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ON 2-NORMED SETS

ZOFIA LEWANDOWSKA
Pedagogical University, Slupsk, Poland

ABSTRACT. In this paper we will consider properties of the 2-normed
sets and we will construct two 2-normed sets of linear operators.

1. INTRODUCTION
In [2] S. Géhler introduced the following definition of a 2-normed space:

DEFINITION 1.1 ([2]). Let X be a real linear space of dimension greater
than 1 and let || -, - || be a real valued function on X x X satisfying the
following four properties:

(G1) ||z, y|l =0 if and only if the vectors x and y are linearly dependent;
(G2) ||z, yll = lly, z[;

(G3) ||z, ay|| = || - ||z, y|| for every real number «;
(G4) [z, y + 2 < [lz, yll + |z, 2|| for every z,y,z € X.
The function || -, - || will be called a 2-norm on X and the pair (X, || -, - )

- a linear 2-normed space.

In [4] and [5] we gave a generalization of the Géhler’s 2-normed space.
Namely a generalized 2-norm need not be symmetric and satisfy the first
condition of the above definition.

DEFINITION 1.2 ([4]). Let X and Y be real linear spaces. Denote by D
a non-empty subset X XY such that for every x € X, y € Y the sets

D,={yeY;(zx,y) €D} and DY ={x € X;(z,y) € D}

are linear subspaces of the space Y and X, respectively.
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A function || -, - ||: D — [0,00) will be called a generalized 2-norm on D
if it satisfies the following conditions:
(N1) ||z, eyl = || - ||z, yl| = llax, yl| for any real number o and all (z,y) €
D.

(N2) ||z, y+z| < ||z, yl|+ ||z, z|| forz € X, y,z €Y such that (x,y), (z,2) €

(N3) |lz+y, 2|l < [z, 2] +ly, 2l for 2,y € X, z € Y such that (z, 2), (y,2) €

D.
The set D is called a 2-normed set.
In particular, if D = X x Y, the function || -, - || will be called a
generalized 2-norm on X x'Y and the pair (X x Y| -, - ||) a generalized

2-normed space.
Moreover, if X =Y, then the generalized 2-normed space will be denoted

by (X, H R H)

Assume that the generalized 2-norm satisfies, in addition, the symmetry
condition. Then we will define the 2-norm as follows:

DEFINITION 1.3 ([4]). Let X be a real linear space. Denote by X a non-
empty subset X x X with the property X = X~' and such that the set XY =
{z € X;(z,y) € X} is a linear subspace of X, for ally € X .

A function || -, - ||: X — [0,00) satisfying the following conditions:

(S Nz yll = lly, || for all (z,y) € X,

(S2) ||z, ayll = |e - ||, y|| for any real number o and all (z,y) € X,

(S3) |z, y+ 2| < ||z, yll + ||z, 2|| for x,y,z € X such that (z,y), (z,z) € X,
will be called a generalized symmetric 2-norm on X. The set X s called a
symmetric 2-normed set. In particular, if X = X x X, the function || -, - ||
will be called a generalized symmetric 2-norm on X and the pair (X, || -, - |)
- a generalized symmetric 2-normed space.

In this paper we give some properties of certain 2-normed sets.

2. A 2-NORMED SET

A 2-normed set has interesting properties, for example it can be a small
in some sense and a big in other one. We will show them in this section.

EXAMPLE 2.1. ([4]) Let s be a linear space of all sequences of real num-

bers. Let
oo
n=1

for all z,y € ssuch that = {{;n € N}y = {nn;n € N}. Then || -, - ||: sx
s — [0,00]. By X we will denote the set {(z,y) € s X s; ||z,y|| < co}. Thus
we have the properties:
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(1) x=x""
(2) XY is a linear subspace of s for every y € s.

Then the set X is a symmetric 2-normed set and the function || -, - ||: X —
[0,00) is a generalized symmetric 2-norm on X'.

In the sequel s denotes the linear space of all real sequences with the usual
metric ¢ given by

o0

_ L |6 — )

n=1
for x = {{u;n € N} € s,y = {nn;n € N} € s. Then the function d by the

formula d((z,y), (x',y")) = o(z,2") + o(y,y) for =,z ,y,y € s, is a metric in
5 X 8.

THEOREM 2.2. The 2-normed set X is a dense F,- set of the first Baire
category in the space (s X s,d).

