in X such that $\mathcal{E} = E(1,m)$ refines U and [a, b] is straight in \mathcal{E} .

PROOF. The proof is a straightforward modification of the proof of [4, Proposition 1]. Suppose, to the contrary, that there is an arc [a, b] in X such that [a, b] is not straight in any chain which refines \mathcal{U} . For fixed \mathcal{U} and fixed arc [a, b], we say that a subarc [a', b'] of [a, b] has property \mathcal{P} iff [a', b'] is not straight in any chain which refines \mathcal{U} . Clearly [a, b] has property \mathcal{P} . We now show that property \mathcal{P} is inductive. Let $\mathcal{L} = \{L_{\alpha} : \alpha < \omega_{\tau}\}$ be a transfinite sequence such that, for each ordinal $\alpha < \omega_{\tau}$, L_{α} has property \mathcal{P} and $L_{\beta} \subset L_{\alpha}$ if $\alpha < \beta < \omega_{\tau}$. We must show that $L = \bigcap \{L_{\alpha} : \alpha < \omega_{\tau}\}$ has property \mathcal{P} . If it does not, then L is not degenerate, hence it is a subarc [c, d] of [a, b]. Since [a, b] has property $\mathcal{P}, [c, d] \neq [a, b]$. Without loss of generality, we may assume that $a < c < d \leq b$, < denoting the usual order from a to b on [a, b]. Since [c, d] does not have property \mathcal{P} , there is a chain $\mathcal{F} = F(1, n)$ of open sets in X such that [c, d] is straight in \mathcal{F} and \mathcal{F} refines \mathcal{U} . Let U be an open set such that $c \in U$ and $Cl \ U \subset F_1 \setminus Cl \ F_2$. According to Lemma 4.5, there is an open set V such that $c \in V \subset U$ and $(\partial V) \cap [c, d]$ is degenerate. Similarly, there is an open set R such that $d \in R \subset Cl \ R \subset F_n \setminus Cl \ F_{n-1}$ and $(\partial R) \cap [c, d]$ is degenerate. Now $(V \cup [c, d] \cup R) \cap [a, b]$ is open in [a, b] and contains L. Hence there is an $\alpha < \omega_{\tau}$ such that $L_{\alpha} \subset (V \cup [c, d] \cup R) \cap [a, b]$. If $L_{\alpha} = [a_{\alpha}, b_{\alpha}]$, then we may assume that $a_{\alpha} \in V$ and $b_{\alpha} \in R$, since $L_{\alpha} \setminus [c, d] \subset V \cup R$. Since $V \subset F_1 \backslash Cl \ F_2$ and $R \subset F_n \backslash Cl \ F_{n-1}, \mathcal{F}$ is a chain from a_{α} to a_{β} covering $[a_{\alpha}, b_{\alpha}]$. Since, for each α , $(\partial F_{\alpha}) \cap (V \cup R) = \emptyset$, $\partial F_{\alpha} \cap [a_{\alpha}, b_{\alpha}] = \partial F_{\alpha} \cap [c, d]$, which is degenerate if F_{α} is an end link of \mathcal{F} and a two point set otherwise. Thus $L_{\alpha} = [a_{\alpha}, b_{\alpha}]$ is straight in \mathcal{F} . This is impossible, for L_{α} was assumed

to have property \mathcal{P} . It follows that [c, d] must have property \mathcal{P} , hence that property \mathcal{P} is inductive.

Since [a, b] has property \mathcal{P} , there is a subcontinuum of [a, b] which is irreducible with respect to having property \mathcal{P} . This subcontinuum must be non-degenerate; we shall simply assume that [a, b] is irreducible with respect to having property \mathcal{P} . Let x be a non-end point of [a, b]. Since [a, x] and [x, b]are proper subarcs of [a, b], neither has property \mathcal{P} . Hence there are \mathcal{U} -chains $\mathcal{G} = G(1, j)$ and $\mathcal{H} = H(1, k)$ of open sets in X such [a, x] is straight in \mathcal{G} and [x, b] is straight in \mathcal{H} .

