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NEAR SQUARES IN LINEAR RECURRENCE SEQUENCES

P. G. Walsh

University of Ottawa, Canada

Abstract. Let T > 1 denote a positive integer. Let {Un} denote
the linear recurrence sequence defined by U0 = 0, U1 = 1, and Uk+1 =
2TUk−Uk−1 for k ≥ 1. In recent years there have been some improvements

on the determination of solutions to the Diophantine equation Un = cX2,
where c is a given positive integer. In this paper we use a result of Bennett
and the author to determine precisely the integer solutions to the related
equation Un = cx2 ± 1, where c is a given even positive integer.

1. Introduction

Let r, s, U0, U1 denote integers. The relation

(1) Un+1 = rUn − sUn−1

defines a binary linear recurrence sequence {Un} for n ≥ 1. For a polynomial
P (x) of degree at least two with integer coefficients, Nemes and Pethö [16]
described necessary conditions for the general equation

(2) Un = P (x)

to have infinitely many solutions in integers (n, x). In the particular case
P (x) = bx2, for b ≥ 1, precise results on the solutions of (2) have been
obtained by Ljunggren [11, 9, 12, 13, 10], Cohn [5], McDaniel and Ribenboim
[14, 15], Shorey and Stewart [18], Bennett and the author [4], and a host of
others. For a comprehensive survey on these results the reader is referred to
[22].

In the case that P (x) is quadratic and the sequence in question is of Lucas-
Lehmer type, there exist methods to determine all solutions. The method of
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Baker [1] provides an explicit upper bound for the size of solutions to (2). In
[20], Tzanakis describes an algorithmic approach to determine all solutions
to (2). It is our interest to determine families of such equations for which
one can make explicit statements of solvability. In the present paper we
consider the particular case that P (x) = cx2 ± 1 for an even positive integer
c, and for which the linear recurrence sequence defined in (1) is given by
(r, s, U0, U1) = (2T, 1, 0, 1), for some positive integer T > 1. Similar problems
were considered by Robbins in [17].

Let T > 1 denote a positive integer, and define α = T +
√
T 2 − 1. For

n ≥ 1, define sequences {Tn} and {Un} by

αn = Tn + Un

√
T 2 − 1.

Also, for i ≥ 1, define sequences {pi}, {qi} by

pi + qi
√

2 = (1 +
√

2)i.

Employing a technique of Ljunggren’s in [9], developed further in work of
Cohn [7], together with results in [4, 6], we prove the following result.

Theorem 1.1.

1. If (T, c) = (q2i+1, 2) for some i ≥ 1, then the equation

Un = cx2 ± 1

has only the two positive integer solutions (n, x) = (1, 1), (3, p2i+1).
2. If (T, c) is any other pair of positive integers for which T > 1 and c is

even, then the equation

Un = cx2 ± 1

has only one solution in positive integers (n, x), and if a solution exists,
then n < c.

The proof of this theorem will appear to be of an elementary nature, but
the reader should be made aware that it relies on the main result of [4], whose
proof is based on estimates for linear forms in two logarithms of algebraic
numbers, together with sharp gap results from diophantine approximation
stemming from work of Bennett in [2, 3].

2. Preliminary Results

Let d > 1 denote a positive nonsquare integer, let (X,Y ) = (t1, u1) be
the smallest solution in positive integers to the equation X2−dY 2 = 1, define
εd = t1 + u1

√
d, and for n ≥ 1, tn + un

√
d = εnd .

Definition 2.1. For a positive integer b, the rank of apparition β(b) of b
in the sequence {tn} is the minimal index n for which b divides tn. We write
β(b) =∞ if no such n exists.
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In the following result we record some basic results about the sequences
{tn} and {un} which will be required for our proof of Theorem 1.1. The proofs
can be found in Lehmer’s seminal paper [8].

Lemma 2.2.

