ON 2-NORMED SETS

Zofia Lewandowska
Pedagogical University, Slupsk, Poland

Abstract

In this paper we will consider properties of the 2-normed sets and we will construct two 2-normed sets of linear operators.

1. Introduction

In [2] S. Gähler introduced the following definition of a 2-normed space:
Definition 1.1 ([2]). Let X be a real linear space of dimension greater than 1 and let $\|\cdot$,$\| be a real valued function on X \times X$ satisfying the following four properties:
(G1) $\|x, y\|=0$ if and only if the vectors x and y are linearly dependent;
(G2) $\|x, y\|=\|y, x\|$;
(G3) $\|x, \alpha y\|=|\alpha| \cdot\|x, y\|$ for every real number α;
(G4) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ for every $x, y, z \in X$.
The function $\|\cdot, \cdot\|$ will be called a 2-norm on X and the pair $(X,\|\cdot, \cdot\|)$ - a linear 2-normed space.

In [4] and [5] we gave a generalization of the Gähler's 2-normed space. Namely a generalized 2 -norm need not be symmetric and satisfy the first condition of the above definition.

Definition 1.2 ([4]). Let X and Y be real linear spaces. Denote by \mathcal{D} a non-empty subset $X \times Y$ such that for every $x \in X, y \in Y$ the sets

$$
\mathcal{D}_{x}=\{y \in Y ;(x, y) \in \mathcal{D}\} \text { and } \mathcal{D}^{y}=\{x \in X ;(x, y) \in \mathcal{D}\}
$$

are linear subspaces of the space Y and X, respectively.

[^0]A function $\|\cdot, \cdot\|: \mathcal{D} \rightarrow[0, \infty)$ will be called a generalized 2-norm on \mathcal{D} if it satisfies the following conditions:
(N1) $\|x, \alpha y\|=|\alpha| \cdot\|x, y\|=\|\alpha x, y\|$ for any real number α and all $(x, y) \in$ \mathcal{D};
(N2) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ for $x \in X, y, z \in Y$ such that $(x, y),(x, z) \in$ \mathcal{D};
(N3) $\|x+y, z\| \leq\|x, z\|+\|y, z\|$ for $x, y \in X, z \in Y$ such that $(x, z),(y, z) \in$ \mathcal{D}.
The set \mathcal{D} is called a 2-normed set.
In particular, if $\mathcal{D}=X \times Y$, the function $\| \cdot$, $\|$ will be called a generalized 2-norm on $X \times Y$ and the pair $(X \times Y,\|\cdot, \cdot\|)$ a generalized 2-normed space.

Moreover, if $X=Y$, then the generalized 2-normed space will be denoted by $(X,\|\cdot, \cdot\|)$.

Assume that the generalized 2-norm satisfies, in addition, the symmetry condition. Then we will define the 2 -norm as follows:

Definition 1.3 ([4]). Let X be a real linear space. Denote by \mathcal{X} a nonempty subset $X \times X$ with the property $\mathcal{X}=\mathcal{X}^{-1}$ and such that the set $\mathcal{X}^{y}=$ $\{x \in X ;(x, y) \in \mathcal{X}\}$ is a linear subspace of X, for all $y \in X$.

A function $\|\cdot\|:, \mathcal{X} \rightarrow[0, \infty)$ satisfying the following conditions:
(S1) $\|x, y\|=\|y, x\|$ for all $(x, y) \in \mathcal{X}$,
(S2) $\|x, \alpha y\|=|\alpha| \cdot\|x, y\|$ for any real number α and all $(x, y) \in \mathcal{X}$,
(S3) $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ for $x, y, z \in X$ such that $(x, y),(x, z) \in \mathcal{X}$, will be called a generalized symmetric 2-norm on \mathcal{X}. The set \mathcal{X} is called a symmetric 2-normed set. In particular, if $\mathcal{X}=X \times X$, the function $\|\cdot, \cdot\|$ will be called a generalized symmetric 2-norm on X and the pair $(X,\|\cdot, \cdot\|)$ - a generalized symmetric 2-normed space.

In this paper we give some properties of certain 2-normed sets.

2. A 2-NORMED SET

A 2-normed set has interesting properties, for example it can be a small in some sense and a big in other one. We will show them in this section.

Example 2.1. ([4]) Let s be a linear space of all sequences of real numbers. Let

$$
\|x, y\|=\sum_{n=1}^{\infty}\left|\xi_{n}\right| \cdot\left|\eta_{n}\right|
$$

for all $x, y \in s$ such that $x=\left\{\xi_{n} ; n \in N\right\}, y=\left\{\eta_{n} ; n \in N\right\}$. Then $\|\cdot, \cdot\|: s \times$ $s \rightarrow[0, \infty]$. By \mathcal{X} we will denote the set $\{(x, y) \in s \times s ;\|x, y\|<\infty\}$. Thus we have the properties:
(1) $\mathcal{X}=\mathcal{X}^{-1}$;
(2) \mathcal{X}^{y} is a linear subspace of s for every $y \in s$.

