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ABSTRACT. In this paper we consider biLipschitz maps between com-
pact spaces with the metrics which are induced by given approximate reso-
lutions. More precisely, we characterize biLipschitz maps in terms of condi-
tions on any approximate resolutions of the maps. We then show that the
box-counting dimension for approximate resolutions which was introduced
earlier is invariant under approximate maps corresponding to biLipschitz
maps. Moreover, we construct categories whose objects are approximate
resolutions and in which the box-counting dimension is invariant.

1. INTRODUCTION

It is well-known that the notion of approximate resolution, which was
introduced by Mardesi¢ and Watanabe [5], is useful in many problems in
topology [3, 4, 13, 14, 15, 12, 7] and is essential even for compact metric spaces
[2, 6, 13, 14]. One of the important points in using approximate resolutions
is that given a map f : X — Y and polyhedral approximate resolutions
p: X —>Xandq:Y — Y of X and Y, respectively, we have an approximate
map of systems f : X — Y representing f.

The authors introduced a new method to study Lipschitz maps, using ap-
proximate resolutions in their earlier paper [8]. Given any compact metrizable
spaces with an approximate resolution, there is an induced metric that gives
the same uniformity, and Lipschitz maps between compact spaces with the
so obtained metrics are studied by using approximate resolutions. They also
defined and studied the box-counting dimension for approximate resolutions
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[9], extending the usual notion of the box-counting dimension for compact
subsets in the Euclidean spaces.

The purpose of this paper is to study biLipschitz maps by approximate
resolutions and construct categories in which the box-counting dimension is
invariant. More specifically, this paper consists of the following two parts:
In the first part (Sections 3 and 4), a characterization is given for biLips-
chitz maps between compact spaces with metrics which are induced by given
approximate resolutions, and it is shown that the box-counting dimension is
invariant under the approximate maps corresponding to biLipschitz maps. In
the second part of the paper (Sections 5 and 6), we construct categories con-
sisting of approximate resolutions and approximate maps corresponding to
Lipschitz maps and biLipschitz maps so that the box-counting dimension is
invariant in these categories.

Throughout the paper, a space means a compact metric space, and a map
means a continuous map unless otherwise stated.

For any space X, let Cov(X) denote the set of all normal open coverings
of X. For any subset A of X and U € Cov(X), let st(A,U) = U{U € U :
UNA#0tandU|A={UNA:U eU}. It A= {z}, we write st(z,U)
for st({z},U). For each U € Cov(X), let sttd = {st(U,U) : U € U}. Let
st U = st(st"U) for each n = 1,2,... and st'U = stU. For any metric
space (X,d) and r > 0, let Ug(z,7) = {y € X : d(z,y) < r}. For any
U € Cov(X), two points z, 2’ € X are U-near, denoted (z,2') < U, provided
xz,2’ € U for some U € Y. For any V € Cov(Y), two maps f,g: X — Y
between spaces are V-near, denoted (f,g) <V, provided (f(z),g(z)) <V for
eachz € X. Foreach U € Cov(X) and V € Cov(Y), let fUU ={f(U):U e U}
and f~'V = {f~1(V) : V € V}. Let N denote the set of natural numbers
with the usual order.

2. APPROXIMATE RESOLUTIONS AND INDUCED METRICS

In this section we recall the definitions and properties of approximate
resolutions and the results concerning Lipschitz maps which will be needed
in later sections. For more details on approximate resolutions and Lipschitz
maps, the reader is referred to [5] and [8, 9], respectively.

An approzimate inverse sequence (approximate sequence, in short) X =
{X;,U;, piir } consists of

i) a sequence of spaces X;, i € N;
ii) a sequence of U; € Cov(X;), i € N; and
iii) maps p;r : Xy — X; for i < i’ where p; = 1x, the identity map on
X;.
It must satisfy the following three conditions:

(A1) (pizrpirir, piir) < U; for i < i’ < i”;
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(A2) For each i € N and U € Cov(X;), there exists i > ¢ such that
(Piiy Pirias Piiy) < U for i’ <y <iiz; and
(A3) For each i € N and U € Cov(X;), there exists i’ > ¢ such that
Ui < psld for i’ < i
An approzimate map p = {p;} : X — X of a space X into an approximate
sequence X = {X;,U;,piir } consists of maps p; : X — X; for ¢ € N with the
following property:

(AS) For each i € N and U € Cov(X;), there exists ¢’ > ¢ such that
(piinpirr,pi) < U for i > 7'
An approzimate resolution of a space X is an approximate map p = {p;} :
X — X of X into an approximate sequence X = {X;,U;, p;i } which satisfies
the following two conditions:

(R1) For each ANR P, V € Cov(P) and map f : X — P, there exist
i € N and amap g : X; — P such that (gp;, f) < V; and

(R2) For each ANR P and V € Cov(P), there exists V' € Cov(P) such
that whenever i € N and g, ¢’ : X; — P are maps with (gp;, ¢'p;) <V,
then (gpiir, ¢'piir) < V for some ¢’ > i.

If C is a collection of spaces, and if all X; belong to C, then the approximate
resolution p : X — X is called an approzimate C-resolution. Let POL denote
the collection of polyhedra. Throughout the rest of the paper, an approximate
resolution means an approximate POL-resolution unless otherwise stated.

It is known that an approximate map p = {p;} : X — X = {X;,U;, pis}
is an approximate resolution of a space X if and only if it satisfies the following
two conditions:

(B1) For each U € Cov(X), there exists ig € N such that p; 'U; < U for
i > 10; and
(B2) For each i € N and U € Cov(X;), there exists i9 > ¢ such that
Dii (X’L/) - st(pl(X),L{) for i’ > 9.
It is also known that every space X admits an approximate resolution p =
{pi}: X = X = {X;,U;, piir} such that all X; are finite polyhedra ([14]), and
that every connected space X admits an approximate resolution p = {p;} :
X — X ={X;,U;, piir} such that all X; are connected finite polyhedra, and
all p; and p;;r are surjective ([4]).

Let X = {X;,U;,pir } and Y = {Y;,V;, ¢;;» } be approximate sequences of
spaces. An approzimate map f = {f;, f} : X — Y consists of an increasing
function f : N — N and maps f; : X;;) — Y;,5 € N, with the following
condition:

(AM) For any j,j" € N with j < j/, there exists ¢ € N with ¢ > f(j/)
such that

(qj‘j/fj/pf(j/)yi/, fjpf(j)yi/) < st Vj for i’ > i.
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An approximate map f : X — Y is said to be uniform if
Uypy < f71V; for each j.
A map f: X — Y is a limit of f provided the following condition is satisfied:
(LAM) For each j € N and V € Cov(Y}), there exists j° > j such that

(gjjn firppimyai f) <V for j" > j'.

For each map f: X — Y, an approximate resolution of f is a triple (p, g, f)
consisting of approximate resolutions p: X — X of X andq:Y — Y of Y
and of an approximate map f : X — Y with property (LAM). It is known
that for any approximate resolutions p: X — X and q : Y — Y, every map
f: X — Y admits an approximate map f : X — Y such that (p,q, f) is an
approximate resolution of f.