PROOF. At first we will show that X" is dense in (s x s,d). Consider the
set

P=Sz={jeNtes Y [P <oo
j=1

Let = {¢;;j € N} €1? and y = {n;;j € N} € [*. Obviously (z,y) € * x [
By the well-known Hoélder’s inequality we have

2 2

oo o0 oo
Slgnl < (D2 Dol <o,
j=1 j=1 j=1

and in the consequence
(2.1) Pxl?cX.

Because 12 is dense in s, (it follows from Theorem 2.1 in [1]), therefore % x I?
is dense in s x s. Using the inclusion (2.1) we see that X" is dense in s X s,
too.

We shall prove that X is an F,, - set in s X s. For k,n € N we put

Agn = {(z,y) €5 > Igml > k}
j=1

(2.2) sxs\X:ﬁGAkn.

k=1n=1
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Now, we shall show that Ag,, (k,n € N), is open in s x s. Let (x,,y,) €
Apn, where 1, = {£%;7 € N} and y, = {n$;j € N}. Choose ¢ > 0 in such a
way that

n

Z |§;’n§| —e>k.
j=1

The function ¢: R™ x R™ — [0, 00) defined as follows

b) = la;B], for a = (a1,...,an),b=(B1,...,5n),
j=1
is continuous at the point (a,,b,) such that a, = (£9,...,£2), b, =
(n9,...,n2). Then there exists 6 > 0 such that |¢(a,b) — p(ae,bo)| < €
when ||a — a,|| < ¢ and ||b — b,|| < 6.

Let us take
1 o
r=gn 1_|\_/E and ICO((xo,yo),r) C $Xs.
f

FOI' (‘Tay) 6 ’CO((.IO,yO),’I’), Where €r = {5]7.] 6 N}vy = {77]3.] 6 N}a the
following inequality is true: d((z,y), (%o,¥0)) < 7. Thus o(x,z,) < r and
0(y,Yo) < r. By the first inequality we have

oo o 5
L ~gl 1 A
n [
J:12J 1+|§] | 2 1"‘\/—5
Since
R
—7%<— 5 foreach j =1,2,...,n
2 1+|£j_§j| 2n 1+ﬁ
From this we get
. 5 5
. _ go 93 —= -
& =gl é}lo = o P frj=1,2,...,m
1+|€j—§j| 2” 1—|—T 1+ﬁ

Because the function f(t) = %_H for t > 0, is an increasing function, then

5
€ — €9l < —= for j=1,2,...,n.

NG

By analogy we obtain the inequality

1)
In; — 0| < for j =1,2,...,n.
J \/_
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So for a = (&1,...,&,) € R™, b= (N1,...,7n) € R™ we have

lla = aoll =
j=1

As a consequence |p(a,b) — p(ao,bo)| < ¢, i.e.

S gl =D gl <«
j=1 j=1
Thus

n n
D olgmil > Y 1gng — e > k.
j=1 j=1

Hence (z,y) € Agn. And we have proved that K° ((:co,yo),r)

D g — €912 < 6 and [|b— bo|| < 0.

103

C Apgp, this

means that Ay, is open. Using the equality (2.2) we see that s x s\ X is an

Gs - set. Therefore X is an F, - set.

Finally, we shall show that X is a set of the first Baire category in (s x
s,d). Let r > 0 and (2,,9,) € s x s, where x, = {£%;j € N} and y, = {n?;j €

N}. Then there exists an n, € N such that

=1
2 3

j=no

l\DIﬁ

Choose x; = {¢j;j € N} and y1 = {nj;j € N} in the following way:

&= forj=1,2,...,n and & =1 for j >n, +1,

n}:n?forj:l,?,...,no andnjl»zlfoerno—Fl.

Then for each & € N there exists n € N such that

> lgnl > k.
=1
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From this we get (z1,y1) € s x s\ X. Further
d((z1,51), (0:Y0)) = 0(x1,20) + 0(y1,Yo)

“g_ & — &3 iii Inj —n?

< 20 1+w :2 L+ [nj —n3l

o~ 1 gt o~ 1 -1
—z;$ngaMJu

=n, j=ne+1 773

=1 =1
< Z:§+ 225

j=no+1 j=no+1
<ifi4l=

) 2—T.

Hence (z1,y1) € ICO((:EO,yO),r). In the consequence ICO((xO,yO),T> N (s x

s\ X) # 0. This means that s X s\ X' is dense in s x s. Using the foregoing
results we see that X is a set of the first Baire category in (s x s,d). This
ends the proof. O

3. 2-NORMED SETS OF LINEAR OPERATORS

Let X,Y be real linear spaces. The set Y x Y is the linear space with
respect to the operations:

(x1,y1) + (22, y2) = (x1 + 22, y1 + y2) for all 1,29, 41,92 €Y

and
a-(z,y) = (az,ay) for all z,y € Y,a € R.