Then the set \mathcal{X} is a symmetric 2 -normed set and the function $\|\cdot, \cdot\|: \mathcal{X} \rightarrow$ $[0, \infty)$ is a generalized symmetric 2 -norm on \mathcal{X}.

In the sequel s denotes the linear space of all real sequences with the usual metric ϱ given by

$$
\varrho(x, y)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot \frac{\left|\xi_{n}-\eta_{n}\right|}{1+\left|\xi_{n}-\eta_{n}\right|}
$$

for $x=\left\{\xi_{n} ; n \in N\right\} \in s, y=\left\{\eta_{n} ; n \in N\right\} \in s$. Then the function d by the formula $d\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\varrho\left(x, x^{\prime}\right)+\varrho\left(y, y^{\prime}\right)$ for $x, x^{\prime}, y, y^{\prime} \in s$, is a metric in $s \times s$.

Theorem 2.2. The 2-normed set \mathcal{X} is a dense $F_{\sigma^{-}}$set of the first Baire category in the space $(s \times s, d)$.

Proof. At first we will show that \mathcal{X} is dense in $(s \times s, d)$. Consider the set

$$
l^{2}=\left\{x=\left\{\xi_{j} ; j \in N\right\} \in s ; \sum_{j=1}^{\infty}\left|\xi_{j}\right|^{2}<\infty\right\}
$$

Let $x=\left\{\xi_{j} ; j \in N\right\} \in l^{2}$ and $y=\left\{\eta_{j} ; j \in N\right\} \in l^{2}$. Obviously $(x, y) \in l^{2} \times l^{2}$. By the well-known Hölder's inequality we have

$$
\sum_{j=1}^{\infty}\left|\xi_{j} \eta_{j}\right| \leq\left(\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{j=1}^{\infty}\left|\eta_{j}\right|^{2}\right)^{\frac{1}{2}}<\infty
$$

and in the consequence

$$
\begin{equation*}
l^{2} \times l^{2} \subset \mathcal{X} \tag{2.1}
\end{equation*}
$$

Because l^{2} is dense in s, (it follows from Theorem 2.1 in [1]), therefore $l^{2} \times l^{2}$ is dense in $s \times s$. Using the inclusion (2.1) we see that \mathcal{X} is dense in $s \times s$, too.

We shall prove that \mathcal{X} is an F_{σ} - set in $s \times s$. For $k, n \in N$ we put

$$
A_{k n}=\left\{(x, y) \in s ; \sum_{j=1}^{n}\left|\xi_{j} \eta_{j}\right|>k\right\}
$$

Then

$$
\begin{equation*}
s \times s \backslash \mathcal{X}=\bigcap_{k=1}^{\infty} \bigcup_{n=1}^{\infty} A_{k n} \tag{2.2}
\end{equation*}
$$

Now, we shall show that $A_{k n},(k, n \in N)$, is open in $s \times s$. Let $\left(x_{o}, y_{o}\right) \in$ $A_{k n}$, where $x_{o}=\left\{\xi_{j}^{o} ; j \in N\right\}$ and $y_{o}=\left\{\eta_{j}^{o} ; j \in N\right\}$. Choose $\varepsilon>0$ in such a way that

$$
\sum_{j=1}^{n}\left|\xi_{j}^{o} \eta_{j}^{o}\right|-\varepsilon>k
$$

The function $\varphi: \mathcal{R}^{n} \times \mathcal{R}^{n} \rightarrow[0, \infty)$ defined as follows

$$
\varphi(a, b)=\sum_{j=1}^{n}\left|\alpha_{j} \beta_{j}\right|, \text { for } a=\left(\alpha_{1}, \ldots, \alpha_{n}\right), b=\left(\beta_{1}, \ldots, \beta_{n}\right),
$$

is continuous at the point $\left(a_{o}, b_{o}\right)$ such that $a_{o}=\left(\xi_{1}^{o}, \ldots, \xi_{n}^{o}\right), b_{o}=$ $\left(\eta_{1}^{o}, \ldots, \eta_{n}^{o}\right)$. Then there exists $\delta>0$ such that $\left|\varphi(a, b)-\varphi\left(a_{o}, b_{o}\right)\right|<\varepsilon$ when $\left\|a-a_{o}\right\|<\delta$ and $\left\|b-b_{o}\right\|<\delta$.