For each approximate sequence X = {X;,U;,pi}, let st X denote the
approximate system {X; stU;,p;v}. Then there is a natural approximate
map ix = {lx,} : X — stX, where 1x, : X; — X, is the identity map.
For each approximate map p = {p;} : X — X = {X;,U;,piv}, the map
stp={p;}: X — st X = {X;,stU;, pirr} is an approximate map. Moreover,
if p: X — X is an approximate resolution, so is stp : X — st X. For any
approximate sequences X = {X;,U;, piir} and Y = {Y},V;, q;;»} and for each
approximate map f = {f;, f} : X = Y, themapst f = {fj, f} : st X —stY
is an approximate map. Moreover, if (f, p, g) is an approximate resolution of
amap f: X — Y, sois (st f,stp,stq).

For each approximate map f = {f;, f} : X - Y where p={p;} : X —
X ={X;,Us,pir} and g = {¢;} : Y = Y = {Y},V;,q;;7} are approximate
resolutions, consider the following property:

(APS) (V5 € N)(VW € Cov(Y;))(Fjo > 5)(V5" > jo)(Fjg > j)(V5" >

Jo)Fio > f(3")(Vi > i) :

ajjn (Yjr) C st(gjje fFirppinyi(Xi), V).

Then we have

THEOREM 2.1. Let f: X =Y be a map, and f = {f;} : X =Y be an
approzimate map such that (f,p,q) is an approximate resolution of f, where
p={pi}: X = X ={X;,U;,pivr'} and q ={q;}: Y =Y ={Y;,V},q;; } are
approximate resolutions of X and 'Y, respectively. Then f is surjective if and

only if f satisfies (APS).
PROOF. See [10] O
Note that if f: X — Y has property (APS), so does st f : st X — stY.
Following the approach of Alexandroff and Urysohn (see [1] and [11, 2-

16]), given a space X and a normal sequence U on X, we define a metric dy
on X.
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A family U = {U; : i € N} of open coverings on a space X is said to be a
normal sequence provided stU; 11 < U; for each i. Let XU denote the normal
sequence {V; : V; = U; 41,1 € N} and st U the normal sequence {stlf; : i € N}.
For any normal sequences U = {U;} and V = {V;}, we write U < V provided
U; < V; for each i. Let XU = U, and for each n € N, let XU = %(X"~1U),
and also let st®U = U and st" U = st(st” 1 U). For each map f: X — Y
and for each normal sequence V = {V;}, let f~1V = {f~1V;}. For each closed
subset A of X and for each normal sequence U = {U;} on X, let U|A = {U;|A}.

Given a normal sequence U = {U;} on X, we define a function Dy :
XxX— RZQ by

97 if ('Ta 'T/) 7& ul;
Dy(z,2") = 31.%, if (z,2') <U; but (x,2') £ Uit1 ;

0, if (x,2") <U; for all i € N |
and a function dy : X x X — R3¢ by
dy(z,2') = inf{Dy(z, z1) + Dy(z1,22) + - - - + Dy(zn, 2’)}

where the infimum is taken over all points x1, x2, ..., 2, in X and R>( denotes
the set of nonnegative real numbers. Then the function dy : X x X — Rx¢
defines a pseudometric on X with the property that

1
(2.1) st(z,Uivs) C Ug, (2, g) C st(z,U;) for each x € X and 3.

Moreover, if U has the following property:
(B) {st(x,U;):i € N} is a base at z for each x € X,

then dy defines a metric on X, which we call the metric induced by the normal
sequence U. In particular, if U = {U;} is the normal sequence such that
U; = {Uq(z, &) : @ € X}, then the metric dy induced by the normal sequence
U induces the uniformity which is isomorphic to that induced by the metric d.

PROPOSITION 2.2. Let X be a space, and let U = {U;} and V = {V;} be

normal sequences on X. Then we have the following properties:
1) If Ais a closed subset of X, then dy|s(z,2") > dy(z,2') for all z, 2" € A.
2) If U<V, then dy(z,2") > dv(z,2’) for all z,2" € X.
3) dyu(z,2’) = 3dy(z,2') for all x,2’ € X.
4) dgyu(z,2') < dy(z,2') < 3dsu(z,2’) for all z,2’ € X.

For each approximate resolution p = {p;} : X — X = {X;,U;, pirr},
consider the following three properties:

(U) st?U; < p;;'U; for i < j;

(A) (pijpj,pi) <U; for i < j; and

(NR) p; ' stU; < p; U for i < j.
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An approximate resolution p = {p;} : X — X = {X;,U;, piir } is said to
be admissible provided it possesses properties (U), (A), (NR) and the family
U = {p; 'U;} has property (B).

PROPOSITION 2.3. Let p = {p;} : X — X = {X;,U;, piir} be an admissi-
ble approximate resolution of X. Then the following properties hold:
1) The family Uy = {p; ' st*U; : i € N} forms a normal sequence on X
for k> 0;
2) The approzimate resolutionst* p = {p;} : X — stF X = {X;, st* U, pisr}
is admissible for k > 1.

For any approximate resolution p = {p;} : X — X = {X;,U;, piir }, we
can always find an admissible approximate resolution p’ = {pi,} : X — X' =
{ Xk, , Uy, , pr;k,; } by taking a subsystem.

Let p: X — X = {X;,U;, piir} be any admissible approximate resolution
of a space X. Then for any z, 2" € X, we define a function Dp : X x X — R>g
by

9, if (pi(x),pi(a’)) £ U; for any 4;
Dy(w,2") = 3-—1,27 if (pi(x),pi(2')) <U; but (pi(2), pi(2")) £ Uit

0, if (pi(z),pi(a")) <U; for all 4,
and a function dp : X x X — R>q by
dp(z,2") = inf{Dp(z,x1) + Dp(z1,22) + - - - + Dp(zn,2')}

where the infimum is taken over all finite collections of points z1,za,...,z,
of X. Note that dp(z,2') = dy(z,2’) for any z,2’ € X, where U = {p; 'U;}.

For each approximate resolution p = {p;} : X — X = {X;,U;, pirr},
we define the approximate sequence XX as {Z;, W;,rys} where Z; = X; 11,
Wi = Uiy, Tir = Piy1,i0+1 - Ly — Z; and the approximate resolution Xp as
{ri:i €N} : X — XX where 7, = pis1 : X — X;11. Let 3°X = X and
¥0p = p, and for each i € N, let X" X = %(X""1X) and X"p = S(X""1p).

PROPOSITION 2.4. Let X be a space, and let p = {p;} : X — X =
{ X, Ui, piir } be an admissible approximate resolution of X. Then

1) dsnp(z,2') =3"dp(x,2') for x,2’ € X and for each n € N; and

2) dsep(z,2’) < dp(z,2") < 3dsep(x,2’) forz,2’ € X.

Throughout the paper, approrimate resolutions are assumed to be admis-
sible unless otherwise stated.

3. BI-LIPSCHITZ MAPS

In this section we consider bi-Lipschitz maps with respect to the metrics
induced by approximate resolutions. In particular, we give a characterization
in terms of approximate resolutions. But first, we consider normal sequences.
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Let X and Y be spaces with normal sequences U = {U;} and V = {V;},
respectively. Then amap f: X — Y is called a (U, V)-Lipschitz map provided
there exists a constant o > 0 such that

dy(f(z), f(z") < ady(z,z’) for z,2" € X,

and a (U, V)-bi-Lipschitz map provided there exist constants a;y, as > 0 such
that

ardy(z,z') < dy(f(z), f(2')) < agdy(a,2’) for z,2’ € X.

