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BI-LIPSCHITZ MAPS AND THE CATEGORY OF
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Abstract. In this paper we consider biLipschitz maps between com-
pact spaces with the metrics which are induced by given approximate reso-
lutions. More precisely, we characterize biLipschitz maps in terms of condi-
tions on any approximate resolutions of the maps. We then show that the
box-counting dimension for approximate resolutions which was introduced
earlier is invariant under approximate maps corresponding to biLipschitz
maps. Moreover, we construct categories whose objects are approximate
resolutions and in which the box-counting dimension is invariant.

1. Introduction

It is well-known that the notion of approximate resolution, which was
introduced by Mardešić and Watanabe [5], is useful in many problems in
topology [3, 4, 13, 14, 15, 12, 7] and is essential even for compact metric spaces
[2, 6, 13, 14]. One of the important points in using approximate resolutions
is that given a map f : X → Y and polyhedral approximate resolutions
p : X → X and q : Y → Y of X and Y , respectively, we have an approximate
map of systems f : X → Y representing f .

The authors introduced a new method to study Lipschitz maps, using ap-
proximate resolutions in their earlier paper [8]. Given any compact metrizable
spaces with an approximate resolution, there is an induced metric that gives
the same uniformity, and Lipschitz maps between compact spaces with the
so obtained metrics are studied by using approximate resolutions. They also
defined and studied the box-counting dimension for approximate resolutions
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[9], extending the usual notion of the box-counting dimension for compact
subsets in the Euclidean spaces.

The purpose of this paper is to study biLipschitz maps by approximate
resolutions and construct categories in which the box-counting dimension is
invariant. More specifically, this paper consists of the following two parts:
In the first part (Sections 3 and 4), a characterization is given for biLips-
chitz maps between compact spaces with metrics which are induced by given
approximate resolutions, and it is shown that the box-counting dimension is
invariant under the approximate maps corresponding to biLipschitz maps. In
the second part of the paper (Sections 5 and 6), we construct categories con-
sisting of approximate resolutions and approximate maps corresponding to
Lipschitz maps and biLipschitz maps so that the box-counting dimension is
invariant in these categories.

Throughout the paper, a space means a compact metric space, and a map
means a continuous map unless otherwise stated.

For any space X , let Cov(X) denote the set of all normal open coverings
of X . For any subset A of X and U ∈ Cov(X), let st(A,U) = ∪{U ∈ U :
U ∩ A 6= ∅} and U|A = {U ∩ A : U ∈ U}. If A = {x}, we write st(x,U)
for st({x},U). For each U ∈ Cov(X), let stU = {st(U,U) : U ∈ U}. Let
stn+1 U = st(stn U) for each n = 1, 2, ... and st1 U = stU . For any metric
space (X, d) and r > 0, let Ud(x, r) = {y ∈ X : d(x, y) < r}. For any
U ∈ Cov(X), two points x, x′ ∈ X are U-near, denoted (x, x′) < U , provided
x, x′ ∈ U for some U ∈ U . For any V ∈ Cov(Y ), two maps f, g : X → Y
between spaces are V-near, denoted (f, g) < V , provided (f(x), g(x)) < V for
each x ∈ X . For each U ∈ Cov(X) and V ∈ Cov(Y ), let fU = {f(U) : U ∈ U}
and f−1V = {f−1(V ) : V ∈ V}. Let N denote the set of natural numbers
with the usual order.

2. Approximate resolutions and induced metrics

In this section we recall the definitions and properties of approximate
resolutions and the results concerning Lipschitz maps which will be needed
in later sections. For more details on approximate resolutions and Lipschitz
maps, the reader is referred to [5] and [8, 9], respectively.

An approximate inverse sequence (approximate sequence, in short) X =
{Xi,Ui, pii′} consists of

i) a sequence of spaces Xi, i ∈ N;
ii) a sequence of Ui ∈ Cov(Xi), i ∈ N; and
iii) maps pii′ : Xi′ → Xi for i < i′ where pii = 1Xi

the identity map on
Xi.

It must satisfy the following three conditions:

(A1) (pii′pi′i′′ , pii′′) < Ui for i < i′ < i′′;
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(A2) For each i ∈ N and U ∈ Cov(Xi), there exists i′ > i such that
(pii1pi1i2 , pii2) < U for i′ < i1 < i2; and

(A3) For each i ∈ N and U ∈ Cov(Xi), there exists i′ > i such that
Ui′′ < p−1

ii′′U for i′ < i′′.