Let us take

$$
r=\frac{1}{2^{n}} \cdot \frac{\frac{\delta}{\sqrt{n}}}{1+\frac{\delta}{\sqrt{n}}} \text { and } \mathcal{K}^{o}\left(\left(x_{o}, y_{o}\right), r\right) \subset s \times s
$$

For $(x, y) \in \mathcal{K}^{o}\left(\left(x_{o}, y_{o}\right), r\right)$, where $x=\left\{\xi_{j} ; j \in N\right\}, y=\left\{\eta_{j} ; j \in N\right\}$, the following inequality is true: $d\left((x, y),\left(x_{o}, y_{o}\right)\right)<r$. Thus $\varrho\left(x, x_{o}\right)<r$ and $\varrho\left(y, y_{o}\right)<r$. By the first inequality we have

$$
\sum_{j=1}^{\infty} \frac{1}{2^{j}} \cdot \frac{\left|\xi_{j}-\xi_{j}^{o}\right|}{1+\left|\xi_{j}-\xi_{j}^{o}\right|}<\frac{1}{2^{n}} \cdot \frac{\frac{\delta}{\sqrt{n}}}{1+\frac{\delta}{\sqrt{n}}}
$$

Since

$$
\frac{1}{2^{j}} \cdot \frac{\left|\xi_{j}-\xi_{j}^{o}\right|}{1+\left|\xi_{j}-\xi_{j}^{o}\right|}<\frac{1}{2^{n}} \cdot \frac{\frac{\delta}{\sqrt{n}}}{1+\frac{\delta}{\sqrt{n}}} \quad \text { for each } j=1,2, \ldots, n
$$

From this we get

$$
\frac{\left|\xi_{j}-\xi_{j}^{o}\right|}{1+\left|\xi_{j}-\xi_{j}^{o}\right|}<\frac{2^{j}}{2^{n}} \cdot \frac{\frac{\delta}{\sqrt{n}}}{1+\frac{\delta}{\sqrt{n}}}<\frac{\frac{\delta}{\sqrt{n}}}{1+\frac{\delta}{\sqrt{n}}} \quad \text { for } j=1,2, \ldots, n
$$

Because the function $f(t)=\frac{t}{1+t}$ for $t \geq 0$, is an increasing function, then

$$
\left|\xi_{j}-\xi_{j}^{o}\right|<\frac{\delta}{\sqrt{n}} \text { for } j=1,2, \ldots, n
$$

By analogy we obtain the inequality

$$
\left|\eta_{j}-\eta_{j}^{o}\right|<\frac{\delta}{\sqrt{n}} \text { for } j=1,2, \ldots, n
$$

So for $a=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathcal{R}^{n}, b=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathcal{R}^{n}$ we have

$$
\left\|a-a_{o}\right\|=\sqrt{\sum_{j=1}^{n}\left|\xi_{j}-\xi_{j}^{o}\right|^{2}}<\delta \text { and }\left\|b-b_{o}\right\|<\delta
$$

As a consequence $\left|\varphi(a, b)-\varphi\left(a_{o}, b_{o}\right)\right|<\varepsilon$, i.e.

$$
\left|\sum_{j=1}^{n}\right| \xi_{j} \eta_{j}\left|-\sum_{j=1}^{n}\right| \xi_{j}^{o} \eta_{j}^{o}| |<\varepsilon
$$

Thus

$$
\sum_{j=1}^{n}\left|\xi_{j} \eta_{j}\right|>\sum_{j=1}^{n}\left|\xi_{j}^{o} \eta_{j}^{o}\right|-\varepsilon>k
$$

Hence $(x, y) \in A_{k n}$. And we have proved that $\mathcal{K}^{o}\left(\left(x_{o}, y_{o}\right), r\right) \subset A_{k n}$, this means that $A_{k n}$ is open. Using the equality (2.2) we see that $s \times s \backslash \mathcal{X}$ is an G_{δ} - set. Therefore \mathcal{X} is an F_{σ} - set.

Finally, we shall show that \mathcal{X} is a set of the first Baire category in $(s \times$ $s, d)$. Let $r>0$ and $\left(x_{o}, y_{o}\right) \in s \times s$, where $x_{o}=\left\{\xi_{j}^{o} ; j \in N\right\}$ and $y_{o}=\left\{\eta_{j}^{o} ; j \in\right.$ $N\}$. Then there exists an $n_{o} \in N$ such that

$$
\sum_{j=n_{o}+1}^{\infty} \frac{1}{2^{j}}<\frac{r}{2}
$$

Choose $x_{1}=\left\{\xi_{j}^{1} ; j \in N\right\}$ and $y_{1}=\left\{\eta_{j}^{1} ; j \in N\right\}$ in the following way:

$$
\begin{aligned}
& \xi_{j}^{1}=\xi_{j}^{o} \text { for } j=1,2, \ldots, n_{o} \text { and } \xi_{j}^{1}=1 \text { for } j \geq n_{o}+1, \\
& \eta_{j}^{1}=\eta_{j}^{o} \text { for } j=1,2, \ldots, n_{o} \text { and } \eta_{j}^{1}=1 \text { for } j \geq n_{o}+1
\end{aligned}
$$