THEOREM 3.1. Let X and Y be spaces with normal sequences U = {U;}
and V = {V;}, respectively, and let f : X — Y be a map. Consider the
following properties:

1) dU(CC,CC/) < dV|f(X)(f(x)7f(x/)) fO’f’ SC,JC/ € Xz'

2) 7V < U; and

3) fIN4V < U.

Then the implications 2) = 1) = 3) hold.

PROOF. To see 2) = 1), let z,2’ € X, and let yo = f(2),y1,Y2, -, Yn =
f(2’) be any points in f(X). Say y; = f(z;) for some z; € X.
If Dyjpox)(f(@i), f(wit1)) = ?),C%z for some k; > 0, 2) implies that
Dy(xi, wip1) < 3,%%2 Hence 1) holds. To see 1) = 3), let i € N, and let V €
Vita. Take z € f~1(V). Then property (2.1) implies V' C Uq,(f(2), 557).
If 2/ € f74(V), then f(z') € V C Ua,(f(x), 55r). So, 1) and property
(2.1) imply @' € Uqy(z, 5557) C st(z,Uis1) C U for some U € U;, showing
FUV)CU. 0

THEOREM 3.2. Under the same setting as in Theorem 3.1, consider the
following property for m € Z:

(L™ dy(z,2') < 37 dyy ) (F(2), F(@)) for 2,27 € X;
and for m,n > 0, the following two properties:

(M)m™n f=lstmV < ¥"U; and

(N)y™n f=iymy < $rU.
Then we have the following implications for m,n > 0:
1) (L)™ = (N)™*40;
2) L)~ = N)tm;
3) (N)™" = (L)™™";
4) (M)m™m = ()™
PROOF. To see 1), note that (L)™ means

dy(z,z") < dsmvipx) (f(2), f(2")) for z,2" € X.

But this together with Theorem 3.1 implies f~!134(X™V) < U, which means
(N)m+40.2) is proven similarly to 1). To show 3), note that (N)™" together
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with Proposition 2.2 3) and Theorem 3.1 implies

3" dy(z,2") = dswu(z,2') < dsmyjpx) (f(2), f(@))
= 3" dy)sx)(f(x), f(z)) for z, 2" € X,
which means (L)™~". To show 4), note that (M)"" together with Proposi-
tion 2.2 3), 4) implies
3" dy(z, 2') = dsry(z, 2') < dsem v o0 (f(2), f(2))
< 3™ dy) ) (f(2), f(2)) for 2, 2" € X,

which means (L)™ ™. O

Let f: X — Y be amap and let f : X — Y be an approximate map
such that (f,p,q) is an approximate resolution of f, where p : X — X and
q:Y — 'Y are approximate resolutions of X and Y, respectively. Then a map
f:X — Y is called a (p, q)-Lipschitz map provided there exists a constant
a > 0 such that

dg(f(2), f(2') < adp(z,a’) for ,2' € X,
and a (p, q)-biLipschitz map provided there exist constants aq, s > 0 such
that
ardp(z,2') < dg(f(z), f(2")) < azdp(x,2’) for z,2’' € X.
THEOREM 3.3. Let X and Y be spaces, and let f : X — Y be a surjective
map. Also let p = {p;} : X - X = {X;,U;,piv} and ¢ = {¢;} 1 ¥ —
Y = {Y;,Vj,q;;} be approzimate resolutions of X and Y, respectively, and

let f =A{f;}: X — Y be an approzimate map such that (f,p,q) is an
approximate resolution of f. Consider the following property for m € Z:

(Lip)™ 3™ dp(z,2') < dq(f(z), f(z))) for z, 2’ € X;
and the following two properties for m > 0,
(ALip)™ For each i, there exists jo > i with the property that each j > jo
admits i > i+ m, f(j) such that
Py di 4 Vi < it i Uiem for i’ > io; and
(ALip)~™ For each i, there exists jo > i +m with the property that each
j > jo admits ig > 1, f(j) such that
p;(lj)ﬂ-/ fj_lqi_JrlmﬁjVier < pi_i/lui fm’ i’ > i0-
Then the following implications hold for each m € Z:

1) (ALip)™ forst f:st X —stY = (Lip)™ 2 for p and q;
2) If each p; is surjective, (Lip)™*2 for p and q = (ALip)™ for st f :
st X —stY.
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PRrROOF. We can assume m > 0 since the argument for m < 0 is similar.
Suppose (ALip)™ holds for st f : st X — stY, and let ¢ € N. Take V €
Cov(Y;) such that stV < V;, and take jo > ¢ as in (ALip)™. By (LAM), there
exists j; > jo such that

(3.1) (@i f, qij fippiy) <V for j > ji.

Fix j > j1, and for this j, take ig > i +m, f(j) as in (ALip)™. By (AS), there
exists i’ > ig such that

(3.2) (s PrGypir) < f5lai Vs
and
(3-3) (piervpier,i’pi’) < Uipm.

Then, for each V € V;, by (3.1), (3.2), (ALip)™ and (3.3), for some U € U; 11,
7l (V) Sppy fi et st (Ve Y)

C Py Pyl I g (ssE(V, V), V)

C vy Py fi i stV V)

C P 'y i (8 (U Uiym)

C Dt (st(5E (U, Uigem), Uigm)-
This means f_qulvi < p;rlm st? Ui, and hence f~1V < X™U where U =
{p; 'st?U;} and V = {g; *V;}. By Theorem 3.2,

dgmu(z,2’) < dv(f(), f(2")) for z,2" € X,

which means (Lip)™ for st?>p and q. This together with Proposition 2.4
implies (Lip)™~2 for p and q, verifying 1).

To see 2), first note that (Lip)”™*2 for p and q means (Lip)™ for p and
st? g. Suppose now that all p; are surjective, and suppose (Lip)™ for p and
st? g. Let i € N, and take V € Cov(Y;) such that stV < V;. Then by (LAM)
there exists jo > ¢ such that

(3.4) (aif,aij fipsi)) <V for each j > jo.

Fix j > jo. Then by (AS) there exists ig > @ + m, f(j) such that for each
i > 10

(3.5) (pi+m7pi+m,i/pi/) < Uiym,

and

(3.6) PGy PrGypir) < f5 7 ai V-
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Then, for each i’ > iy and for each V' € V;, by (3.6), (3.4), (Lip)™ for p and
st2 q, and (3.5) for some U € U1,
Pir pf G), s 1q;1(st(V Vi) € f(J)f 1‘]1_31(5‘5(5‘5(‘/’ Vi), V)
C g (st(st(st (V. V0), V), V)
C g (st(st(V, Vi), Vi)
Cpitn(U)
C Pir Py (U Uim))-
Since each p; is surjective,
p;(lj)i/ fj_lqi_jl (St(V, VZ)) - pi_-q-lm,i' (St(U, uier))a
proving (ALip)™ for st f : st X — st Y. This verifies 2). O
Recall the following two results concerning Lipschitz maps from [8, 9]:

THEOREM 3.4. Let X and Y be spaces with normal sequences U = {U;}
and V = {V;}, respectively, and let f : X — Y be a map. Consider the
following statements:

(L) dv(f(z), f(2')) <3™dy(z,2’) forz,2' € X;

M)y XU < f1st™V; and

(N)mn XU < f718"V.