By L(X,Y) denote the linear space of all linear operators from X with values
in Y. It is easy to see that for each linear operator F': X — Y X Y there
exists a pair of operators f, g € L(X,Y) such that F(x) = (f(z), g(z)) for all
x € X. And conversely, the operator F': X — Y x Y defined by the formula
F(z) = (f(x),g(x)) for all z € X, where f,g € L(X,Y), is linear.

Further we will consider properties of the set of these pairs of linear op-
erators satisfying certain additional conditions.

DEFINITION 3.1. Let X be a real normed space and Y C Y XY be a
2-normed set, where Y denotes a real linear space. A set M is defined as
follows:

M= {(1.9) € LX)
Vo € X (f(z),9(z)) € YAIM > 0Vz € X || f(z), g(x)l| < M - [|z[|*}.

LEMMA 3.2. The set M defined in Definition 3.1 has the following prop-
erty:
(a) If Y is a symmetric 2-normed set, then M = M1,
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(b) For every f,g € L(X,Y) sets M9 = {f € L(X,Y);(f ,9) € M} and
M; ={g € L(X,Y);(f,g') € M} are linear subspaces of the space
L(X,Y). In the case when Y is a symmetric 2-normed set we have the
equality M/ = M.

PROOF. The condition (a) follows from the definition of the set M.

(b) Let g be a linear operator from X in Y. First, we shall show that
MY is non- empty. Consider the linear operator f,: X — Y defined by the
formula f,(z) = 0 for all z € X. Because for each 2 € X the set ) 9(*)
is linear subspace of Y, then f,(z) = 0 € Y9®). Thus (f,(2),9(z)) € Y
for all x € X. Moreover for each positive number M and for all z € X
the inequality || fo(x),g(z)| = [|0,g9(x)|| = 0 < M - ||z||? is satisfied. In the
consequence (f,,g) € M, i.e. f, € M9. Thus M9 # .

Let f1, fo € M9. Tt follows that (f1,9),(f2,9) € M. Thus for all z € X
we have (f1(z),g(x)), (f2(x),g(z)) € Y. Tt means that fi(z), fo(z) € Y 9@,
Because the set ) 9(*) is a linear subspace of the space Y, then fi(z)+ f2(z) €
Y 9() and in the consequence ((f1 + f2)(z), g(x)) € Y for all z € X.

Moreover there exists M; > 0 such that || f1(z), g(x)|| < M; -||z||? for all
x € X. And there exists also My > 0 satisfying the inequality || f2(z), g(z)|| <
My - ||z||? for all z € X. Hence

[f1(2) + f2(2), g(@)| < [[f2(2), g(@)[| + [| f2(), g(2)]
< My lz))? + My - |off* = (My + M) - [l

for all z € X.

Finally, we showed that there exists the positive number M = M; + Ms
such that for all z € X the inequality ||(f1 + f2)(z), g(x)|| < M - [|z|? is true.
Thus (f1 + f2,9) € M, ie. f1 + fa € MY.

Let now o € R, f € M9. Tt follows (f,g) € M, i.e. for all z € X we have
(f(2),g9(x)) € Y. Thus f(z) € ¥ 9*) and because Y 9(*) is a linear subspace
of Y, then a- f(z) € Y 9). We obtain that (af(z),g(z)) € Y for all z € X.
Moreover there exists M > 0 such that || f(z), g(z)|| < M -||z||? for all z € X.
Hence

[(ef)(@), g(@)I| = llaf (), g(2)]| = laf - [|f(x), g ()|
<|al- M- |z|? for all z € X.
As a consequence there exists a positive number M’ = |a| - M such that
[(ef)(z),g(x)|| < M’ -||z|? for all 2 € X.

It implies that af € M9.