Then for each $k \in N$ there exists $n \in N$ such that

$$
\sum_{j=1}^{n}\left|\xi_{j}^{1} \eta_{j}^{1}\right|>k
$$

From this we get $\left(x_{1}, y_{1}\right) \in s \times s \backslash \mathcal{X}$. Further

$$
\begin{aligned}
d\left(\left(x_{1}, y_{1}\right),\left(x_{o}, y_{o}\right)\right) & =\varrho\left(x_{1}, x_{o}\right)+\varrho\left(y_{1}, y_{o}\right) \\
& =\sum_{j=1}^{\infty} \frac{1}{2^{j}} \cdot \frac{\left|\xi_{j}^{1}-\xi_{j}^{o}\right|}{1+\left|\xi_{j}^{1}-\xi_{j}^{o}\right|}+\sum_{j=1}^{\infty} \frac{1}{2^{j}} \cdot \frac{\left|\eta_{j}^{1}-\eta_{j}^{o}\right|}{1+\left|\eta_{j}^{1}-\eta_{j}^{o}\right|} \\
& =\sum_{j=n_{o}+1}^{\infty} \frac{1}{2^{j}} \cdot \frac{\left|\xi_{j}^{o}-1\right|}{1+\left|\xi_{j}^{o}-1\right|}+\sum_{j=n_{o}+1}^{\infty} \frac{1}{2^{j}} \cdot \frac{\left|\eta_{j}^{o}-1\right|}{1+\left|\eta_{j}^{o}-1\right|} \\
& <\sum_{j=n_{o}+1}^{\infty} \frac{1}{2^{j}}+\sum_{j=n_{o}+1}^{\infty} \frac{1}{2^{j}} \\
& <\frac{r}{2}+\frac{r}{2}=r .
\end{aligned}
$$

Hence $\left(x_{1}, y_{1}\right) \in \mathcal{K}^{o}\left(\left(x_{o}, y_{o}\right), r\right)$. In the consequence $\mathcal{K}^{o}\left(\left(x_{o}, y_{o}\right), r\right) \cap(s \times$ $s \backslash \mathcal{X}) \neq \emptyset$. This means that $s \times s \backslash \mathcal{X}$ is dense in $s \times s$. Using the foregoing results we see that \mathcal{X} is a set of the first Baire category in $(s \times s, d)$. This ends the proof.

3. 2-NORMED SETS OF LINEAR OPERATORS

Let X, Y be real linear spaces. The set $Y \times Y$ is the linear space with respect to the operations:

$$
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \text { for all } x_{1}, x_{2}, y_{1}, y_{2} \in Y
$$

and

$$
\alpha \cdot(x, y)=(\alpha x, \alpha y) \text { for all } x, y \in Y, \alpha \in \mathcal{R}
$$

By $L(X, Y)$ denote the linear space of all linear operators from X with values in Y. It is easy to see that for each linear operator $F: X \rightarrow Y \times Y$ there exists a pair of operators $f, g \in L(X, Y)$ such that $F(x)=(f(x), g(x))$ for all $x \in X$. And conversely, the operator $F: X \rightarrow Y \times Y$ defined by the formula $F(x)=(f(x), g(x))$ for all $x \in X$, where $f, g \in L(X, Y)$, is linear.

Further we will consider properties of the set of these pairs of linear operators satisfying certain additional conditions.

Definition 3.1. Let X be a real normed space and $\mathcal{Y} \subset Y \times Y$ be a 2-normed set, where Y denotes a real linear space. A set \mathcal{M} is defined as follows:

$$
\begin{aligned}
\mathcal{M}=\{ & (f, g) \in L(X, Y)^{2} ; \\
& \left.\forall x \in X(f(x), g(x)) \in \mathcal{Y} \wedge \exists M>0 \forall x \in X\|f(x), g(x)\| \leq M \cdot\|x\|^{2}\right\}
\end{aligned}
$$

Lemma 3.2. The set \mathcal{M} defined in Definition 3.1 has the following property:
(a) If \mathcal{Y} is a symmetric 2-normed set, then $\mathcal{M}=\mathcal{M}^{-1}$.
(b) For every $f, g \in L(X, Y)$ sets $\mathcal{M}^{g}=\left\{f^{\prime} \in L(X, Y) ;\left(f^{\prime}, g\right) \in \mathcal{M}\right\}$ and $\mathcal{M}_{f}=\left\{g^{\prime} \in L(X, Y) ;\left(f, g^{\prime}\right) \in \mathcal{M}\right\}$ are linear subspaces of the space $L(X, Y)$. In the case when \mathcal{Y} is a symmetric 2-normed set we have the equality $\mathcal{M}^{f}=\mathcal{M}_{f}$.