An approximate map p = {pi} : X → X of a space X into an approximate
sequence X = {Xi,Ui, pii′} consists of maps pi : X → Xi for i ∈ N with the
following property:

(AS) For each i ∈ N and U ∈ Cov(Xi), there exists i′ > i such that
(pii′′pi′′ , pi) < U for i′′ > i′.

An approximate resolution of a space X is an approximate map p = {pi} :
X →X of X into an approximate sequence X = {Xi,Ui, pii′} which satisfies
the following two conditions:

(R1) For each ANR P , V ∈ Cov(P ) and map f : X → P , there exist
i ∈ N and a map g : Xi → P such that (gpi, f) < V ; and

(R2) For each ANR P and V ∈ Cov(P ), there exists V ′ ∈ Cov(P ) such
that whenever i ∈ N and g, g′ : Xi → P are maps with (gpi, g

′pi) < V ′,
then (gpii′ , g

′pii′) < V for some i′ > i.

If C is a collection of spaces, and if allXi belong to C, then the approximate
resolution p : X →X is called an approximate C-resolution. Let POL denote
the collection of polyhedra. Throughout the rest of the paper, an approximate
resolution means an approximate POL-resolution unless otherwise stated.

It is known that an approximate map p = {pi} : X → X = {Xi,Ui, pii′}
is an approximate resolution of a spaceX if and only if it satisfies the following
two conditions:

(B1) For each U ∈ Cov(X), there exists i0 ∈ N such that p−1
i Ui < U for

i > i0; and
(B2) For each i ∈ N and U ∈ Cov(Xi), there exists i0 > i such that
pii′(Xi′) ⊆ st(pi(X),U) for i′ > i0.

It is also known that every space X admits an approximate resolution p =
{pi} : X →X = {Xi,Ui, pii′} such that all Xi are finite polyhedra ([14]), and
that every connected space X admits an approximate resolution p = {pi} :
X → X = {Xi,Ui, pii′} such that all Xi are connected finite polyhedra, and
all pi and pii′ are surjective ([4]).

LetX = {Xi,Ui, pii′} and Y = {Yj ,Vj , qjj′} be approximate sequences of
spaces. An approximate map f = {fj , f} : X → Y consists of an increasing
function f : N → N and maps fj : Xf(j) → Yj , j ∈ N, with the following
condition:

(AM) For any j, j′ ∈ N with j < j′, there exists i ∈ N with i > f(j ′)
such that

(qjj′fj′pf(j′),i′ , fjpf(j),i′) < stVj for i′ > i.
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An approximate map f : X → Y is said to be uniform if

Uf(j) < f−1Vj for each j.

A map f : X → Y is a limit of f provided the following condition is satisfied:

(LAM) For each j ∈ N and V ∈ Cov(Yj), there exists j′ > j such that

(qjj′′fj′′pf(j′′), qjf) < V for j′′ > j′.

For each map f : X → Y , an approximate resolution of f is a triple (p, q,f)
consisting of approximate resolutions p : X → X of X and q : Y → Y of Y
and of an approximate map f : X → Y with property (LAM). It is known
that for any approximate resolutions p : X → X and q : Y → Y , every map
f : X → Y admits an approximate map f : X → Y such that (p, q,f) is an
approximate resolution of f .

For each approximate sequence X = {Xi,Ui, pii′}, let stX denote the
approximate system {Xi, stUi, pii′}. Then there is a natural approximate
map iX = {1Xi

} : X → stX , where 1Xi
: Xi → Xi is the identity map.

For each approximate map p = {pi} : X → X = {Xi,Ui, pii′}, the map
stp = {pi} : X → stX = {Xi, stUi, pii′} is an approximate map. Moreover,
if p : X → X is an approximate resolution, so is stp : X → stX. For any
approximate sequences X = {Xi,Ui, pii′} and Y = {Yj ,Vj , qjj′} and for each
approximate map f = {fj , f} : X → Y , the map stf = {fj , f} : stX → stY
is an approximate map. Moreover, if (f ,p, q) is an approximate resolution of
a map f : X → Y , so is (stf , stp, st q).

For each approximate map f = {fj , f} : X → Y where p = {pi} : X →
X = {Xi,Ui, pii′} and q = {qj} : Y → Y = {Yj ,Vj , qjj′} are approximate
resolutions, consider the following property:

(APS) (∀j ∈ N)(∀V ∈ Cov(Yj))(∃j0 > j)(∀j′ > j0)(∃j′0 > j′)(∀j′′ >
j′0)(∃i0 > f(j′))(∀i > i0) :

qjj′′ (Yj′′ ) ⊆ st(qjj′fj′pf(j′)i(Xi),V).