Using regularity and Lemma 4.5, we obtain an open set Q such that $x \in Q \subset Cl \ Q \subset (G_j \setminus Cl \ G_{j-1}) \cap (H_1 \setminus Cl \ H_2)$ and $(\partial Q) \cap [a, b]$ contains exactly two points, one in [a, x], the other in [x, b]. Clearly, $[a, x] \setminus Q$ and $[x, b] \setminus Q$ are disjoint closed sets. It follows that $X \setminus Q$ is the union of two disjoint closed sets A and B, with $[a, x] \setminus Q \subset A$ and $[x, b] \setminus Q \subset B$. From the normality of X we infer that there exist open sets S and T such that $A \subset S, B \subset T$ and $Cl \ S \cap Cl \ T = \emptyset$. We now define chains $\mathcal{G}' = \mathcal{G}'(1, j)$ and $\mathcal{H}' = \mathcal{H}'(1, k)$, one-to-one refinements of \mathcal{G} and \mathcal{H} , respectively, by $\mathcal{G}'_i =$ $\mathcal{G}_i \cap (S \cup Q), \ H'_i = H_i \cap (T \cup Q)$. Lemma 4.6 shows that [a, x] is straight in \mathcal{G}' and [x, b] is straight in \mathcal{H}' . Since the only points in a link of \mathcal{G}' and a link of \mathcal{H}' are those in Q, we may define a chain $\mathcal{E} = E(1, m)$ by $E_i = \mathcal{G}'_i$, if $1 \leq i \leq j; \ \mathcal{G}_i = \mathcal{H}'_{i-j}$, if $j + 1 \leq i \leq j + k$. One can prove (see [4, p. 116]) that [a, b] is straight in \mathcal{E} .

Lemma 4.7 shows that one can cover each arc from the top of an AM-fan to an end point by a chain in which the arc is straight and a finite collection of these chains cover the AM-fan. However, different chains may intersect very badly. In order to cut them apart, we will need some control over boundaries of the links. Hence we establish

LEMMA 4.8. Suppose X is an AM-fan, t is the top of X and W is the set of end points of X. For each cover \mathcal{U} of X and each $w \in W$ there is a U-chain $\mathcal{E} = E(1,m)$ of sets open in X such that [t,w] is straight in $\mathcal{E} = E(1,m)$ and $\partial E^*(2,m) \subset E_1$.

Given an AM-fan X and an open cover \mathcal{U} of X we want to cover X with a \mathcal{U} -tree chain whose nerve is a triangulation of a finite fan as does Figure 3 in [4]. The following Lemma shows that we can do this for a finite subfan Y of X.

LEMMA 4.9 ([4, Proposition 3]). Suppose X is an AM-fan, Y is a finite subfan of X, the top of X, t, is the top of Y and each end point w of Y, $w \neq t$, is an end point of X. If $Y = \bigcup \{[t, w_i] : i \in \{1, 2, ..., n\}\}$ and \mathcal{U} is a cover of X, then there exists a finite collection $\mathcal{F}_1, \mathcal{F}_2, ..., \mathcal{F}_n$ such that:

(i) each $\mathcal{F}_j = F_j(1, r_j) = \{F_{j1}, F_{j2}, ..., F_{jr_j}\}$ is a \mathcal{U} -chain consisting of at least 3 links,

- (ii) for each j, $[t, w_j]$ is straight in \mathcal{F}_j ,
- (iii) for each j, $\partial F^*(2, r_j) \subset F_{j1}$,
- (iv) for each j, $F_{j1} = F_{11}$, (v) if $i \neq j$ then $([t, w_j] \cup F^*(2, r_j)) \cap Cl F^*(2, r_i) = \emptyset$.

Let \mathcal{U} be a cover of a space X. We shall write $(x, y) < \mathcal{U}$ if there is an element $U \in \mathcal{U}$ such that $x, y \in U$.