Proof. The condition (a) follows from the definition of the set \mathcal{M}.
(b) Let g be a linear operator from X in Y. First, we shall show that \mathcal{M}^{g} is non- empty. Consider the linear operator $f_{o}: X \rightarrow Y$ defined by the formula $f_{o}(x)=0$ for all $x \in X$. Because for each $x \in X$ the set $\mathcal{Y}^{g(x)}$ is linear subspace of Y, then $f_{o}(x)=0 \in \mathcal{Y}^{g(x)}$. Thus $\left(f_{o}(x), g(x)\right) \in \mathcal{Y}$ for all $x \in X$. Moreover for each positive number M and for all $x \in X$ the inequality $\left\|f_{o}(x), g(x)\right\|=\|0, g(x)\|=0 \leq M \cdot\|x\|^{2}$ is satisfied. In the consequence $\left(f_{o}, g\right) \in \mathcal{M}$, i.e. $f_{o} \in \mathcal{M}^{g}$. Thus $\mathcal{M}^{g} \neq \emptyset$.

Let $f_{1}, f_{2} \in \mathcal{M}^{g}$. It follows that $\left(f_{1}, g\right),\left(f_{2}, g\right) \in \mathcal{M}$. Thus for all $x \in X$ we have $\left(f_{1}(x), g(x)\right),\left(f_{2}(x), g(x)\right) \in \mathcal{Y}$. It means that $f_{1}(x), f_{2}(x) \in \mathcal{Y}^{g(x)}$. Because the set $\mathcal{Y}^{g(x)}$ is a linear subspace of the space Y, then $f_{1}(x)+f_{2}(x) \in$ $\mathcal{Y}^{g(x)}$, and in the consequence $\left(\left(f_{1}+f_{2}\right)(x), g(x)\right) \in \mathcal{Y}$ for all $x \in X$.

Moreover there exists $M_{1}>0$ such that $\left\|f_{1}(x), g(x)\right\| \leq M_{1} \cdot\|x\|^{2}$ for all $x \in X$. And there exists also $M_{2}>0$ satisfying the inequality $\left\|f_{2}(x), g(x)\right\| \leq$ $M_{2} \cdot\|x\|^{2}$ for all $x \in X$. Hence

$$
\begin{aligned}
\left\|f_{1}(x)+f_{2}(x), g(x)\right\| & \leq\left\|f_{1}(x), g(x)\right\|+\left\|f_{2}(x), g(x)\right\| \\
& \leq M_{1} \cdot\|x\|^{2}+M_{2} \cdot\|x\|^{2}=\left(M_{1}+M_{2}\right) \cdot\|x\|^{2}
\end{aligned}
$$

for all $x \in X$.
Finally, we showed that there exists the positive number $M=M_{1}+M_{2}$ such that for all $x \in X$ the inequality $\left\|\left(f_{1}+f_{2}\right)(x), g(x)\right\| \leq M \cdot\|x\|^{2}$ is true. Thus $\left(f_{1}+f_{2}, g\right) \in \mathcal{M}$, i.e. $f_{1}+f_{2} \in \mathcal{M}^{g}$.

Let now $\alpha \in \mathcal{R}, f \in \mathcal{M}^{g}$. It follows $(f, g) \in \mathcal{M}$, i.e. for all $x \in X$ we have $(f(x), g(x)) \in \mathcal{Y}$. Thus $f(x) \in \mathcal{Y}^{g(x)}$ and because $\mathcal{Y}^{g(x)}$ is a linear subspace of Y, then $\alpha \cdot f(x) \in \mathcal{Y}^{g(x)}$. We obtain that $(\alpha f(x), g(x)) \in \mathcal{Y}$ for all $x \in X$. Moreover there exists $M>0$ such that $\|f(x), g(x)\| \leq M \cdot\|x\|^{2}$ for all $x \in X$. Hence

$$
\begin{aligned}
\|(\alpha f)(x), g(x)\| & =\|\alpha f(x), g(x)\|=|\alpha| \cdot\|f(x), g(x)\| \\
& \leq|\alpha| \cdot M \cdot\|x\|^{2} \text { for all } x \in X .
\end{aligned}
$$

As a consequence there exists a positive number $M^{\prime}=|\alpha| \cdot M$ such that

$$
\|(\alpha f)(x), g(x)\| \leq M^{\prime} \cdot\|x\|^{2} \text { for all } x \in X
$$

It implies that $\alpha f \in \mathcal{M}^{g}$.
We proved that \mathcal{M}^{g} is a linear subspace of $L(X, Y)$ for all $g \in L(X, Y)$. Analogously we show that \mathcal{M}^{f} is a linear subspace of $L(X, Y)$ for all $f \in$ $L(X, Y)$. The condition (a) implies simply the equality $\mathcal{M}^{f}=\mathcal{M}_{f}$.