Then the following implications hold for any m,n > 0:

) ( )mn = (L)m-i-n;
3) (L ) = (M )m+40 = (N)m+a,0; and
4) (L)=m = (N)4m.

and

THEOREM 3.5. Let X andY be spaces, and let f : X — Y be a map. Also
let p={pi} : X = X ={Xi,Us,pivr} and ¢ ={q;} : Y =Y ={Y}, V},q;;:}
be approzimate resolutions of X and Y, respectively, and let f = {f;}: X —
Y be an approzimate map such that (f,p,q) is an approzimate resolution of
f. For each m € Z, consider the following property:

(Lip)m dq(f(x), f(z") < 3Mdp(z,2') for x,2’ € X,
and for m > 0, consider the following two properties:

(ALip),, For each i, there exists jo > i with the property that each j > jo
admits ig > f(j),% + m such that, for each i’ > iq,

—1 -1 -1 _—1
Pim ilhiem <Dy irfy g Vis

and
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(ALip)_,, For each i, there exists jo > i+ m with the property that each
j > jo admits ig > f(4),1 such that, for each i’ > iy,
p;}u’i < p;(lj)ﬁz, fjilq;_lmdvfi+m.
Then the following implications hold for m € Z:
1) (ALip),, forstf :st X —stY = (Lip)m+2 for p and g;
2) If all p; are surjective, (Lip),, for p and q = (ALip)miqa for st f :
st X —stY.

REMARK 3.6. Propety (ALip)_,, (m < 0) was called property (ACon),,
in [9].

Theorems 3.2 and 3.4 imply

COROLLARY 3.7. Under the same setting as in Theorem 8.1, a map f :
X =Y is a (U,V)-biLipschitz map if and only if there exists m > 0 for which
(N)m.o and (N)™° hold.

Theorems 3.3 and 3.5 imply

COROLLARY 3.8. Under the same setting as in Theorem 3.3, a map
f:X =Y is a (p,q)-bilipschitz map if and only if for any approzimate
resolution (f,p,q) of f where p : X — X and q : Y — Y are admis-
sible approzimate resolutions of X and Y, respectively, with each p; being
surjective, there exist m,n € Z for which (ALip)n and (ALip)™ hold for
st f:st X —stY.

We will need another characterization for condition (ALip),,. For each
approximate map f = {f;,f} : X — Y wherep = {p;} : X - X =
{X;,U,piv } and ¢ = {¢;} : Y = Y = {Y;,V;,q;;»} are admissible approxi-
mate resolutions, consider the following properties for m > 0:

(ALip)}, For each i there existsig > f(i),i+m such that, for each ¢’ > i,

pi_.;_lm,i/ui-l—m < p;(li))i/ fi_lviQ
and
(ALip)*,, For each i there exists ig > f(i+m) such that, for each ¢’ > i,
pi;’lui+m < p;(lﬁm)’i/f;rlmVHm-

THEOREM 3.9. The following implications hold for m € Z:

1) (ALip),, for st f : st X — stY = (ALip)%, for iqxystf : st X —
st?Y;

2) (ALip)s, for st f : st X — stY = (ALip)y, for iy stf : st X —
st2Y';

3) (ALip)y, for isystf : stX — st?Y = (ALip)yy1 for st>f :
st? X —st?Y;
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4) (ALip);, for iy stf : stX — st?Y = (ALip);, 4 for st* f :
st2 X —st?Y;

5) (ALip)., for stf : st X — stY = (ALip)};, ., for st* f : st? X —
st?Y';

6) (ALip);, for st f : st X — stY = (ALip)m41 for st f : st* X —
st?Y.

PRrOOF. Throughout the proof, assume m > 0. The argument for m < 0
is similar. To see 1), let 4 € N. Take jo > 4 as in (ALip),,. Fix j > jo. Then,
by (ALip),, and (AM), there exists i9 > f(j),%+m such that for each ¢’ > i,

(3.7 p;rlmm StUipm < p;(lj)yi,fflqi;l st Vi,
and

(3.8) (fipgiy,ir @i i r(y.ar) < st Vi

By (3.8),

(3.9) p;(lj'),i’ fjflq;jl stV; < p;(li),i’ fitst? V.
By (3.7) and (3.9),

Piiir $t Ui < Py o Ji 62 Vi for i > o,

proving 1). To see 2), let i € N, and let jo = ¢ + 1. Then by (ALip)}, and
(AM) for f: X — Y, for each j > jo, there exists ig > f(j),7 + m such that
for each i’ > 1o,

(3.10) p;rlmJ, stUirm < p;(li)ﬁi/ fz-_1 st V;,
and

(3.11) (fips(iy.irs Gij Fippgy.ir) < st Vi

By (3.11),

(3.12) Py i stV <0yl ol gt st Vi

By (3.10) and (3.12),
Pivm,ir Uit <235y o 77 035" 562 Vi,
verifying 2). To see 3), let i € N. Then the hypothesis together with (Al)

implies that there exists jo > ¢ with the property that each j > jy admits
io > f(j),i+ m+ 1 such that for each ¢’ > i,

(3.13) p;rlmﬁi, stUirm < p;(ﬁ))i,fjflq;jl st? V;,
and
(3-14) (pi-i-m,i’7pi+m,i+m+1pi+m+l,i’) <Uitm.

By (3.14) and (U),

~1 2 ~1 —1 ~1
(315) i1 SV Uikma1r < DifmiritPitmitmi1Uitm < i i StUim.
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By (3.15) and (3.13),
-1 294 -1 -1 -1 .21y, ./ .
pi+m+1,i/ st uz+m+1 < pf(j)ﬂ-/ fj qij st Vl for 7" > 20,

proving 3). 4) is similar to 3), and 5) and 6) easily follow from 1), 4) and 2),
3), respectively. O

We will also need another characterization for property (ALip)™. For
each approximate map f = {f;, f} : X - Y wherep={p;} : X - X =
{X;,Up,piv} and ¢ = {¢;} : Y = Y = {Y;,V;,q;;} are approximate resolu-
tions of X and Y, respectively, for m > 0 consider the following properties
for m > 0:

(ALip)™ For each 4, there exists ig > f(i),i+m such that for each ¢’ > i,

P fi Vi < P Ui
and

(ALip);™ For each ¢, there exists iy > f(i+m) such that for each ¢’ > i,

p;(1i+m),i’ f:rlmvz-l-m < pi_illui'

THEOREM 3.10. The following implications hold for m € Z:

1) (ALip)™ for st3 f : st3 X — st3Y = (ALip)™ ! forst? f : st? X —

st?Y ; and

2) (ALip)™ forst3 f :st3 X — st?Y = (ALip)™ ! for st> f :st> X —

st2Y.

PROOF. Assume m > 1 since the argument for the case m < 0 is similar.
For 1), let i € N. By (ALip)™ for st® f : st* X — st3Y and (AM) for
f: X — Y, there exist j > i and ¢ with ig > ¢ + m, f(j) such that for
i > 10,

(3.16) p;(lj)ﬂi/ ftag stV < pih o 56 Ui,
and

(3.17) (fip sy 43 [Py (s).ar) < stVie

By (3.17) and (3.16),

(3.18) p;(ll.)ﬁi,ffl st?V; < p;rlmﬁi, st3 Ui for i’ > ig.

But since, by (Al),
(Pitm—1,i+mPitm,i"s Pitm—1,ir) < Uitm—1,
then, by (U), for i’ > iy,
p;.sm7i/ st Uy pm < P;_lm,i/ st pi_+1m71,i+mui+m—1
(3.19) <Pt i Pitm—tiam SUUim—1

—1 2
< Pigm—1,ir St Uigm—1.
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This together with (3.18) implies
p;(lj)ﬁi/f.fl st2 V; < pijrlmfl,i/ st? Uitm—1 for i/ > Q-

K2

This means (ALip)”™~! for st? f :st? X — st? Y.