1. (tn, un) = 1.
2. t2n = 2u2

n − 1, u2n = 2tnun.
3. (tn, un+1) = 1 if n is even, and (tn, un+1) = t1 if n is odd.
4. If b > 1, then b divides un with n odd if and only if β(b) =∞.
5. If b > 1 and β(b) < ∞, then b divides tm if and only if m/β(b) is an

odd integer.
6. If a prime p divides tm for some odd integer m, then p does not divide

tn for any even integer n.
7. tn is odd for all n even.
8. If 2µ (µ ≥ 0) properly divides t1, then 2µ properly divides tn for all

odd n.
9. If p is an odd prime for which β(p) < ∞, then β(p) divides one of

(p± 1)/4.

The following result will be used considerably during the course of proving
Theorem 1.1. The first part was proved by Cohn in [6], extending classical
work of Ljunggren [11], while the latter part is the main result of Bennett and
the author in [4].

Lemma 2.3. If tn = x2 for some integer x, then n = 1 or n = 2. If b > 1
is squarefree, and tn = bx2 for some integer x, then n = β(b).

We will also make use of the following result, which follows immediately
from the main result of [21], which itself was an extension of a classical result
of Ljunggren [9].

Lemma 2.4. If there are 2 indices i < j for which ui and uj are squares,
then i = 1 and j = 2, except only for d ∈ {1785, 28560}, in which case u1 and
u4 are squares.

As an immediate consequence of Lemma 2.4, we record the following.

Corollary 2.5. If i and j are odd positive integers for which uiuj is a
square, then i = j.

3. Proof of Theorem 1.1

We will first show that there is at most one solution (n, x) in positive
integers to

(3) Un = cx2 − 1.
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Suppose that (n, x) and (m, z) are positive integer solutions to (3). Since c is
even, n and m must be odd. Let n = 2k+ 1 and m = 2l+ 1 for non-negative
integers k and l. The relation

T2k+1 + U2k+1

√
T 2 − 1 = (T +

√
T 2 − 1)(T2k + U2k

√
T 2 − 1),

together with part 2 of Lemma 2.2, show that

Un = U2k+1 = T2k + TU2k = 2T 2
k − 1 + 2TTkUk,

and hence (3) implies that

(4) (c/2)x2 = Tk(Tk + TUk) = TkUk+1.

Similarly,

(5) (c/2)z2 = TlUl+1.

Let c/2 = CD2, where C ≥ 1 is a squarefree integer.
Assume first that k and l are even. Then since Tk and Uk+1 are coprime,

there are integers A,B,w, v, with C = AB, for which

Tk = Aw2, Uk+1 = Bv2.

Similarly, there are integers a, b,W, V , with C = ab, such that

Tl = aW 2, Ul+1 = bV 2.

Since k + 1 and l + 1 are odd, β(p) = ∞ for each prime dividing B and
b. Moreover, β(p) < ∞ for each prime dividing a and A. Since AB = ab,
it follows that a = A. By Lemma 2.3, either A = a = 1 and k = l = 2, or
A = a > 1 and k = β(A) = β(a) = l. In any case we have that k = l, forcing
(n, x) = (m, z).

Assume now that k and l are odd. By part 3 of Lemma 2.2, equations (4)
and (5) imply the existence of integers A,B,w, v, a, b,W, V , with C = AB =
ab, for which

(6) Tk = T1Aw
2, Uk+1 = T1Bv

2, Tl = T1aW
2, Ul+1 = T1bV

2.

Let r = ord2(k + 1) and s = ord2(l + 1), then

(7) Uk+1 = 2rT(k+1)/2 · · ·T(k+1)/2rU(k+1)/2r = T1Bv
2

and

(8) Ul+1 = 2sT(l+1)/2 · · ·T(l+1)/2sU(l+1)/2s = T1bV
2.

We will show that r = s. Assume that s > r. Let p be a prime dividing b for
which p divides T(l+1)/2. By part 5 of Lemma 2.2, β(p) is divisible by 2s−1.
Equation (6) shows that β(q) is odd for each prime q dividing A, and our
assumption that s > r together with equation (7) shows that ord2(β(q)) <
s− 1 for each prime q dividing B. Therefore, T(l+1)/2 is coprime to b. Since
the factors appearing in (8) are pairwise coprime, and (T1, T(l+1)/2) = 1, we

deduce that T(l+1)/2 = Y 2 for some integer Y . By Lemma 2.3, it follows
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that (l + 1)/2 = 2, and hence that l + 1 = 4. By our assumption on r and
s, k + 1 = 2k1 for some odd integer k1. Part 7 of Lemma 2.2 shows that
A and a are odd integers. Since k + 1 is properly divisible by 2 and l + 1
is properly divisible by 4, equation (6) implies that ord2(ab) > ord2(AB), a
contradiction. As the argument is symmetric in r and s, we conclude that
r = s.