Definition 3.3. For $(f, g) \in \mathcal{M}$ we introduce a number

$$
\|f, g\|=\inf \left\{M>0 ; \forall x \in X\|f(x), g(x)\| \leq M \cdot\|x\|^{2}\right\}
$$

Theorem 3.4. If $(f, g) \in \mathcal{M}$, then
(a) $\|f, g\| \leq M$ for all $M \in \mathcal{P}^{(f, g)}$, where

$$
\mathcal{P}^{(f, g)}=\left\{M^{\prime}>0 ; \forall x \in X\|f(x), g(x)\| \leq M^{\prime} \cdot\|x\|^{2}\right\}
$$

(b) $\|f(x), g(x)\| \leq\|f, g\| \cdot\|x\|^{2}$ for all $x \in X$;
(c)

$$
\begin{aligned}
\|f, g\| & =\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \\
& =\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\| \leq 1\} \\
& =\sup \left\{\frac{\|f(x), g(x)\|}{\|x\|^{2}} ; x \in X \wedge\|x\| \neq 0\right\}
\end{aligned}
$$

(d) If \mathcal{Y} is a symmetric 2-normed set, then $\|f, g\|=\|g, f\|$ for $(f, g) \in \mathcal{M}$.

Proof. Conditions (a) and (d) are evident.
(b) Because $(f, g) \in \mathcal{M}$, then there exists a positive number M such that

$$
\|f(x), g(x)\| \leq M \cdot\|x\|^{2} \text { for each } x \in X
$$

Thus $\|f(x), g(x)\| \leq \inf \left\{M \cdot\|x\|^{2} ; M \in \mathcal{P}^{(f, g)}\right\}$, and $\|f(x), g(x)\| \leq\|f, g\| \cdot$ $\|x\|^{2}$ 。
(c) By virtue of the condition (b) we have

$$
\begin{equation*}
\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \leq\|f, g\| \tag{3.1}
\end{equation*}
$$

Let $A=\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\}$. Consider a point $x \in X, x \neq 0$. Then

$$
\begin{aligned}
\|f(x), g(x)\| & =\left\|f\left(\frac{1}{\|x\|} \cdot x \cdot\|x\|\right), g\left(\frac{1}{\|x\|} \cdot x \cdot\|x\|\right)\right\| \\
& =\|x\|^{2} \cdot\left\|f\left(\frac{x}{\|x\|}\right), g\left(\frac{x}{\|x\|}\right)\right\| .
\end{aligned}
$$

For $y=\frac{x}{\|x\|}$ we obtain $\|y\|=1$ and $\|f(y), g(y)\| \leq A$. Thus $\|f(x), g(x)\| \leq$ $\|x\|^{2} \cdot A$ for $x \neq 0$. If $x=0$, then $\|f(x), g(x)\|=0=\|x\|^{2} \cdot A$. Consequently $\|f(x), g(x)\| \leq\|x\|^{2} \cdot A$ for all $x \in X$, i.e. $A \in \mathcal{P}^{(f, g)}$.

From (a) we have $\|f, g\| \leq A$ which with (3.1) gives the equality $\|f, g\|=$ A. By the condition (b) we have also

$$
\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\| \leq 1\} \leq\|f, g\|
$$

Moreover the inequality

$$
\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \leq \sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\| \leq 1\}
$$

is true. Thus we have the equality

$$
\|f, g\|=\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\| \leq 1\}
$$

Let us take $x \in X, x \neq 0$. By (b) we have

$$
\frac{\|f(x), g(x)\|}{\|x\|^{2}} \leq\|f, g\|
$$

and further

$$
\sup \left\{\frac{\|f(x), g(x)\|}{\|x\|^{2}} ; x \in X \wedge\|x\| \neq 0\right\} \leq\|f, g\|
$$

Let $B=\sup \left\{\frac{\|f(x), g(x)\|}{\|x\|^{2}} ; x \in X \wedge\|x\| \neq 0\right\}$. If $\|x\|=0$, then $\|f(x), g(x)\|=0$.
Thus $\|f(x), g(x)\| \leq B \cdot\|x\|^{2}$ for every $x \in X$, which means that $B \in \mathcal{P}(f, g)$ and $\|f, g\| \leq B$. This ends the proof.

Theorem 3.5. The set \mathcal{M} is a 2-normed set with the 2-norm defined by the formula

$$
\|f, g\|=\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \text { for }(f, g) \in \mathcal{M}
$$

In the case that \mathcal{Y} is a symmetric 2-normed set, then the set \mathcal{M} is also symmetric.

Proof. By virtue of Lemma 3.2 the set \mathcal{M} satisfies conditions from Definition 1.2. Let $(f, g) \in \mathcal{M}$. Then there exists $M>0$ such that $\|f(x), g(x)\| \leq$ $M \cdot\|x\|^{2}$ for $x \in X$. Thus $\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \leq M<\infty$ and so the function $\|\cdot, \cdot\|$ has finite non-negative values. Moreover the following conditions are true:
(N1) Let $x \in X,\|x\|=1, \alpha \in \mathcal{R}$. Then

$$
\begin{aligned}
\|f(x),(\alpha g)(x)\| & =\|f(x), \alpha g(x)\|=|\alpha| \cdot\|f(x), g(x)\| \\
& \leq|\alpha| \cdot \sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \\
& =|\alpha| \cdot\|f, g\|
\end{aligned}
$$