Then we have

Theorem 2.1. Let f : X → Y be a map, and f = {fj} : X → Y be an
approximate map such that (f ,p, q) is an approximate resolution of f , where
p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} : Y → Y = {Yj ,Vj , qjj′} are
approximate resolutions of X and Y , respectively. Then f is surjective if and
only if f satisfies (APS).

Proof. See [10]

Note that if f : X → Y has property (APS), so does stf : stX → stY .
Following the approach of Alexandroff and Urysohn (see [1] and [11, 2-

16]), given a space X and a normal sequence U on X , we define a metric dU

on X .
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A family U = {Ui : i ∈ N} of open coverings on a space X is said to be a
normal sequence provided stUi+1 < Ui for each i. Let ΣU denote the normal
sequence {Vi : Vi = Ui+1, i ∈ N} and st U the normal sequence {stUi : i ∈ N}.
For any normal sequences U = {Ui} and V = {Vi}, we write U < V provided
Ui < Vi for each i. Let Σ0U = U, and for each n ∈ N, let ΣnU = Σ(Σn−1U),
and also let st0 U = U and stn U = st(stn−1 U). For each map f : X → Y
and for each normal sequence V = {Vi}, let f−1V = {f−1Vi}. For each closed
subset A ofX and for each normal sequence U = {Ui} onX , let U|A = {Ui|A}.

Given a normal sequence U = {Ui} on X , we define a function DU :
X ×X → R≥0 by

DU(x, x′) =





9, if (x, x′) 6< U1;

1

3i−2
, if (x, x′) < Ui but (x, x′) 6< Ui+1 ;

0, if (x, x′) < Ui for all i ∈ N ,

and a function dU : X ×X → R≥0 by

dU(x, x′) = inf{DU(x, x1) +DU(x1, x2) + · · ·+DU(xn, x
′)}

where the infimum is taken over all points x1, x2, . . . , xn inX and R≥0 denotes
the set of nonnegative real numbers. Then the function dU : X ×X → R≥0

defines a pseudometric on X with the property that

(2.1) st(x,Ui+3) ⊆ UdU
(x,

1

3i
) ⊆ st(x,Ui) for each x ∈ X and i.

Moreover, if U has the following property:

(B) {st(x,Ui) : i ∈ N} is a base at x for each x ∈ X ,

then dU defines a metric on X , which we call the metric induced by the normal
sequence U. In particular, if U = {Ui} is the normal sequence such that
Ui = {Ud(x, 1

3i ) : x ∈ X}, then the metric dU induced by the normal sequence
U induces the uniformity which is isomorphic to that induced by the metric d.

Proposition 2.2. Let X be a space, and let U = {Ui} and V = {Vi} be
normal sequences on X. Then we have the following properties:

1) If A is a closed subset of X, then dU|A(x, x′) ≥ dU(x, x′) for all x, x′∈A.
2) If U < V, then dU(x, x′) ≥ dV(x, x′) for all x, x′ ∈ X.
3) dΣU(x, x′) = 3 dU(x, x′) for all x, x′ ∈ X.
4) dst U(x, x′) ≤ dU(x, x′) ≤ 3 dst U(x, x′) for all x, x′ ∈ X.

For each approximate resolution p = {pi} : X → X = {Xi,Ui, pii′},
consider the following three properties:

(U) st2 Uj < p−1
ij Ui for i < j;

(A) (pijpj , pi) < Ui for i < j; and

(NR) p−1
j stUj < p−1

i Ui for i < j.



134 T. MIYATA AND T. WATANABE

An approximate resolution p = {pi} : X → X = {Xi,Ui, pii′} is said to
be admissible provided it possesses properties (U), (A), (NR) and the family
U = {p−1

i Ui} has property (B).

Proposition 2.3. Let p = {pi} : X →X = {Xi,Ui, pii′} be an admissi-
ble approximate resolution of X. Then the following properties hold:

1) The family Uk = {p−1
i stk Ui : i ∈ N} forms a normal sequence on X

for k ≥ 0;
2) The approximate resolution stk p = {pi} : X→ stkX= {Xi, st

k Ui, pii′}
is admissible for k ≥ 1.