Let c/2 = fg, where a prime p divides f if β(p) = ∞, and p divides g
otherwise. It follows from equations (6), (7), (8), and the fact that s = r,
that there are integers Y, Z such that

U(l+1)/2r = fY 2, U(k+1)/2r = fZ2.

By Corollary 2.5, it follows that l = k.
Assume now that k is even and l is odd. As before there are integers

A,B,w, v, a, b,W, V , with C = AB = ab, such that

Tk = Aw2, Uk+1 = Bv2, Tl = T1aW
2, Ul+1 = T1bV

2.

Note that A and B are odd in this case. As (Tk, Tl) = 1, we have that A
divides b. Since β(p) = ∞ for all primes p dividing B, it follows that B
divides b. Therefore a = 1, and Tl/T = W 2, which by Lemma 2.3 implies
that l = 1. Therefore, T1bV

2 = Ul+1 = U2 = 2T1U1 = 2T1, and hence
AB = ab = 2, contradicting the fact that A and B are odd.

Now suppose that (n, x) is a positive integer solution to

(9) Un = cx2 + 1.

The integer n is evidently odd, so let n = 2k + 1 for some integer k ≥ 1 (if
k = 0, then x = 0, which we rule out). From the relation

Un = U2k+1 = T1U2k+2 − T2k+2 = 2T1Tk+1Uk+1 − (2T 2
k+1 − 1),

it follows that

(c/2)x2 = Tk+1(T1Uk+1 − Tk+1) = Tk+1Uk,

and the argument proceeds in a manner similar to the previous case. We
forego the details.

Now assume that (n, x) is a positive integer solution to (3), and that
(m, z) is a positive integer solution to (9). We must show that there is an
index i for which (T, c) = (q2i+1, 2), (n, x) = (1, 1), and (m, z) = (3, p2i+1),
where pi, qi were defined above.

As before, n andm are odd positive integers, so let k and l be non-negative
integers for which n = 2k+ 1 and m = 2l+ 1. As in equation (4), we see that

(10) (c/2)x2 = TkUk+1, (c/2)z2 = Tl+1Ul.

Consider first the case that k and l are odd. If k = 1, then (c/2)x2 =
T1U2 = 2T 2

1 , and so Tl+1Ul = 2w2 for some integer w. This is not possible
because Ul and Tl+1 are both odd. If k > 1, then Tk = Aw2 for some
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squarefree integer A > 1, and integer w. Let p be a prime factor of A, then
β(p) is odd. Also, since (Tk, Uk+1) = 1, p divides c/2, and so p divides one
of Tl+1 or Ul. If p divides Tl+1, then β(p) is even, while if p divides Ul, then
β(p) =∞.

Assume now that k and l > 0 are even. Since z > 0, l ≥ 1, and so
Tl+1 = Aw2 for some squarefree integer A > 1, and integer w. If p divides A,
then β(p) is odd, while as argued in the previous paragraph, p must divide
c/2, forcing p to divide one of Tk or Uk+1. It follows that either β(p) is even,
or β(p) =∞, a contradiction.

Assume now that k is odd and l > 0 is even. Assume first that T(k+1)/2

and Tl/2 are nonsquare integers. We first show that (k+1)/2 and l/2 are of the
same parity. Assume that (k+1)/2 is even. Since T(k+1)/2 divides the product
TkUk+1 in (10), there is at least one prime p dividing TkUk+1 to an odd power
for which β(p) is even. Therefore, p divides Tl+1Ul = 2Tl+1Tl/2Ul/2, and hence
p divides Tl/2r for some positive integer r. The point is that l/2 must also
be even, and by symmetry, it follows that (k + 1)/2 and l/2 are of the same
parity. If (k + 1)/2 and l/2 are both odd, then as argued in an earlier case,
U(k+1)/2 = fY 2, Ul/2 = fZ2 for some integer f , which implies that k+1 = l.