Since x is arbitrary, we obtain

$$
\sup \{\|f(x),(\alpha g)(x)\| ; x \in X \wedge\|x\|=1\} \leq|\alpha| \cdot\|f, g\|
$$

and consequently the inequality

$$
\begin{equation*}
\|f, \alpha g\| \leq|\alpha| \cdot\|f, g\| \tag{3.2}
\end{equation*}
$$

Let $\alpha \neq 0$. Using (3.2) we have

$$
\|f, g\|=\left\|f, \frac{1}{\alpha} \cdot \alpha g\right\| \leq \frac{1}{|\alpha|} \cdot\|f, \alpha g\| \text { and }|\alpha| \cdot\|f, g\| \leq\|f, \alpha g\| \text { for } \alpha \neq 0
$$

If however $\alpha=0$, then $|\alpha| \cdot\|f, g\|=0=\|f, \alpha g\|$. And we showed that $|\alpha| \cdot\|f, g\| \leq\|f, \alpha g\|$ for all $\alpha \in \mathcal{R}$, which with (3.2) gives the equality

$$
\|f, \alpha g\|=|\alpha| \cdot\|f, g\|
$$

The proof of the equality $\|\alpha f, g\|=|\alpha| \cdot\|f, g\|$ is analogous, therefore it is omitted.
(N2) Let us take $f, g, h \in L(X, Y)$ such that $(f, g),(f, h) \in \mathcal{M}$. Consider $x \in X,\|x\|=1$. Then the following inequalities are true:

$$
\begin{aligned}
\|f(x),(g+h)(x)\|= & \|f(x), g(x)+h(x)\| \leq\|f(x), g(x)\|+\|f(x), h(x)\| \\
\leq & \sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \\
& +\sup \{\|f(x), h(x)\| ; x \in X \wedge\|x\|=1\} \\
= & \|f, g\|+\|f, h\| .
\end{aligned}
$$

It implies the condition

$$
\sup \{\|f(x),(g+h)(x)\| ; x \in X \wedge\|x\|=1\} \leq\|f, g\|+\|f, h\|
$$

i.e. $\|f, g+h\| \leq\|f, g\|+\|f, h\|$. Similarly we obtain:
(N3) $\|f+g, h\| \leq\|f, h\|+\|g, h\|$.
Now assume that \mathcal{Y} is a symmetric 2-normed set. Then $\mathcal{M}=\mathcal{M}^{-1}$ and the condition

$$
\begin{aligned}
\|f, g\| & =\sup \{\|f(x), g(x)\| ; x \in X \wedge\|x\|=1\} \\
& =\sup \{\|g(x), f(x)\| ; x \in X \wedge\|x\|=1\}=\|g, f\|
\end{aligned}
$$

is satisfied. Thus by Definition 1.3 the set \mathcal{M} is a symmetric 2-normed set. This finishes the proof.

Taking linear spaces $X \times X, Y \times Y$ we can consider linear operators (f, g) from $X \times X$ into $Y \times Y$, defined by the formula $(f, g)(x, y)=(f(x), g(y))$ for every $x, y \in X$, where $f, g \in L(X, Y)$. Further we will show properties of the set of these operators satisfying certain additional conditions.

Definition 3.6. Let X be a real normed space and $\mathcal{Y} \subset Y \times Y$ be a 2-normed set, where Y denotes a real linear space. A set \mathcal{N} is defined as follows:

$$
\begin{aligned}
\mathcal{N}=\{ & (f, g) \in L(X, Y)^{2} ; \forall x, y \in X(f(x), g(y)) \in \mathcal{Y} \\
& \left.\wedge \exists_{M>0} \forall x, y \in X\|f(x), g(y)\| \leq M \cdot\|x\| \cdot\|y\|\right\}
\end{aligned}
$$

Lemma 3.7. The set \mathcal{N} defined in Definition 3.6 has the following property:
(a) If \mathcal{Y} is a symmetric 2-normed set, then $\mathcal{N}=\mathcal{N}^{-1}$.
(b) For every $f, g \in L(X, Y)$ sets $\mathcal{N}^{g}=\left\{f^{\prime} \in L(X, Y) ;\left(f^{\prime}, g\right) \in \mathcal{N}\right\}$ and $\mathcal{N}_{f}=\left\{g^{\prime} \in L(X, Y) ;\left(f, g^{\prime}\right) \in \mathcal{N}\right\}$ are linear subspaces of the space $L(X, Y)$. If \mathcal{Y} is a symmetric 2-normed set, then $\mathcal{N}^{f}=\mathcal{N}_{f}$.

The proof is similar to the proof of Lemma 3.2 so it is omitted.
Definition 3.8. For $(f, g) \in \mathcal{N}$ we introduce a number

$$
\|f, g\|=\inf \{M>0 ; \forall x, y \in X\|f(x), g(y)\| \leq M \cdot\|x\| \cdot\|y\|\}
$$

The following theorem gives properties of the number $\|f, g\|$ for $(f, g) \in$ \mathcal{N}, which are similar to the properties from Theorem 3.4.