For any approximate resolution p = {pi} : X → X = {Xi,Ui, pii′}, we
can always find an admissible approximate resolution p′ = {pki

} : X →X ′ =
{Xki

,Uki
, pkikj

} by taking a subsystem.
Let p : X →X = {Xi,Ui, pii′} be any admissible approximate resolution

of a space X . Then for any x, x′ ∈ X , we define a function Dp : X×X → R≥0

by

Dp(x, x′) =





9, if (pi(x), pi(x
′)) 6< Ui for any i;

1

3i−2
, if (pi(x), pi(x

′)) < Ui but (pi(x), pi(x
′)) 6< Ui+1;

0, if (pi(x), pi(x
′)) < Ui for all i,

and a function dp : X ×X → R≥0 by

dp(x, x′) = inf{Dp(x, x1) +Dp(x1, x2) + · · ·+Dp(xn, x
′)}

where the infimum is taken over all finite collections of points x1, x2, . . . , xn

of X . Note that dp(x, x′) = dU(x, x′) for any x, x′ ∈ X , where U = {p−1
i Ui}.

For each approximate resolution p = {pi} : X → X = {Xi,Ui, pii′},
we define the approximate sequence ΣX as {Zi,Wi, rii′} where Zi = Xi+1,
Wi = Ui+1, rii′ = pi+1,i′+1 : Zi′ → Zi and the approximate resolution Σp as
{ri : i ∈ N} : X → ΣX where ri = pi+1 : X → Xi+1. Let Σ0X = X and
Σ0p = p, and for each i ∈ N, let ΣnX = Σ(Σn−1X) and Σnp = Σ(Σn−1p).

Proposition 2.4. Let X be a space, and let p = {pi} : X → X =
{Xi,Ui, pii′} be an admissible approximate resolution of X. Then

1) dΣnp(x, x′) = 3n dp(x, x′) for x, x′ ∈ X and for each n ∈ N; and
2) dst p(x, x′) ≤ dp(x, x′) ≤ 3 dst p(x, x′) for x, x′ ∈ X.

Throughout the paper, approximate resolutions are assumed to be admis-
sible unless otherwise stated.

3. Bi-Lipschitz maps

In this section we consider bi-Lipschitz maps with respect to the metrics
induced by approximate resolutions. In particular, we give a characterization
in terms of approximate resolutions. But first, we consider normal sequences.
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Let X and Y be spaces with normal sequences U = {Ui} and V = {Vi},
respectively. Then a map f : X → Y is called a (U,V)-Lipschitz map provided
there exists a constant α > 0 such that

dV(f(x), f(x′)) ≤ α dU(x, x′) for x, x′ ∈ X,
and a (U,V)-bi-Lipschitz map provided there exist constants α1, α2 > 0 such
that

α1 dU(x, x′) ≤ dV(f(x), f(x′)) ≤ α2 dU(x, x′) for x, x′ ∈ X.
Theorem 3.1. Let X and Y be spaces with normal sequences U = {Ui}

and V = {Vi}, respectively, and let f : X → Y be a map. Consider the
following properties:

1) dU(x, x′) ≤ dV|f(X)(f(x), f(x′)) for x, x′ ∈ X;

2) f−1V < U; and
3) f−1Σ4V < U.

Then the implications 2) ⇒ 1) ⇒ 3) hold.

Proof. To see 2) ⇒ 1), let x, x′ ∈ X , and let y0 = f(x), y1, y2, ..., yn =
f(x′) be any points in f(X). Say yi = f(xi) for some xi ∈ X .
If DV|f(X)(f(xi), f(xi+1)) = 1

3ki−2 for some ki ≥ 0, 2) implies that

DU(xi, xi+1) ≤ 1
3ki−2 . Hence 1) holds. To see 1) ⇒ 3), let i ∈ N, and let V ∈

Vi+4. Take x ∈ f−1(V ). Then property (2.1) implies V ⊆ UdV
(f(x), 1

3i+1 ).

If x′ ∈ f−1(V ), then f(x′) ∈ V ⊆ UdV
(f(x), 1

3i+1 ). So, 1) and property

(2.1) imply x′ ∈ UdU
(x, 1

3i+1 ) ⊆ st(x,Ui+1) ⊆ U for some U ∈ Ui, showing

f−1(V ) ⊆ U .

Theorem 3.2. Under the same setting as in Theorem 3.1, consider the
following property for m ∈ Z:

(L)m dU(x, x′) ≤ 3m dV|f(X)(f(x), f(x′)) for x, x′ ∈ X;

and for m,n ≥ 0, the following two properties:

(M)m,n f−1 stm V < ΣnU; and
(N)m,n f−1ΣmV < ΣnU.

Then we have the following implications for m,n ≥ 0:

1) (L)m ⇒ (N)m+4,0;
2) (L)−m ⇒ (N)4,m;
3) (N)m,n ⇒ (L)m−n;
4) (M)m,n ⇒ (L)m−n.