Once we have covered the AM-fan X as in Figure 3 of [4], we use the cover to construct the retraction. To do this, we will piece together the retractions of chains onto straight arcs. We therefore prove

LEMMA 4.10. Let a compact space X contain an arc [a, b] that is straight in a \mathcal{U} -chain $\mathcal{E} = E(1,m), \ \mathcal{E}^* \subset X, \ \partial \mathcal{E}^*(2,m) \subset E_1 \ and \ p = (\partial E_1) \cap [a,b].$ Then there is a continuous function $f: (\mathcal{E}^* \setminus E_1) \to [p, b]$ such that f is a retraction onto $[p,b], f[(\partial E_1) \cap E_2] = p$ and for each $x \in \mathcal{E}^* \setminus E_1, (x, f(x)) < c$ $\mathcal{U}.$

PROOF. This is actually Proposition 4 of [4] whose proof is valid in the case of AM-fans.

Since $\partial \mathcal{E}^*(2,m) \subset E_1, \mathcal{E}^* \setminus E_1$ is compact and for each $i \in \{2,...,m-1\}$, ∂E_i is the union of two disjoint closed sets, $(\partial E_i) \cap E_{i-1}$ and $(\partial E_i) \cap E_{i+1}$. Since [a, b] is straight in \mathcal{E} , for each $i \in \{1, ..., m-1\}, (\partial E_i) \cap E_{i+1} \cap [a, b]$ is a single point, r_i . Then $p = r_1$. Let $b = r_m$. Again, straightness guarantees that $p = r_1 < r_2 < \ldots < r_m = b$, where < denotes the usual order from a to bon [a, b]. For each $i \in \{1, ..., m - 2\}$, we define a function

$$g_i: ((\partial E_i) \cap E_{i+1}) \cup [r_i, r_{i+1}] \cup ((\partial E_{i+1}) \cap E_{i+2}) \to [r_i, r_{i+1}]$$

by

$$g_i(x) = \begin{cases} r_i & \text{if} \quad x \in (\partial E_i) \cap E_{i+1}, \\ x & \text{if} \quad x \in [r_i, r_{i+1}], \\ r_{i+1} & \text{if} \quad x \in (\partial E_{i+1}) \cap E_{i+2}. \end{cases}$$

Clearly, each g_i is a continuous retraction onto $[r_i, r_{i+1}]$. Since metric arcs are absolute retracts, for each *i* there is a continuous extension h_i of g_i , $h_i : Cl$ $E_{i+1} \setminus E_i \to [r_i, r_{i+1}]$. The function $f = h_1 \cup h_2 \cup \ldots \cup h_{m-1}$ is a continuous retraction of $\mathcal{E}^* \setminus E_1$ onto [p, b] such that, for each $x \in \mathcal{E}^* \setminus E_1, (x, f(x)) < \mathcal{U}$. Π

The final step is the following theorem.

THEOREM 4.11. Suppose X is an AM-fan and \mathcal{U} is a cover of X. Then there is a finite fan $Y \subset X$ and a retraction $r: X \to Y$ such that if $x \in X$, then $(x, f(x)) < \mathcal{U}$.

PROOF. Let t denote the top of X and let W denote the set of end points of X. Then $X = \bigcup \{[t, w] : w \in W\}$. For each $w \in W$, we apply Lemma 4.8 to obtain a chain \mathcal{E}_w such that [t, w] is straight in \mathcal{E}_w and $\partial (\mathcal{E}_w \setminus E_{w1})^* \subset E_{w1}$.

There is a finite subset $W' \subset W$ such that $\{\mathcal{E}_w^* : w \in W'\}$ covers X. If $W' = \{w_1, ..., w_n\}$, let us relabel the corresponding chains $\mathcal{E}_1, \mathcal{E}_2, ..., \mathcal{E}_n$. For each $j \in \{1, 2, ..., n\}$ let $\mathcal{E}_j = \{E_{j1}, E_{j2}, ..., E_{jm_j}\} = E_j(1, m_j)$. As in Step III of the proof of Theorem 1 of [4] one can construct the new \mathcal{U} -chains $\mathcal{K}_1 = \{K_{11}, K_{12}, ..., K_{1p_1}\}, \mathcal{K}_2 = \{K_{21}, K_{22}, ..., K_{2p_2}\}, ..., \mathcal{K}_n = \{K_{n1}, K_{n2}, ..., K_{np_n}\}$ such that:

- (1) $\bigcup \{ \mathcal{K}_j : j \in \{1, 2, ..., n\} \}$ covers X,
- (2) For each $j \in \{1, 2, ..., n\}$ the arc $[t, w_j]$ is straight in \mathcal{K}_j ,
- (3) If $j \in \{1, 2, ..., n\}$, then $K_{j1} = K_{11}$, and
- (4) If $j \neq i$, then $K_i^*(2, p_i) \cap K_j^*(2, p_j) = \emptyset$.

See Figure 3 in [4, p. 124]. We now construct a retraction r of X onto $Y = \bigcup\{[t, w_j] : j \in (1, ..., n)\}$. We will assume that each \mathcal{K}_j has more that one link; if this is not true, the needed modifications in the definition of r are obvious.

For each $j \in \{1, 2, ..., n\}$, there exists a point $s_j \in [t, w_j]$ such that $(\partial K_{j1}) \cap [t, w_j] = (\partial K_{j1}) \cap Y \cap K_{j2} = \{s_j\}$. Since each $[t, w_j]$ is straight in the \mathcal{U} -chain \mathcal{K}_j , we apply Lemma 4.10 to obtain a retraction $f_j : (K_j^* \setminus K_{j1}) \to [s_j, w_j]$ such that $f_j[(\partial K_{j1}) \cap K_{j2}] = \{s_j\}$ and f_j moves each point less than \mathcal{U} . If $i \neq j$, then (domain f_i) \cap (domain f_j) $\subset K_i^*(2, p_i) \cap K_j^*(2, p_j) = \emptyset$. Hence we may define $f = \cup \{f_i : i \in \{1, 2, ..., n\}\}$. Clearly, f is a retraction of $X \setminus K_{11}$ onto $\cup \{[s_i, w_i] : i \in \{1, 2, ..., n\}\}$ moving each point less than \mathcal{U} .

Now $Y \cap K_{11} = \bigcup\{[t, s_i) : i \in \{1, 2, ..., n\}\}$ and $(ClK_{11}) \cap Y = \bigcup\{[t, s_i] : i \in \{1, 2, ..., n\}\}$ since each $[t, w_i]$ is straight in \mathcal{K}_i . We define $g : (\partial K_{11}) \cup ((Cl K_{11}) \cap Y) \to (Cl K_{11}) \cap Y$ by g(x) = x if $x \in Y$ and $g(x) = s_i$ if $x \in (\partial K_{11}) \cap K_{i2}$. Since $(Cl K_{11}) \cap Y$ is a metric tree, it is an absolute retract. Hence g can be extended to a map $h : Cl K_{11} \to (Cl K_{11}) \cap Y$. Since $Cl K_{11}$ is contained in some member of \mathcal{U} , f moves each point less than \mathcal{U} . Finally, let $r = h \cup f$. Since f and h agree on the intersection of their domains, ∂K_{11} , r is well-defined and continuous. Obviously, r is a retraction of X onto Y. Since neither f nor h moves any point as much as \mathcal{U} , neither does r.

REMARK 4.12. Theorem 4.11 is a modification of Theorem 1 of [4]. The proof is valid for AM-fans. Let us observe that from the proof of this Theorem it follows that if t is the top of X, then r(t) = t.

In the case that X is a fan, we obtain [4, Theorem 2].

THEOREM 4.13. Each fan is an inverse limit of a sequence of finite fans.

Given an open covering \mathcal{U} of a compact space X, we say that a mapping $f: X \to Y$ is a \mathcal{U} -mapping provided there is an open covering \mathcal{V} of Y such that $f^{-1}(\mathcal{V})$ refines \mathcal{U} , written as $f^{-1}(\mathcal{V}) \geq \mathcal{U}$.

Let \mathcal{P} be a class of compact polyhedra. We say that a compact space X is \mathcal{P} -like provided for every open covering \mathcal{U} of X there is a polyhedron $P \in \mathcal{P}$ and a \mathcal{U} -mapping $f: X \to P$ which is surjective.