We proved that MY is a linear subspace of L(X,Y) for all g € L(X,Y).
Analogously we show that M7 is a linear subspace of L(X,Y) for all f €
L(X,Y). The condition (a) implies simply the equality M/ = M. O



106 7Z. LEWANDOWSKA

DEFINITION 3.3. For (f,g) € M we introduce a number
£, 9]l = nf{M > 0;Vz € X || f(x), g(x)l| < M - ||l=[|*}.
THEOREM 3.4. If (f,g) € M, then
() If,gll < M for all M € P 19 where
PUD = {M' > 0¥z € X || f(2),g()ll < M |lz]*};
(b) [1f(x), g@)Il < If, gll - [|2]|* for all = € X

()
1f, 91l = sup{[| f (), g(2)|; = € X Alzl| = 1}
= sup{|[f(), g(x)[; = € X Alzf] <1}

[ @9, )
_ p{ gl e xn ||¢o}

(d) If Y is a symmetric 2-normed set, then || f, gl = |lg, || for (f,g) € M

PRrROOF. Conditions (a) and (d) are evident.
(b) Because (f, g) € M, then there exists a positive number M such that

£ (@), g(@)|l < M - ||z|[* for each x € X.
Thus | f(z), g(@)l| < inf{M - %0 € P U9}, and | f(x),g(@)] < |9l
el (c) By virtue of the condition (b) we have
(3.1) sup{[|f(x), g(@)[l; = € X Az =1} <[, gll
Let A = sup{||f(z),g9(z)|; * € X Aljz|| = 1}. Consider a point z € X,z # 0.

- oo = |1 (g -+ 1) o (g -+ 1ot
e

For y = 125 we obtain [ly| = 1 and [[f(y), g(y)|| < A. Thus |[f(z), g(z)| <

|z||? - A for & # 0. If 2 = 0, then || f(z),g(x)| =
If(x),g(z)] < ||lz||* - Aforallz € X,ie. A€ ’P

From (a) we have ||f, g|| < A which with (3. ) gives the equality || f, g|| =
A. By the condition (b) we have also

sup{|f(x), g(x)[; = € X Al=l| <1} <[, gl
Moreover the inequality

sup{[|f(x), g(@)[l; w € X A[z]| = 1} < sup{[|f(2), 9(2)[l; z € X A[jz]| <1}

is true. Thus we have the equality

17,91l = sup{|[f (), (@) [|; = € X A =[] < 1}.

||x|| 2. A. Consequently
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Let us take x € X,z # 0. By (b) we have

/(). 9@
Ll <l

and further

f(z), g(x
sup {185, & € x e 0} < 1,01,
Let B = Sup{W; x € XA||z| # 0}. If ||z|| = O, then || f(z), g(z)|| = 0.
Thus ||f(z), g(x)|| < B -||z||? for every x € X, which means that B € P (/:9)
and ||f, g|| < B. This ends the proof. O

THEOREM 3.5. The set M is a 2-normed set with the 2-norm defined by
the formula

£, gll = sup{||f(x),g(x)|l; = € X A ||z|| = 1} for (f,g) € M.

In the case that Y is a symmetric 2-normed set, then the set M is also sym-
metric.

PROOF. By virtue of Lemma 3.2 the set M satisfies conditions from Defi-
nition 1.2. Let (f, g) € M. Then there exists M > 0 such that || f(z), g(x)| <
M -||z||? for x € X. Thus sup{||f(z),g(x)|; * € X Aljz|] =1} < M < co and
so the function || -, - || has finite non-negative values. Moreover the following
conditions are true:

(N1) Let z € X, |||l = 1,a € R. Then

1f (), (ag)(@)[| = |1 (x), ag(@)l| = |al - | f(z), g(z)]]
< ol -sup{[|f(z), g(x)[; = € X Aljxf| =1}
= lal- £ gll
Since z is arbitrary, we obtain
sup{[|f(z), (ag)(@)[; © € X Ajz]| =1} <lal - [|f, gl

and consequently the inequality

Let a # 0. Using (3.2) we have
1 1
11,9l =4 o] < 157 15,00l and lal - 1£, g1 < 1, gl for @ # 0.

If however @ = 0, then |a| - ||f,gll = 0 = ||f,ag||. And we showed that
lael - | f, gl < |If, eg|| for all @ € R, which with (3.2) gives the equality

1f, agll = laf - [If, gl

The proof of the equality ||af, g|| = |af - ||f, g is analogous, therefore it is
omitted.
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(N2) Let us take f,g,h € L(X,Y) such that (f,g), (f,h) € M. Consider
x € X, ||z|| = 1. Then the following inequalities are true:
1f(2), (g + m)(@)I| = [[f(2), g(2) + h(@) | <[[f(2), g(@)I| + || f (), h(2)]|
<sup{[|f(z),9(2)l; z € X Ala] =1}
+ sup{[|f(z), h(2)[; © € X Afl] =1}
= If; 9l +[1f; .