Proof. To see 1), note that (L)m means

dU(x, x′) ≤ dΣmV|f(X)(f(x), f(x′)) for x, x′ ∈ X.
But this together with Theorem 3.1 implies f−1Σ4(ΣmV) < U, which means
(N)m+4,0. 2) is proven similarly to 1). To show 3), note that (N)m,n together
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with Proposition 2.2 3) and Theorem 3.1 implies

3n dU(x, x′) = dΣnU(x, x′) ≤ dΣmV|f(X)(f(x), f(x′))

= 3m dV|f(X)(f(x), f(x′)) for x, x′ ∈ X,

which means (L)m−n. To show 4), note that (M)m,n together with Proposi-
tion 2.2 3), 4) implies

3n dU(x, x′) = dΣnU(x, x′) ≤ dstm V|f(X)(f(x), f(x′))

≤ 3m dV|f(X)(f(x), f(x′)) for x, x′ ∈ X,

which means (L)m−n.

Let f : X → Y be a map and let f : X → Y be an approximate map
such that (f ,p, q) is an approximate resolution of f , where p : X → X and
q : Y → Y are approximate resolutions of X and Y , respectively. Then a map
f : X → Y is called a (p, q)-Lipschitz map provided there exists a constant
α > 0 such that

dq(f(x), f(x′)) ≤ α dp(x, x′) for x, x′ ∈ X,
and a (p, q)-biLipschitz map provided there exist constants α1, α2 > 0 such
that

α1 dp(x, x′) ≤ dq(f(x), f(x′)) ≤ α2 dp(x, x′) for x, x′ ∈ X.
Theorem 3.3. Let X and Y be spaces, and let f : X → Y be a surjective

map. Also let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} : Y →
Y = {Yj ,Vj , qjj′} be approximate resolutions of X and Y , respectively, and
let f = {fj} : X → Y be an approximate map such that (f ,p, q) is an
approximate resolution of f . Consider the following property for m ∈ Z:

(Lip)m 3m dp(x, x′) ≤ dq(f(x), f(x′)) for x, x′ ∈ X;

and the following two properties for m ≥ 0,

(ALip)m For each i, there exists j0 > i with the property that each j > j0
admits i0 > i+m, f(j) such that

p−1
f(j),i′f

−1
j q−1

ij Vi < p−1
i+m,i′Ui+m for i′ > i0; and

(ALip)−m For each i, there exists j0 > i+m with the property that each
j > j0 admits i0 > i, f(j) such that

p−1
f(j),i′f

−1
j q−1

i+m,jVi+m < p−1
ii′ Ui for i′ > i0.

Then the following implications hold for each m ∈ Z:

1) (ALip)m for stf : stX → stY ⇒ (Lip)m−2 for p and q;
2) If each pi is surjective, (Lip)m+2 for p and q ⇒ (ALip)m for stf :

stX → stY .
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Proof. We can assume m ≥ 0 since the argument for m < 0 is similar.
Suppose (ALip)m holds for stf : stX → stY , and let i ∈ N. Take V ∈
Cov(Yi) such that stV < Vi, and take j0 > i as in (ALip)m. By (LAM), there
exists j1 > j0 such that

(3.1) (qif, qijfjpf(j)) < V for j > j1.

Fix j > j1, and for this j, take i0 > i+m, f(j) as in (ALip)m. By (AS), there
exists i′ > i0 such that

(3.2) (pf(j), pf(j),i′pi′) < f−1
j q−1

ij V ,

and

(3.3) (pi+m, pi+m,i′pi′) < Ui+m.

Then, for each V ∈ Vi, by (3.1), (3.2), (ALip)m and (3.3), for some U ∈ Ui+m,

f−1q−1
i (V ) ⊆ p−1

f(j)f
−1
j q−1

ij (st(V,V))

⊆ p−1
i′ p
−1
f(j),i′f

−1
j q−1

ij (st(st(V,V),V))

⊆ p−1
i′ p
−1
f(j),i′f

−1
j q−1

ij (st(V,Vi))

⊆ p−1
i′ p
−1
i+m,i′(st(U,Ui+m))

⊆ p−1
i+m(st(st(U,Ui+m),Ui+m).

This means f−1q−1
i Vi < p−1

i+m st2 Ui+m, and hence f−1V < ΣmU where U =

{p−1
i st2 Ui} and V = {q−1

i Vi}. By Theorem 3.2,

dΣmU(x, x′) ≤ dV(f(x), f(x′)) for x, x′ ∈ X,

which means (Lip)m for st2 p and q. This together with Proposition 2.4
implies (Lip)m−2 for p and q, verifying 1).