For 2), let i € N, and let jo = i. Fix j > jo. By (ALip)™ for st3 f :
st3 X — st3Y, (LAM) and (A1), there is ig > i +m, f(j) with the property
that for each i’ > iq,

(3.20) Prsyarfi 86 Vi <D i 58 Ui,

and (3.17) and (3.19) hold. By (3.17), (3.20) and (3.19), for each i’ > iy,
p;(lj)ﬂ-/ fj_lqigl st? Vi < p;lm_l,i/ st? Uit m—1,

which means (ALip)™~! for st? f : st? X — st Y. a

4. THE BOX-COUNTING DIMENSION IS LIPSCHITZ INVARIANT

Let X be any space. For each U € Cov(X), let
Nu(X) :min{n:X cthyu---uu,,U; EU}
For each normal sequence U = {U;} on a space X, we respectively define the
lower and the upper bozx-counting dimensions of (X,U) by

1 Ny (X
dim (X, ) = lim 19882 (X)

71— 00 1
and |
_ Ny (X
T (X, U) = T 283 N (X).
71— 00 7

If the two values coincide, the common value is called the boz-counting di-
mension of (X,U) and is denoted by dimp(X,U).

If X is a compact subset of R™ with the usual metric and if we take the
normal sequence U of open coverings U; by open balls with radius %, then
the above values coincide with the usual box-counting dimension.

The fundamental properties of the box-counting dimension for normal
sequences can be found in [9]. In particular, we have the following Lipschitz
subinvariance property for the box-counting dimension.

THEOREM 4.1. Let U = {U;} and V = {V;} be normal sequences on X
and Y, respectively. If f : X =Y is a surjective (U, V)-Lipschitz map, then

di_mB (Ya V) < di_mB (X7 U)

and
dimp (Y, V) < dimp(X,U).

PROOF. See [9, Proposition 4.7]. O

Now we have the following Lipschitz invariance property:
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THEOREM 4.2. Let U = {U;} and V = {V;} be normal sequences on X
and Y, respectively. If f: X — Y is a surjective (U, V)-biLipschitz map, then

dim (Y, V) = dim (X, U)

and

T (¥, V) = dmp (X, ).
PRrROOF. By Theorem 4.1, it suffices to show that
(4.1) dimp(X,U) < dimg(Y,V) and dimp (X, U) < dimp(Y,V).
By Theorem 3.2, f~'X™V < U, for some m > 0. Then for each j > 1,
Ny (V) 2 Ny-ry, (X)) 2 Ny, (X).
This easily implies (4.1). O

Let p={p;} : X - X = {X;,U;, piir } be an approximate resolution. For
each i € N, let
Bi(X) = lim N1, (X;).
k%) T

j—oo Pij
Then we define the upper and the lower box-counting dimensions of p: X —
X respectively by

- — 1 (X
dimg(p: X — X) = lim 70g36,( )
1—00 7

and

dimp(p: X — X) = lim 285X

1— 00 ?
If the two values coincide, then we write dimpg(p : X — X)) for the common
value and call it the boz-counting dimension of p : X — X. Note that by [9,
Proposition 5.5], for m > 1,

dimp(stp: X — st X) = dimp(st” p: X — st™ X),
and
dimg(stp: X - st X) =dimg(st™ p: X — st™ X).
Hence, we define
Dimp(p: X — X) =dimp(stp: X — st X),
and
Dimg(p: X — X) =dimg(stp: X — st X).

The fundamental properties of the box-counting dimension for approx-
imate resolutions can be found in [9]. In particular, we have the following
Lipschitz subinvariance property for the box-counting dimension.
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THEOREM 4.3. Let p = {p;} : X — X = {X;,U;,pi } and q = {g;} :
Y - Y = {Y;,Vj,q;;} be approzimate resolutions, and let f = {f;, f} :
X — Y be an approximate map with property (APS). If st f : st X — stY
satisfies (ALip), for some m >0, then

dimg(stp: X — st X) >dimg(stqg: Y —stY)
and
dimp(stp: X — st X) > dimp(stq: Y — stY).
PROOF. See [9, Corollary 7.2]. O

Now we prove the opposite inequalities:

THEOREM 4.4. Let p = {p;} : X — X = {X;,U;,pir } and q = {q;} :
Y - Y = {Y;,Vj,q;;} be approzimate resolutions, and let f = {f;, f} :
X —Y be an approzimate map. If f : X — Y satisfies (ALip)™ for some
m € 7, then

(4.2) dimp(p: X — X) <dimpg(g: Y —Y)
and
(4.3) ﬁB(p:X—»X)gﬁB(q:Y—»Y).

PRrROOF. It suffices to prove the assertion for (ALip)™ for some m > 0,
because the case for m < 0 is similar. Let ¢ € N, and take jo > i as in
(ALip)™. Fix j > jo. Then there exists ig > f(j),¢ + m such that for each
i > 10,

-1 -1 _—1 -1
Priyirdi i Vi <Pipm ilivm-
This implies that for each ' > i,
N 7-1V¢(ij) >N -1 _—1

i Prigy,irti i

(X)) > N,

Pigm,it

Vi Uitm (Xl/ )

So N,-1(Y;) = Bitm(X) for each j > jo, and thus, 3;(Y) > Bim(X). This
ij

easily implies (4.2) and (4.3). O

Theorems 4.3 and 4.4 now imply the following Lipschitz invariance prop-

erty for box-counting dimension:

COROLLARY 4.5. Let p, q and f be as in Theorem 4.4. If st f : st X —
stY satisfies (ALip),, and (ALip)™ for some m,n € Z, then

dimg(stp: X —» st X) =dimg(stqg: Y —stY)

and
dimp(stp: X — st X) =dimp(stqg: Y —stY).
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5. CATEGORY WHOSE MORPHISMS ARE LIPSCHITZ MAPS

Before considering biLipschitz maps, in this section we construct a cate-
gory LIP whose morphisms are based on those approximate maps which cor-
respond to Lipschitz maps, so that the box-counting dimension is invariant in
this category.

Let the objects of LIP be all admissible approximate resolutions. We
defined morphisms as follows: Let UALip(X,Y") denote the set of all uniform
approximate maps with properties (ALip)?, for some m > 0 and (APS).

THEOREM 5.1. Let p = {p;} : X — {X;,U;,piir} and g = {¢;} : Y —
Y ={Y;,V,,q;s} be admissible approzimate resolutions of X andY, respec-
tively. For each approzimate map f = {f;,f} : st X — stY with prop-
erty (ALip)r, for some m > 0, there exists a uniform approzimate map
f = IS st? X — st? Y with property (ALip);,,, that represents the
same limit map f: X —Y as f.