Theorem 3.9. If $(f, g) \in \mathcal{N}$, then
(a) $\|f, g\| \leq M$ for all $M \in \mathcal{R}^{(f, g)}$, where

$$
\mathcal{R}^{(f, g)}=\left\{M^{\prime}>0 ; \forall x, y \in X\|f(x), g(y)\| \leq M^{\prime} \cdot\|x\| \cdot\|y\|\right\}
$$

(b) $\|f(x), g(y)\| \leq\|f, g\| \cdot\|x\| \cdot\|y\|$ for all $x, y \in X$;
(c)

$$
\begin{aligned}
\|f, g\| & =\sup \{\|f(x), g(y)\| ; x, y \in X \wedge\|x\|=\|y\|=1\} \\
& =\sup \{\|f(x), g(y)\| ; x, y \in X \wedge\|x\| \leq 1,\|y\| \leq 1\} \\
& =\sup \left\{\frac{\|f(x), g(y)\|}{\|x\| \cdot\|y\|} ; x, y \in X \wedge\|x\| \neq 0,\|y\| \neq 0\right\}
\end{aligned}
$$

(d) $\|f, g\|=\|g, f\|$, if \mathcal{Y} is a symmetric 2-normed set.

Theorem 3.10. The set \mathcal{N} is a 2-normed set with the 2-norm defined by the formula

$$
\|f, g\|=\sup \{\|f(x), g(y)\| ; x, y \in X \wedge\|x\|=\|y\|=1\} \text { for }(f, g) \in \mathcal{N}
$$

If \mathcal{Y} is a symmetric 2-normed set, then the set \mathcal{N} is also symmetric.
Proofs of Theorem 3.9 and Theorem 3.10 are analogous to proofs of Theorem 3.4 and Theorem 3.5, respectively, therefore they are omitted.

In this section we introduced two 2 -normed $\operatorname{sets}\left(\mathcal{M},\|\cdot, \cdot\|_{\mathcal{M}}\right)$ and $\left(\mathcal{N},\|\cdot,\|_{\mathcal{N}}\right)$, where $\mathcal{N} \subset \mathcal{M}$. Let us remark that for every $(f, g) \in \mathcal{N}$ the inequality

$$
\|f, g\|_{\mathcal{M}} \leq\|f, g\|_{\mathcal{N}}
$$

is true.
Finally consider a normed space $(X,\|\cdot\|)$, in which is given a 2-norm in the Gähler's sense independent of the norm. In [3] S. S. Kim, Y. J. Cho and A. White introduced the following definition of an 2-bounded operator.

Definition $3.11([3])$. An operator $T:(X,\|\cdot\|) \rightarrow(X,\|\cdot\|$,$) is said$ to be 2-bounded if there is a $K \geq 0$ such that

$$
\|T(x), y\|+\|x, T(y)\| \leq K \cdot\|x\| \cdot\|y\| \text { for all } x, y \in X
$$

Authors of [3] showed that the space $B L(X, Y)$ of all 2-bounded linear operators from normed space $(X,\|\cdot\|)$ into a 2 -normed space $(X,\|\cdot, \cdot\|)$ is a normed space with the norm $\|\cdot\|_{2}$ defined by the formula

$$
\|T\|_{2}=\inf \{K \geq 0 ;\|T(x), y\|+\|x, T(y)\| \leq K \cdot\|x\| \cdot\|y\| \text { for all } x, y \in X\}
$$

Considering a normed space $(X,\|\cdot\|)$, in which is defined also a 2-norm in the Gähler's sense, we obtain that the set $\mathcal{N}^{i d}$ coincides with the space
$B L(X, Y)$, where the operator $i d: X \rightarrow X$ is defined as follows: $i d(x)=x$ for all $x \in X$. Thus results in [3] are the special case of the theory in the presented paper.

References

[1] J. Ewert and T. Šalát, Applications of the category method in the theory of modular sequence spaces, Acta Math. Univ. Comenian. 48-49 (1986), 133-143.
[2] S. Gähler, Lineare 2-normierte Räume, Math. Nachr. 28 (1964), 1-43.
[3] S. S. Kim, Y. J. Cho and A. White, Linear operators on linear 2-normed spaces, Glasnik Matematički 27(47) (1992), 63-70.
[4] Z. Lewandowska, Linear operators on generalized 2-normed spaces, Bull. Math. Soc. Sci. Math. Roumanie 42 (1999), 353-368.
[5] Z. Lewandowska, Generalized 2-normed spaces, Słupskie Prace Matematyczno-Fizyczne 1 (2001), 33-40.
Z. Lewandowska

Department of Mathematics
Pedagogical University
Arciszewskiego 22 b
Pl-76-200 Slupsk
Poland
E-mail: Lewandowscy@rene.com.pl
Received: 07.11.2001.

[^0]: 2000 Mathematics Subject Classification. 46A32,46A99.
 Key words and phrases. 2-normed set, 2-normed space, 2-norm in the space of linear operators.