To see 2), first note that (Lip)m+2 for p and q means (Lip)m for p and
st2 q. Suppose now that all pi are surjective, and suppose (Lip)m for p and
st2 q. Let i ∈ N, and take V ∈ Cov(Yi) such that stV < Vi. Then by (LAM)
there exists j0 > i such that

(3.4) (qif, qijfjpf(j)) < V for each j > j0.

Fix j > j0. Then by (AS) there exists i0 > i + m, f(j) such that for each
i′ > i0

(3.5) (pi+m, pi+m,i′pi′) < Ui+m,

and

(3.6) (pf(j), pf(j),i′pi′) < f−1
j q−1

ij V .
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Then, for each i′ > i0 and for each V ∈ Vi, by (3.6), (3.4), (Lip)m for p and
st2 q, and (3.5), for some U ∈ Ui+m,

p−1
i′ p
−1
f(j),i′f

−1
j q−1

ij (st(V,Vi)) ⊆ p−1
f(j)f

−1
j q−1

ij (st(st(V,Vi),V)

⊆ f−1q−1
i (st(st(st(V,Vi),V),V))

⊆ f−1q−1
i (st(st(V,Vi),Vi))

⊆ p−1
i+m(U)

⊆ p−1
i′ p
−1
i+m,i′(st(U,Ui+m)).

Since each pi′ is surjective,

p−1
f(j)i′f

−1
j q−1

ij (st(V,Vi)) ⊆ p−1
i+m,i′(st(U,Ui+m)),

proving (ALip)m for stf : stX → stY . This verifies 2).

Recall the following two results concerning Lipschitz maps from [8, 9]:

Theorem 3.4. Let X and Y be spaces with normal sequences U = {Ui}
and V = {Vi}, respectively, and let f : X → Y be a map. Consider the
following statements:

(L)m dV(f(x), f(x′)) ≤ 3m dU(x, x′) for x, x′ ∈ X;
(M)m,n ΣmU < f−1 stn V; and
(N)m,n ΣmU < f−1ΣnV.

Then the following implications hold for any m,n ≥ 0:

1) (M)m,n ⇒ (L)m+n;
2) (N)m,n ⇒ (L)n−m;
3) (L)m ⇒ (M)m+4,0 = (N)m+4,0; and
4) (L)−m ⇒ (N)4,m.

and

Theorem 3.5. Let X and Y be spaces, and let f : X → Y be a map. Also
let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} : Y → Y = {Yj ,Vj , qjj′}
be approximate resolutions of X and Y , respectively, and let f = {fj} : X →
Y be an approximate map such that (f ,p, q) is an approximate resolution of
f . For each m ∈ Z, consider the following property:

(Lip)m dq(f(x), f(x′)) ≤ 3m dp(x, x′) for x, x′ ∈ X,

and for m ≥ 0, consider the following two properties:

(ALip)m For each i, there exists j0 > i with the property that each j > j0
admits i0 > f(j), i+m such that, for each i′ > i0,

p−1
i+m,i′Ui+m < p−1

f(j),i′f
−1
j q−1

ij Vi,

and
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(ALip)−m For each i, there exists j0 > i+m with the property that each
j > j0 admits i0 > f(j), i such that, for each i′ > i0,

p−1
ii′ Ui < p−1

f(j),i′f
−1
j q−1

i+m,jVi+m.

Then the following implications hold for m ∈ Z:

1) (ALip)m for stf : stX → stY ⇒ (Lip)m+2 for p and q;
2) If all pi are surjective, (Lip)m for p and q ⇒ (ALip)m+4 for stf :

stX → stY .

Remark 3.6. Propety (ALip)−m (m < 0) was called property (ACon)m

in [9].

Theorems 3.2 and 3.4 imply

Corollary 3.7. Under the same setting as in Theorem 3.1, a map f :
X → Y is a (U,V)-biLipschitz map if and only if there exists m ≥ 0 for which
(N)m,0 and (N)m,0 hold.

Theorems 3.3 and 3.5 imply

Corollary 3.8. Under the same setting as in Theorem 3.3, a map
f : X → Y is a (p, q)-biLipschitz map if and only if for any approximate
resolution (f ,p, q) of f where p : X → X and q : Y → Y are admis-
sible approximate resolutions of X and Y , respectively, with each pi being
surjective, there exist m,n ∈ Z for which (ALip)m and (ALip)n hold for
stf : stX → stY .