It implies the condition

sup{[[f(x), (g + h)(@)[; = € X Alzl| =1} < [[f, gll + I £, 2]

ie. |f,g+h| <I|f, gl + |If,h]]. Similarly we obtain:

(N3) [lf + g, hll < [If, kIl + llg, Al

Now assume that ) is a symmetric 2-normed set. Then M = M~! and
the condition

1£; 91l = sup{[[f (), g(x)||; = € X A |z[| =1}
=sup{|lg(z), f(@)[; v € X Allz] =1} = |lg, f]|

is satisfied. Thus by Definition 1.3 the set M is a symmetric 2-normed set.
This finishes the proof. O

Taking linear spaces X x X, Y x Y we can consider linear operators (f, g)
from X x X into Y x Y, defined by the formula (f,g)(x,y) = (f(x), g(y)) for
every x,y € X, where f,g € L(X,Y). Further we will show properties of the
set of these operators satisfying certain additional conditions.

DEFINITION 3.6. Let X be a real normed space and Y C Y XY be a
2-normed set, where Y denotes a real linear space. A set N is defined as
follows:

N ={(f.9) € LIX, V)% Va,y € X (f(2), 9(y) € Y
ATarso¥a,y € X |1£(2),9(y)| < M- |2l - Iyl }-

LEMMA 3.7. The set N defined in Definition 3.6 has the following prop-
erty:
(a) If Y is a symmetric 2-normed set, then N' = N1,
(b) For every f,g € L(X,Y) sets N9 = {f € L(X,Y);(f ,9) € N} and
Ny ={¢ € L(X,Y);(f,g) € N} are linear subspaces of the space
L(X,Y). If Y is a symmetric 2-normed set, then N/ = N.

The proof is similar to the proof of Lemma 3.2 so it is omitted.

DEFINITION 3.8. For (f,g) € N we introduce a number
1£;9ll = mf{M > 0;Va,y € X [[f(2), g(y)| < M - [l]| - |[y]]}-
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The following theorem gives properties of the number || f, g|| for (f,g) €
N, which are similar to the properties from Theorem 3.4.

THEOREM 3.9. If (f,g9) € N, then
(a) [If, 9]l < M for all M € R (19 where

R D = (M > 0;Vz,y € X|f(z), g()|| < M ||z] - |yll};

((bg 1 @), gl < ILfsgll - M=l -yl for all z,y € X;
C

17,91l = sup{ /@), 9w . € X A lall = lyll = 1}
— sup{l£(2), 9l 7,y € X A 2l < 1, gl < 1)
—sup { LRy € o) 20,10l 2 0.
BRI

() Ifsall =g, fll, if Y is a symmetric 2-normed set.

THEOREM 3.10. The set N is a 2-normed set with the 2-norm defined by
the formula

11,91l = sup{l[f (z), g)l; z,y € X Allz|| = [lyll =1} for (f,9) €N

If Y is a symmetric 2-normed set, then the set N is also symmetric.
Proofs of Theorem 3.9 and Theorem 3.10 are analogous to proofs of The-
orem 3.4 and Theorem 3.5, respectively, therefore they are omitted.

In this section we introduced two 2-normed sets (M, - - ||M) and

(J\/, -, - ||N), where N/ C M. Let us remark that for every (f,g) € N the
inequality
£, 9llm < I fsgllv

is true.

Finally consider a normed space (X, || - ||), in which is given a 2-norm in
the Géhler’s sense independent of the norm. In [3] S. S. Kim, Y. J. Cho and
A. White introduced the following definition of an 2-bounded operator.

DEFINITION 3.11 ([3]). An operator T: (X,]| - ||) — (X, -, - ||) 4s said
to be 2-bounded if there is a K > 0 such that

1T (@), yll + [, T()| < K- |lzl| - [y]l for all z,y € X.
Authors of [3] showed that the space BL(X,Y") of all 2-bounded linear

operators from normed space (X, || - ||) into a 2-normed space (X, || -, - ||) is
a normed space with the norm || - ||z defined by the formula

[T||2 = inf{K > 0;[|T(2), y|| + |z, T(y)|| < K - ||=]| - ly|| for all z,y € X}.
Considering a normed space (X,|| - ||), in which is defined also a 2-norm

in the Gihler’s sense, we obtain that the set N @ coincides with the space
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BL(X,Y), where the operator id: X — X is defined as follows: id(z) = =
for all z € X. Thus results in [3] are the special case of the theory in the
presented paper.
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