PROOF. For each j € N, let f/(j) be the smallest integer i with the
following four properties:

1) i > f(j);

2) (pf(j),i’pi/i”7pf(j),i”> < fj_l st Vj for i > i’ > 1

3) Pjimir S0 Ujsm < Py 0[5 st Vy for i’ > i; and

4) i>fl(—1)ifj>2
For each j, let f}: Xy ;) — Y be defined as f} = fips.y,p(j)-

Claim. f' = {f}, f'} :st? X — st® Y forms a uniform approximate map
with property (ALip), -

First, show that f’ is an approximate map, i.e., have property (AM). Let
j < j'. Then (AM) for f means that there exists ig > f(j), f(j') such that
for each i’ > 1o,

(5.1) (Fis)irs Qi Firpginy.r) < stV

Let i > f'(4), f'(4"), i0. By the choices of f'(j) and f'(j'), for i’ > 4,
(5.2) (FipsGyins FiPsGy s hPryar) < stVy,

and

(5.3) (Firprayan FirprGn.r Py o) < stVy

(5.3) and (U) imply

(5-4) (@53 firp sy, G FirP sy, g 0P sy ir) < 8V

By (5.2), (5.1) and (5.4),

2
(F525Gn.0G0Ps s Gt FirP sy, g (P nyir) < 57 V5,
which means
(fipgyirs Qe Fippriny,ir) < st?V;,
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verifying (AM) for f' : st X — stY and thus, for ' :st? X — st?>Y. The
approximate map f : st> X — st? Y is uniform since, by (U) and 3), for each
Js

st? Upijy < p;—:m,f’(j) stUjrm < f;—il stV; < fj/fl st? V.

It remains to verify (ALip);, ;. Indeed, by 3), for each i’ > f'(j),j +m + 1,
-1 |

(55) Djtm,it StZ/fj+m < pf(j),i’fj st Vj.
But by (Al) and (U),

(Pjtm,its Pjtm, jtmt1Pjtmt1,ir) < Ujm,
S0
(5.6) pj_-:m-ﬁ—l,i’ st® Ujpms1 < pj_-:mﬂ—l,i’pj_jm,ﬁ»m#»luj-l-m < pj_-&m,i’ stUjpm-
By 2),

“1 =14y -1 -1 1427
(5.7) Prparti S8Vi <PpiiPra.smdi st Vi
By (5.7), (5.6) and (5.5),

Pitmt S Ustmas <Py o fi stV

verifying property (ALip)},,; for f':st? X — st® Y. This proves the claim.
It is easy to see that f and f’ induce the same limit map f : X — Y.
Hence f' is the desired map. O

REMARK 5.2. In Theorem 5.1, if £ has property (APS), f’ also has prop-
erty (APS).

THEOREM 5.3. Let f : X — Y be an approximate map. Then if st f :
st X — stY has property (ALip)¥, for some m > 0, then st> f : st? X —
st?Y has property (ALip)%, ;.

PROOF. Let i € N. Then by (ALip)¥, and (A1), there exists ig > i +m+
1, f(4) such that for each i’ > g,

(5.8) Pipmio S8 Uikm < D3 0 7 stV
and
(5~9) (pi-i-m,i’7pi+m,i+m+1pi+m+l,i’) <Uitm.

Then, by (U), (5.9) and (5.8), for i’ > ig,

-1 2 -1 -1
Pipmet,ir SE Uikmar < Pipi i Pigm itms1Uiem
-1 —1 g1 —1 12
< Pigm,ir StUipm < pf(z.)i,fl- stV < pf(z.)i,fi st*V;

as required. O
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By Theorem 5.3, there is a well-defined direct sequence:
UALip(st X,stY) — UALip(st®* X,st?*Y') - -- — UALip(st” X,st" Y) — - --

Let UALip*(X,Y") denote the direct limit of this sequence. For each admissi-
ble approximate resolutions p: X — X and q: Y — Y, let the set LIP(p, q)
of morphisms from p to g be the set UALip*™(X,Y).

We wish to define the composition as follows: Let f = {f;,f} : X =Y
and g = {gk,9} : Y — Z be uniform approximate maps, where p = {p;} :
X - X= {Xi,ui,pii/}, q = {Qj} Y =Y = {Y},Vj,(]jj/} and r = {T‘k} :
Z — Z = {Zy, Wy, ki } are admissible approximate resolutions. Define
h = fg:N— Nand for each k, define hy = gr fyr) : Xyrgr) — Y-

THEOREM 5.4. h = {hg,h} : st X — st Z is a uniform approzimate map.

PROOF. Let k < k’. Then (AM) for g : Y — Z implies that there exists
j > g(k),g(k') such that
(5.10) (Grbg(k).j> TR Gh' Qg ,5) < St Wi

(AM) for f : X — Y implies that there exists ig > fg(k), fg(k’), f(j) such
that for ¢ > iy,

(5.11) (FarPrah)is Qotk),3 FiPr().i) < St V()
and

(5.12) (faunPsa),is Qg3 FiP1()i) < 6 Vg(ar)-
Since g is uniform,

(5.13) Vo) < g5 Wh,

and

(5.14) Vg(k’) < gk‘,ka/.

By (5.11), (5.13), (5.10), (5.12) and (5.14),

(Gk Loty Prgk),is Thie Gk Fo (k)P rg(hr),i) < St* Wi,
proving (AM) for h: st X — st Z. O
THEOREM 5.5. Ifst f : st X — stY has property (ALip)*, and if st*>g :

st?Y — st? Z has property (ALip)? for some m,n > 0, then st> h : st3 X —
st® Z has property (ALip)}, 4o

PROOF. Let k € N. By (ALip)#, for st?g : st? Y — st? Z, there exists
jo > g(k) such that for j > jo,
(5.15) qk_jmj st2 Vjin < qg_(}g))jgk_1 st Wh.
By (ALip); for st f : st X — st Y and (AM) for f, there exists i > k+n +
m, f(5+n), fg(k), f(j) such that for i > i,

(5-16) pl;%ner,i StUp+ntm < pf(lkJrn),ifkjrln st Vietns
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(5.17) (fr4nP(ktn)is QGotn,g fiPr(5).i) < St Vitn,

and

(5.18) (fg(e)Pra(k).ir (k)i FiPr(i).i) < St Vg(r)-

By (5.17),

(5.19) p;(lk )i St 8t Vign < p}éw I G S8 Vin:
By (5.19) and (5.15),

(5.20) p;(1,€+n)7if;ﬁn st Viyn < p;(;))ifjflqg]}g))jggl st? Wi
(5.18) and the fact that g is uniform imply that

(5.21) Pyt Gyt 9% S W < Pl ifgiy 95 56 W

By (5.16), (5.20), (5.21),

pl:irH»m,i st uk+”+m < p;;(k),if(]?i)ggl St3 Wk'
This means (ALip), ., for és2 zis zh : st X — st® Z. Using Theorem 3.9 4)
twice, this implies (ALip)¥, ., .o for st> h:st® X — st® Z. O

THEOREM 5.6. If approzimate maps f : X — Y andg:Y — Z both
have property (APS), then so does h : st X — st Z.