Now let \mathcal{F} be a class of finite metrizable fans. From Lemmas 4.5-4.10 and Theorems 4.11-4.13 it follows the following theorem.

THEOREM 4.14. Every AM-fan is \mathcal{F} -like.

In what follows we shall use the notion of approximate inverse systems in the sense of S. Mardešić [11]. $\operatorname{Cov}(X)$ is the set of all normal coverings of a topological space X. If $\mathcal{U}, \mathcal{V} \in \operatorname{Cov}(X)$ and \mathcal{V} refines \mathcal{U} , we write $\mathcal{V} < \mathcal{U}$.

An approximate inverse system is a collection $\mathbf{X} = \{X_a, p_{ab}, A\}$, where (A, \leq) is a directed preordered set, $X_a, a \in A$, is a topological space and $p_{ab} : X_b \to X_a, a \leq b$, are mappings such that $p_{aa} = id$ and the following condition (A2) is satisfied:

(A2) For each $a \in A$ and each normal cover $\mathcal{U} \in \text{Cov}(X_a)$ there is an index $b \ge a$ such that

 $(p_{ac}p_{cd}, p_{ad}) < \mathcal{U}$, whenever $a \leq b \leq c \leq d$.

An approximate map [13, Definition (1.9), p. 592] $\mathbf{p} = \{p_a : a \in A\}$: $X \to \mathbf{X}$ into an approximate system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is a collection of maps $p_a : X \to X_a, a \in A$, such that the following condition holds

(AS) For any $a \in A$ and any $\mathcal{U} \in \text{Cov}(X_a)$ there is $b \geq a$ such that $(p_{ac}p_c, p_a) < \mathcal{U}$, for each $c \geq b$.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system and let $\mathbf{p} = \{p_a : a \in A\} : X \to \mathbf{X}$ be an approximate map. We say that \mathbf{p} is a *limit* of \mathbf{X} , written as $\lim \mathbf{X}$, provided it has the following universal property:

(UL) For any approximate map $\mathbf{q} = \{q_a : a \in A\} : Y \to \mathbf{X}$ of a space Y there exists a unique map $g : Y \to X$ such that $p_a g = q_a$.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate system. A point $x = (x_a) \in \prod\{X_a : a \in A\}$ is called an *approximate thread* of \mathbf{X} provided it satisfies the following condition:

(L) $(\forall a \in A)(\forall \mathcal{U} \in \operatorname{Cov}(X_a))(\exists b \ge a)(\forall c \ge b) \ p_{ac}(x_c) \in \operatorname{st}(x_a, \mathcal{U}).$

If X_a is a T_{3.5}-space, then the sets st $(x_a, \mathcal{U}), \mathcal{U} \in \text{Cov}(X_a)$, form a basis of the topology at the point x_a . Therefore, for an approximate system of Tychonoff spaces condition (**L**) is equivalent to the following condition:

 $(\mathbf{L})^* \ (\forall a \in A) \ \lim\{p_{ac}(x_c) : c \ge a\} = x_a.$

The existence of the limit of any approximate system was proved in [13, (1.14) Theorem].

THEOREM 4.15. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system. Let $X \subseteq \prod\{X_a : a \in A\}$ be the set of all threads of \mathbf{X} and let $p_a : X \to X_a$ be the restriction $p_a = \pi_a | X$ of the projection $\pi_a : \prod\{X_a : a \in A\} \to X_a, a \in A$. Then $\mathbf{p} = \{p_a : a \in A\} : X \to \mathbf{X}\}$ is a limit of \mathbf{X} .

We call this limit the *canonical limit* of $\mathbf{X} = \{X_a, p_{ab}, A\}$. In the sequel limit means the canonical limit.

A preordered set (A, \leq) is *cofinite* provided each $a \in A$ the set of all predecessors of a is a finite set.

We shall use the following theorem from [12, Theorem 3].