We will need another characterization for condition (ALip)m. For each
approximate map f = {fj , f} : X → Y where p = {pi} : X → X =
{Xi,Ui, pii′} and q = {qj} : Y → Y = {Yj ,Vj , qjj′} are admissible approxi-
mate resolutions, consider the following properties for m ≥ 0:

(ALip)∗m For each i there exists i0 > f(i), i+m such that, for each i′ > i0,

p−1
i+m,i′Ui+m < p−1

f(i),i′f
−1
i Vi;

and

(ALip)∗−m For each i there exists i0 > f(i+m) such that, for each i′ > i0,

p−1
ii′ Ui+m < p−1

f(i+m),i′f
−1
i+mVi+m.

Theorem 3.9. The following implications hold for m ∈ Z:

1) (ALip)m for stf : stX → stY ⇒ (ALip)∗m for ist Y stf : stX →
st2 Y ;

2) (ALip)∗m for stf : stX → stY ⇒ (ALip)m for ist Y stf : stX →
st2 Y ;

3) (ALip)m for ist Y stf : stX → st2 Y ⇒ (ALip)m+1 for st2 f :
st2X → st2 Y ;
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4) (ALip)∗m for ist Y stf : stX → st2 Y ⇒ (ALip)∗m+1 for st2 f :

st2X → st2 Y ;
5) (ALip)m for stf : stX → stY ⇒ (ALip)∗m+1 for st2 f : st2X →

st2 Y ;
6) (ALip)∗m for stf : stX → stY ⇒ (ALip)m+1 for st2 f : st2X →

st2 Y .

Proof. Throughout the proof, assume m ≥ 0. The argument for m < 0
is similar. To see 1), let i ∈ N. Take j0 > i as in (ALip)m. Fix j > j0. Then,
by (ALip)m and (AM), there exists i0 > f(j), i+m such that for each i′ > i0,

(3.7) p−1
i+m,i′ stUi+m < p−1

f(j),i′f
−1
j q−1

ij stVi,

and

(3.8) (fipf(i),i′ , qijfjpf(j),i′) < stVi.

By (3.8),

(3.9) p−1
f(j),i′f

−1
j q−1

ij stVi < p−1
f(i),i′f

−1
i st2 Vi.

By (3.7) and (3.9),

p−1
i+m,i′ stUi+m < p−1

f(i),i′f
−1
i st2 Vi for i′ > i0,

proving 1). To see 2), let i ∈ N, and let j0 = i + 1. Then by (ALip)∗m and
(AM) for f : X → Y , for each j > j0, there exists i0 > f(j), i+m such that
for each i′ > i0,

(3.10) p−1
i+m,i′ stUi+m < p−1

f(i),i′f
−1
i stVi,

and

(3.11) (fipf(i),i′ , qijfjpf(j),i′) < stVi.

By (3.11),

(3.12) p−1
f(i),i′f

−1
i stVi < p−1

f(j),i′f
−1
j q−1

ij st2 Vi.

By (3.10) and (3.12),

p−1
i+m,i′ stUi+m < p−1

f(j),i′f
−1
j q−1

ij st2 Vi,

verifying 2). To see 3), let i ∈ N. Then the hypothesis together with (A1)
implies that there exists j0 > i with the property that each j > j0 admits
i0 > f(j), i+m+ 1 such that for each i′ > i0,

(3.13) p−1
i+m,i′ stUi+m < p−1

f(j),i′f
−1
j q−1

ij st2 Vi,

and

(3.14) (pi+m,i′ , pi+m,i+m+1pi+m+1,i′) < Ui+m.

By (3.14) and (U),

(3.15) p−1
i+m+1,i′ st2 Ui+m+1 < p−1

i+m+1,i′p
−1
i+m,i+m+1Ui+m < p−1

i+m,i′ stUi+m.
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By (3.15) and (3.13),

p−1
i+m+1,i′ st2 Ui+m+1 < p−1

f(j),i′f
−1
j q−1

ij st2 Vi for i′ > i0,

proving 3). 4) is similar to 3), and 5) and 6) easily follow from 1), 4) and 2),
3), respectively.

We will also need another characterization for property (ALip)m. For
each approximate map f = {fj , f} : X → Y where p = {pi} : X → X =
{Xi,Ui, pii′} and q = {qj} : Y → Y = {Yj ,Vj , qjj′} are approximate resolu-
tions of X and Y , respectively, for m ≥ 0 consider the following properties
for m ≥ 0:

(ALip)m
∗ For each i, there exists i0 > f(i), i+m such that for each i′ > i0,

p−1
f(i),i′f

−1
i Vi < p−1

i+m,i′Ui+m.

and

(ALip)−m
∗ For each i, there exists i0 > f(i+m) such that for each i′ > i0,

p−1
f(i+m),i′f

−1
i+mVi+m < p−1

ii′ Ui.