PROOF. Let k € N, and let W € Cov(Z}). Take W' € Cov(Z}) such that
st? W' < W. By (A3) and (APS) for g : Y — Z, there exists kg > k such
that for each k' > ko,

(5.22) Wi < g W/,

and there exists k{, > k' with the property that for each k" > k{ there exists
jo > g(k’) such that for each j' > jo,

(5.23) Tk (Zi) S St(rrn grr gy, (Y0 ), W),

Furthermore, if we fix j* > jo, by (APS) and (AM) for f : X — Y, there
exists j{, > j’ such that each j” > j{ admits ig > fg(k’), f(j') such that for
each i’ > ig,

(524) qg(k’),j” (}/ju) g St(qg(k’),j’fj’pf(j’),i’ (Xi/),glz,lr,;kl,W'),
and
(5.25) (k)37 FirPs(iny.irs PP sahir) < 86 Vg(ar)-

Then by (5.24),
(5.26) Tkt Gk Qg5 (Vi) S sU(Trrr Grr Qg o FirD iy ,o (Xir), W').
Since g : Y — Z is uniform,

(5.27) st Vo) < g St Wi
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By (5.26), (5.25), (5.27) and (5.22),

(5.28) Tk Gk Qo) (Y57 )  St(Trrr rr Fgr)P g (iry.ir (Xir ), st W').
Since j” > jo, by (5.23) and (5.28),
(5.29) Tk (Znr) © s6(riw g foyP gy (Xir), st W)

C st(rer g fo(en)Prg(rryir (Xir ), W).

Thus, each k" > k{, admits iy > fg(k’) such that for each i’ > iy,
Tk (Zxrr) S st(rrrr hae preyi (Xir), W),
which verifies (APS) for h. O

Let ¢ € LIP(p,q) and ¢ € LIP(q,r), where p = {p;} : X — X =
{(Xilhi,pir}, @ = {q;} Y = Y ={Y;,Vj,qjy} and r = {np} : Z —
Z = {Zy, W, reir } are admissible approximate resolutions. Let ¢ and 1 be
represented by uniform approximate maps f : st® X — st®Y with (ALip)},
and (APS) and g : st' Y — st* Z with (ALip)} and (APS) for some m,n € Z.
By Theorem 5.3, taking the maximum of s and ¢, we can assume s = t.
If welet h = fg and hy = grfym) © Xypgk) — Zk, then by Theorem 5.4
h = {hg,h} : st*T1 X — st*T1 Z is a uniform approximate map which has
property (APS), by Theorem 5.6. Note that st f : st*™' X — st*T1Y has
property (ALip)¥,,; and st?g : st**?Y — st**2 Z has property (ALip); o
by Theorem 5.3. So Theorem 5.5 implies that st?h : st*73 X — stst3Z
has property (ALip);, 5. Now define 4 o ¢ as the morphism in LIP(p,r)
represented by st? h : st*T3 X — st5t3 Z. It is easy to see that the definition
of 1 o ¢ does not depend on the choice of the representative of f or g. Let
1, € LIP(p,p) be the morphisms represented by the identity approximate
map 1x : X — X. Then it is easy to see 10 ¢ = ¢ and ¢ o1, = ¢.
Associativity of the composition also holds. Hence, we have

THEOREM 5.7. LIP is a category.
THEOREM 5.8. Dimy and Dimp are invariants in the category LIP.

PrROOF. Let p = {p;} : X — X = {X;,U;,pir} and ¢ = {¢;} : ¥ —
Y = {Y};,V;,q;;s} be admissible approximate resolutions. Suppose that ¢ €
LIP(p, q) and ¢ € LIP(q, p) satisfy ¢pop =1, and po1p = 14, and let ¢ and
1 be represented by f = {f;, f} € UALip(st™ X ,st” Y ) and g = {gi, g} €
UALip(st™ Y, st™ X)), respectively, for some m > 1. Then f:st™ X — st™Y
and g : st™Y — st™ X have properties (APS) and (ALip); for some [ > 0.
Thus by Theorems 3.9 and 4.3,

dimg(st™q:Y - st™Y) =dimg(st" p: X — st™ X),

and
dimp(st” q:Y — st™Y) =dimp(st” p: X — st™ X),
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which implies

Dimg(q:Y —Y) =Dimgz(p: X — X),
and

Dimg(q:Y —Y) = Dimp(p: X — X),

as required. O

6. CATEGORY WHOSE MORPHISMS ARE BILIPSCHITZ MAPS

In this section we construct another category BILIP whose morphisms are
based on those approximate maps which correspond to biLipschitz maps, so
that this is another category where the box-counting dimension is invariant.

REMARK 6.1. For each m € Z and for each approximate map f: X — Y,
in properties (ALip),,, (ALip)™, (ALip)?,, (ALip)?", replace “for each i € N”
by “there exi/sts\ N € ﬁs\uch thﬂf\or each/ié N7 and call the so obtained
properties (ALip),,, (ALip)™, (ALip)¥,, (ALip)7, respectively. In a similar
way, for each m,n > 0, for each f : X — Y, and for normal sequences U and V
on X and Y, respectively, define properties (/1\Z)m7n, (/N\)mm7 (/I\Z)myn, (/N\)m !
as properties (M) (N) . (M)™", (N)™" for ¥NU and "V for some
N, respectively. Then it is e:aS,y to see that all the results involving properties
(ALip)ym, (ALip)™, (ALip),. (ALp)™, (M), 1y (N),,00 (M)™", (N)™" also

hold for properties (ALip), (ALip)™, (ALip);,, (ALip)7", (M), ., (N)
M), (N)

Let the objects of BILIP be all addmissible approximate resolutions. We
define the morphisms as follows: Let UABILip(X,Y’) denote the set of all

uniform approximate maps with properties (APS), (ALip)*, and (ALlp) for
some m,n € Z.

m,n’

m,n’ m,n’

m,n

THEOREM 6.2. Let f : X — Y be an approzimate map. Then if st? f :
st2 X — st?Y has property (ALlp) for some m € Z, then st® f : st> X —

m—1
st3Y has property (ALlp)

Proor. Assume m > 1 since the case m < 0 is similar. Take N € N
so that property (ALip)" holds for each i > N, and let ¢ > N. Then by

(ALlp) for st? f : st2 X — st?Y and (AM) for f : X — Y, there exists
io > 1+ m, f(i + 1) such that for each i’ > ig,

(6.1) pf(l)zf- st? V) <pz+m o St Uiy,

and

(6.2) (firfeiy,irs @iiv1 fir1Dgir1),i) < st Vi
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(6.2) and (6.1) imply
(6.3) Py, i1 i StV <Py o fi s Vi <pi, 0 5 Ui
. < p;rlmJ, 6% Uit
(U) implies
(64) St3 Vi-l—l < qi_,i1+1 st V;.
By (6.3) and (6.4),
iy, fion S8 Visr <Pl o 8 Ui,
_—— m-—1

which means (ALip),  forst® f:st3 X —st3Y. O

THEOREM 6.3. Let p = {p;} : X — X = {X;,U;,pir } and q = {q;} :
Y - Y ={Y,,V;,q;;} be admissible approzimate resolutions of X and Y,
respectively. For each approzimate map f = {fj, f} : st* X — st3Y with
properties (ALip)™ "3 and (ALip)¥ for some m,n € Z, there exists a uniform
approzimate map f = {f}; f'} st X — stY with properties (ALip), and
(XIE)M_1 which represents the same limit map f: X —Y as f.

PROOF. First assume that m,n > 0. For each j, let f'(j) be the smallest
integer ¢ with the following properties:

1) i > f() 1

2) (preyirpiirns Pyyan) < fi 1y for i >4 > i

3) p;(lj) y fj’1 st3V) < p;ﬁm%J, st3Uj1ms for i > i;

4) P;ﬁnyi/ stUjpn < p;(lj)J,fI1 stV; for i’ > 4; and

5)i> fl(i—1)ifj > 2.
For each j, let f}: X ;) — Y be defined as f} = fipsy,p(j)-

Claim. f' = {1} st* X — st*Y defines a uniform approximate

—m

map with properties (ALip), and (ALip);, ;.