THEOREM 4.16. Let \mathcal{P} be a class of polyhedra with no isolated points. Let X be a compact Hausdorff space which is \mathcal{P} - like. Then there exists an approximate inverse system of compact polyhedra $\mathbf{P} = \{P_a, \varepsilon_a, p_{ab}, A\}$ such that $P_a \in \mathcal{P}$, all the bonding mappings p_{ab} are surjective and the limit $\lim \mathbf{P}$ is homeomorphic to X. Moreover, A is cofinite and $\operatorname{card}(A) \leq w(X)$.

THEOREM 4.17. For every AM-fan X there exists an approximate inverse system $\mathbf{F} = \{F_a, \varepsilon_a, p_{ab}, B\}$ of finite metric fans such that $F_a \in \mathcal{F}$, all the bonding mappings p_{ab} are surjective and the limit $\lim \mathbf{P}$ is homeomorphic to X.

PROOF. Theorem follows from Theorems 4.14 and 4.16.

Π

REMARK 4.18. Let us observe that from the proof of [12, Theorem 3], in particular, from the proof [12, Lemma 2] it follows that $p_{ab}: P_b \to P_a$ is a simplicial map such that $p_{ab}(r_b(t)) = r_a(t)$, where t is the top of the fan X and $r_a: X \to P_a$ is a retraction from Theorem 4.11.

Now we shall expand each non-metrizable AM-fan into usual inverse systems of metric fans.

THEOREM 4.19. For every AM-fan X there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric fans such that all the bonding mappings p_{ab} are surjective and the limit lim \mathbf{X} is homeomorphic to X.

PROOF. By Theorem 4.17 there exists an approximate inverse system $\mathbf{F} = \{F_a, \varepsilon_a, q_{ab}, B\}$ of finite metric fans such that $F_a \in \mathcal{F}$, all the bonding mappings q_{ab} are surjective and the limit lim **F** is homeomorphic to X. By forgetting the meshes ε_a [13, (1.7) Definition] and using Corollary 1 of [8] we obtain a usual σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$, where each X_a is the limit of an approximate inverse subsystem $\{F_{\alpha}, q_{\alpha\beta}, \Phi\}, \operatorname{card}(\Phi) = \aleph_0$, of the system $\mathbf{F}^* = \{F_a, q_{ab}, B\}$. Let us prove that every X_a is a metric fan. Firstly, each X_a is arcwise connected since there exists the projection $p_a: X \to X_a$ and X is arcwise connected. Now we shall prove that X is hereditarily unicoherent. From Lemma 3 of [8] it follows that we may assume that Φ is order isomorphic to the set of natural numbers \mathbb{N} . Then from Proposition 8 of [1] it follows that there exists an inverse sequence $\{F_n, q_{nm}^*, \mathbb{N}\}$ such that $\lim\{F_{\alpha}, q_{\alpha\beta}, \Phi\}$ is homeomorphic to $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$. It is known that $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ is hereditarily unicoherent [16, Corollary 1, p. 228] since each F_n is hereditarily unicoherent. It remains to prove that $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ is a fan. For each $n \in \mathbb{N}$ let t_n be the top of F_n . From Remark 4.12 it follows that $t = (t_n)$ is a point of $\lim \{F_n, q_{nm}^*, \mathbb{N}\}$. It is clear that t is a ramification point of $\lim \{F_n, q_{nm}^*, \mathbb{N}\}$. Suppose that there exists a ramification

point u of $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ such that $u \neq t$. Then there exists a triod Tin $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ which contains u and $t \notin T$. There exists an $n \in \mathbb{N}$ such that $T_n = q_n^*(T)$ contains no $t_n = q_n^*(t)$. This means that T_n is an arc since F_n is a fan. Now, $\lim\{T_n, q_n^*|T_m, m > n\}$ is chainable. Hence, $\lim\{T_n, q_n^*|T_m, m > n\}$ is atriodic [17, Theorem 12.4]. This is impossible since $T = \lim\{T_n, q_n^*|T_m, m > n\}$. Thus, $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ contains only one ramification point t. Hence, $\lim\{F_n, q_{nm}^*, \mathbb{N}\}$ is a fan.