Therefore, (10) shows that (c/2)x2 = TkUk+1 and (c/2)z2 = Tk+2Uk+1, from
which we deduce that TkTk+2 is a square, which is not possible by Lemma 2.3.
If (k+1)/2 and l/2 are even, then as argued in an earlier case, T(k+1)/2 = fX2

and Tl/2 = fY 2 for some squarefree integer f > 1. Lemma 2.3 shows that
k + 1 = l, and so a contradiction is derived as before. If T(k+1)/2 and Tl/2

are squares, then k = 1 or k = 3, and l = 2 or l = 4. If k = 1, then
(c/2)x2 = T1U2 = 2T 2

1 . If l = 2, then T3U2 = 2z2 for some integer z, and
it follows that T3/T1 is a square, which is not possible. If l = 4, then in the
same way it follows that T5/T1 is a square, which is also not possible. If k = 3
and l = 2, then (c/2)x2 = T3U4 and (c/2)z2 = T3U2, forcing U4/U2 = 2T2

to be a square, which is not possible because T2 is odd. If k = 3 and l = 4,
then (c/2)x2 = T3U4 and (c/2)z2 = T5U4, which shows that T5T3 must be a
square, contradicting Lemma 2.3.

Assume that k is even and l is odd. As argued before, there are integers
f,X, Y for which Uk+1 = fX2 and Ul = fY 2, from which it follows that
k + 1 = l. Also, if Tk and Tl+1 are not squares, there is are integers f1 >
1, X1, Y1 for which Tk = f1X

2
1 and Tl+1 = f1Y

2
1 , from which it follows that

k = l + 1, contradicting k + 1 = l. Therefore, Tk and Tl+1 are squares. Since
l is odd, l + 1 = 2 by Lemma 2.3, and hence (k, l) = (0, 1). This shows that
n = 1, x = 1, c = 2, and m = 3. Furthermore, the relation (c/2)z2 = Tl+1Ul

becomes z2 = T2 = 2T 2
1 − 1, and so (z, T1) = (p2i+1, q2i+1) for some integer

i ≥ 1.
We now prove the last part of the statement of Theorem 1.1. Let (n, x)

be a solution to (3), with n = 2k + 1 for some integer k, and assume that
n ≥ c. As shown in the argument proving that only one solution to (3) exists,
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either k = 1, k = 2, or k = β(A) for some squarefree integer A > 1 which
divides c/2, and is divisible by at least one odd prime. If k = 1, then n = 3,
c = 2, and (4) shows that x2 = T1U2 = T1(2T1U1) = 2T 2

1 , which is clearly not
possible. If k = 2, then n = 5 and c ∈ {2, 4}. Therefore, by (4), we have that
2δx2 = T2U3, where δ ∈ {0, 1}. Since (T2, U3) = 1 and U3 is odd, U3 must be
a square, contradicting Corollary 2.5. Finally, assume that k = β(A), where
A is squarefree and divisible by an odd prime p. Then

n ≤ 2β(A) + 1 ≤ 2


∏

p|A
β(p)


+ 1 ≤ 2


 ∏

p|(c/2)

((p+ 1)/4)


+ 1 ≤ c/2 < c.

If (n, x) is a solution to (9), with n = 2k + 1, then a similar argument as
that for a solution to (3) shows that either k+1 = 1, k+1 = 2, or k+1 = β(A)
for some squarefree integer A > 1, which divides c/2, and is divisible by at
least one odd prime. In the case that k + 1 = β(A), the condition n ≥ c is
ruled out in exactly the same manner as the case k = β(A) was dealt with in
the previous paragraph. If k + 1 = 1, then n = 1, and so n < c. Finally, if
k+ 1 = 2, then n = 3. The condition n ≥ c implies that c = 2. Therefore, (5)
shows that

x2 = T2U1 = T2 = 2T 2
1 − 1,

which shows that we are in the situation of the first part of the statement of
Theorem 1.1.
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