That f' : st* X — st*Y is a uniform approximate map with property
(ALip);,,; follows from the proof of Theorem 5.1. For each j, let ig = f'(j),
and let ¢’ > ig. Then by 2),

Pra P s di S Vi <Pply £ S8 Vi
This together with 3) implies

/

(6.5) _7)]?,1(J.)71.,J“j71 st2V; < pjj:erB,i’ st] Ui 1y
But

(Dj+mt2,0's Pjtm+2,j4m+3Pj4m+3,i) < Ujtm+2,
and so

-1 -1 -1 2
(6.6) Pitmt3,iPjtm+2,j+m+3 St Ujrma2 <P o0 SU Ujpmo.
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(6.7) S6° Ujrm+s < Pjtm2,jmss SEUjrm2-
By (6.5), (6.7) and (6.6),

-1 /—1 2 -1 2
Priyirdi S Vi <Piipga SE Uipmas.

This means property (ALip)™*2 for f' : st? X — st?Y. By Theorem 6.2,
redefining f' asst? f', f' : st* X — st* Y has property (m)ln, which proves
the claim.

For the case m < 0 (resp., n < 0), for each j € N, define f'(j) as f(j), for
j < —m (resp., j < —n) and the smallest integer ¢ with properties 1) - 4), for
j > —m (resp., j > —n). Then, by the same argument as above, we obtain

—_—m
a uniform approximate map f’ : st X — st* Y with properties (ALip), and
— %
(ALip),, 41 O

By Theorems 5.3 and 6.2, there is a well-defined direct sequence
UABILip(st? X,st? Y)) —UABiLip(st® X,st3Y) —
.. — UABILip(st” X, st" Y) — - -- .

Let UABILip*(X,Y") denote the direct limit of this sequence. For any ad-
missible approximate resolutions p : X — X and q : Y — Y, let the set
BILIP(p, q) of morphisms from p to q be the set UABIiLip*(X,Y").

We define the composition similarly to the case of LIP: Let f = {f;, f}:
X — Y and g = {gx,9} : Y — Z be uniform approximate maps, where
p={pi}: X - X ={X;,Ui,piw}, g ={g} : Y = Y = {¥;,V,q;7} and
r={ry}: Z — Z = {Zk, Wk, rer } are admissible approximate resolutions.
Define h = fg : N — N and for each k, define hy = gxfom) : Xpg) — Ya-
Then by Theorem 5.4, h = {hy,h} : st X — st Z is a uniform approximate
map.

THEOREM 6.4. If st3 f : st3 X — st>Y has property (ALip)™ (resp.,
(ALip), ) and if st>g : st> Y — st> Z has property (ALip)? (resp. ,(ALip), )
for some m,n € Z, then h : st X — st Z has property (ALip)™+"=2 (resp.,

PROOF. Assume m,n > 1 since the case for m < 0 or n < 0 is similar.
Let k € N. By (ALip)? for st?g : st? Y — st? Z, there exists j > k + n, g(k)
such that

-1 -1 -1
iy 9 S We < dity 5582 Viesn.
So,

—1 -1 _—1 —1 2 —1 -1 _—1 2
(68) Priiyiti gry 9% ST Wi <Ppiyifi Qpn, S8 Vi
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By (AM) for f : X — Y and (ALip)™ for st f : st> X — st®Y, there is
io > f(k+mn), f(4) (> gf(k)) such that for each i > 1o,

(69) (fk-l—npf(kJrn),iv qk-l—n,jfjpf(j)vi) < st V]H_"’
(6.10) (fato)Prah)is Gg(),i fiPr(i),i) < St Vg(ny,
and

(6.11) Py (eamy.ifiin 56 Vitn < Pt t° Untntm.

Fix i > 49. Since g : Y — Z is uniform, (6.10) implies

(gkfg(k)pfg(k)zungQ ). FiP i) ) < stWhg,

SO

(6.12) Pray.itaiiy 9k SEWk <Dyl i f 7 gy 95 56 W
By (6.9),

(6.13) p;(lj)yifjilql;in,j st Vitn < p;(116+n)7if1;4r1n st Vietn-

By (6.12),(6.8), (6.13) and (6.11),

(6.14) pfq B, fq(k)gk st Wi, < pk+n+m S 7 -
But by (U),
—1 3 —1 —1
(6.15) Printm,i St Urtntm < pli-il-n-ﬁ-m,i Sill’k+n+m—1,k+n+muk+n+m*1
< Phtntm,iPrtntm—1,k+ntm St Uktntm—1.
Since

(Ph4ntm—1,i» Pktntm—1,k+ntmPh+ntm,i) < Untntm—1,
(6.16) p,} o tU <pt t2U
: pk+n+m,ipk+n+m—1,k:+n+m SUUR+n+m—1 pk+n+m—1,i 5 k+n+m—1-
By (6.15) and (6.16),

(617) pk+n+m i St uk+n+m < pk+n+m 1, St Z/{k-"-n_l’_m 1-

By a similar argument,

(6.18) pk_,’_n_,’_m 1,i st?Upynim_1 < pk+n+m 2 st Ur4n+m—2-
By (6.14), (6.17) and (6.18), we have

p;;(k)7if(]?i)g;1 st Wy, < p,:irwmd,i st Ugn+m—2 for i > ig.

This means (ALip)™*+"~2 for h : st X — st Z. Similarly for (m);n and
(ALip), . O
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Let ¢ € BILIP(p,q) and v € BILIP(g,r) where p = {p;} : X — X =
{Xi,Uispir}, @ = {g;} Y =Y ={Y;Vj,qj7} and r = {rp} : Z —
Z = {Zy, Wy, rrir + are admissible approximate resolutions. Let ¢ and v be
represented by uniform approximate maps f : st® X — st®Y with properties

(m)fn, (m)f and (APS) and g : st' Y — st' Z with properties (ALip)?,
(m)i and (APS) for some m,n,k,l € Z. By Theorems 5.3 and 6.2, taking
the maximum of s and ¢, we can assume s = t. If we let h = fg and hy =
9k foy = Xfgky — Zi, then h = {hg,h} : st*t1 X — st5t! Z is a uniform
approximate map by Theorem 5.4 and has property (APS), by Theorem 5.6.
Similarly to the case of LIP, the approximate map st h : st*+3 X — st*+3 Z

o —

has property (ALip)%,,,.5. Also note that st® f : st"*3 X — st**3Y has

o — —

property (ALip)*=3 and st?g : st**?Y — st**2 Z has property (ALip).—2
by Theorem 6.2. So Theorem 6.4 implies that h : st°T' X — st®t! Z has
property (ALip)**'=7 and hence by Theorem 6.2 again, st>h : st*t3 X —

st*+3 Z has property (ALip)**'=?. Now define 1 o ¢ as the morphism in
BILIP(p, ) represented by st?h : st*™3 X — sts73 Z. It is easy to see that
the definition of ¥ o ¢ does not depend on the choice of the representative
f or g. Let 1, € BILIP(p, p) be the morphism represented by the identity
approximate map lg> x : st?> X — st? X. Then it is easy to see lgop=1¢
and ¢ o 1, = ¢. Associativity of the composition also holds. Hence, we have

THEOREM 6.5. BILIP is a category.
and
THEOREM 6.6. Dimy and Dimp are invariants in the category BILIP.

PRrROOF. This follows from Corollary 4.5. O
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