Now we are ready to prove the main result of this paper.

THEOREM 4.20. A generalized fan X admits a Whitney map for C(X) if and only if it is metrizable.

PROOF. If X is metrizable, then X admits a Whitney map for C(X). Conversely, if X admits a Whitney map for C(X), then, by Theorem 4.3 X is an AM-fan. From Theorem 4.19 it follows that there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric fans such that all the bonding mappings p_{ab} are surjective and the limit lim \mathbf{X} is homeomorphic to X. Theorem 3.3 completes the proof.

Let \mathcal{AM} be a class of AM-arboroids. From Theorem 4.1 it follows that each arboroid is \mathcal{AM} -like. Using Theorem 4.14 we obtain the following result.

COROLLARY 4.21. Each generalized fan is \mathcal{F} -like.

By a similar method of proof as in the proof of Theorem 4.19 we obtain the following theorem.

THEOREM 4.22. For every generalized fan X there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of metric fans such that all the bonding mappings p_{ab} are surjective and the limit lim \mathbf{X} is homeomorphic to X.

References

- M.G. Charalambous, Approximate inverse systems of uniform spaces and an application of inverse systems, Comment. Math. Univ. Carolin. 32 (1991), 551–565.
- [2] J. J. Charatonik and W. J. Charatonik, Whitney maps a non-metric case, Colloq. Math. 83 (2000), 305–307.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] J. B. Fugate, Retracting fans onto finite fans, Fund. Math. 71 (1971), 113–125.
- [5] A. Illanes and S.B. Nadler, Jr., Hyperspaces: Fundamentals and Recent advances, Marcel Dekker, New York-Basel, 1999.
- [6] Y. Kodama, S. Spież and T. Watanabe, On shape of hyperspaces, Fund. Math. 100 (1979), 59–67.
- [7] I. Lončar, ℵ₁-directed inverse systems of continuous images of arcs, Internat. J. Math. Math. Sci. 24 (2000), 109–119.
- [8] I. Lončar, Relatinships between usual and approximate inverse systems, Mat. Vesnik 52 (2000), 83–97.
- [9] I. Lončar, A note on a Whitney map for continua, Math. Commun. 6 (2001), 1–9.

- [10] S. Mardesić, Locally connected, ordered and chainable continua, Rad Jugoslav. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke **319** (1961), 147–166 (in Croatian).
- [11] S. Mardešić, On approximate inverse systems and resolutions, Fund. Math. 142 (1993), 241–255.
- [12] S. Mardešić and J. Segal, *P-like continua and approximate inverse limits*, Math. Japon. **33** (1988), 895–908.
- [13] S. Mardešić and T. Watanabe, Approximate resolutions of spaces and mappings, Glas. Mat. Ser. III, 24(44) (1989), 587–637.
- [14] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182.
- [15] S.B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker Inc., New York, 1978.
- [16] S.B. Nadler, Jr., Multicoherence techniques applied to inverse limits, Trans. Amer. Math. Soc. 157 (1971), 227–234.
- [17] S.B. Nadler, Jr., Continuum theory: An Introduction, Marcel Dekker Inc., New York, 1992.
- [18] B.A. Pasynkov, Častičnye topologičeskie proizvedenija, Tr. Mosk. Mat. Obs., 13 (1965), 136–245 (Russian).
- [19] L.B. Treybig, Arcwise connectivity in continuous images of ordered compacta, Glas. Mat. Ser. III, 21(41) (1986), 201–211.
- [20] H.M. Tuncali, Concerning continuous images of rim-metrizable continua, Proc. Amer. Math. Soc. 113 (1991), 461–470.
- [21] G.T. Whyburn, Analytic Topology, vol. 28, American Mathematical Society, Providence, R.I, 1963.

I. Lončar Faculty of Organization and Informatics Varaždin University of Zagreb Pavlinska 2 42000 Varaždin Croatia *E-mail*: ivan.loncar1@vz.tel.hr

Received: 03.10.2002. Revised: 04.12.2002.