Theorem 3.10. The following implications hold for m ∈ Z:

1) (ALip)m for st3 f : st3X → st3 Y ⇒ (ALip)m−1
∗ for st2 f : st2X →

st2 Y ; and
2) (ALip)m

∗ for st3 f : st3X → st3 Y ⇒ (ALip)m−1 for st2 f : st2X →
st2 Y .

Proof. Assume m ≥ 1 since the argument for the case m ≤ 0 is similar.
For 1), let i ∈ N. By (ALip)m for st3 f : st3X → st3 Y and (AM) for
f : X → Y , there exist j > i and i0 with i0 > i + m, f(j) such that for
i′ > i0,

(3.16) p−1
f(j),i′f

−1
j q−1

ij st3 Vi < p−1
i+m,i′ st3 Ui+m,

and

(3.17) (fipf(i),i′ , qijfjpf(j),i′) < stVi.

By (3.17) and (3.16),

(3.18) p−1
f(i),i′f

−1
i st2 Vi < p−1

i+m,i′ st3 Ui+m for i′ > i0.

But since, by (A1),

(pi+m−1,i+mpi+m,i′ , pi+m−1,i′) < Ui+m−1,

then, by (U), for i′ > i0,

p−1
i+m,i′ st3 Ui+m < p−1

i+m,i′ st p−1
i+m−1,i+mUi+m−1

< p−1
i+m,i′p

−1
i+m−1,i+m stUi+m−1

< p−1
i+m−1,i′ st2 Ui+m−1.

(3.19)
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This together with (3.18) implies

p−1
f(j),i′f

−1
i st2 Vi < p−1

i+m−1,i′ st2 Ui+m−1 for i′ > i0.

This means (ALip)m−1
∗ for st2 f : st2X → st2 Y .

For 2), let i ∈ N, and let j0 = i. Fix j > j0. By (ALip)m
∗ for st3 f :

st3X → st3 Y , (LAM) and (A1), there is i0 > i+m, f(j) with the property
that for each i′ > i0,

(3.20) p−1
f(i),i′f

−1
i st3 Vi < p−1

i+m,i′ st3 Ui+m,

and (3.17) and (3.19) hold. By (3.17), (3.20) and (3.19), for each i′ > i0,

p−1
f(j),i′f

−1
j q−1

ij st2 Vi < p−1
i+m−1,i′ st2 Ui+m−1,

which means (ALip)m−1 for st2 f : st2X → st2 Y .

4. The box-counting dimension is Lipschitz invariant

Let X be any space. For each U ∈ Cov(X), let

NU (X) = min{n : X ⊆ U1 ∪ · · · ∪ Un, Ui ∈ U}.
For each normal sequence U = {Ui} on a space X , we respectively define the
lower and the upper box-counting dimensions of (X,U) by

dimB(X,U) = lim
i→∞

log3NUi
(X)

i

and

dimB(X,U) = lim
i→∞

log3NUi
(X)

i
.

If the two values coincide, the common value is called the box-counting di-
mension of (X,U) and is denoted by dimB(X,U).

If X is a compact subset of Rm with the usual metric and if we take the
normal sequence U of open coverings Ui by open balls with radius 1

3i , then
the above values coincide with the usual box-counting dimension.

The fundamental properties of the box-counting dimension for normal
sequences can be found in [9]. In particular, we have the following Lipschitz
subinvariance property for the box-counting dimension.

Theorem 4.1. Let U = {Ui} and V = {Vi} be normal sequences on X
and Y , respectively. If f : X → Y is a surjective (U,V)-Lipschitz map, then

dimB(Y,V) ≤ dimB(X,U)

and

dimB(Y,V) ≤ dimB(X,U).

Proof. See [9, Proposition 4.7].

Now we have the following Lipschitz invariance property:
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Theorem 4.2. Let U = {Ui} and V = {Vi} be normal sequences on X
and Y , respectively. If f : X → Y is a surjective (U,V)-biLipschitz map, then

dimB(Y,V) = dimB(X,U)

and

dimB(Y,V) = dimB(X,U).

Proof. By Theorem 4.1, it suffices to show that

(4.1) dimB(X,U) ≤ dimB(Y,V) and dimB(X,U) ≤ dimB(Y,V).

By Theorem 3.2, f−1ΣmV < U, for some m ≥ 0. Then for each j ≥ 1,

NVj+m
(Y ) ≥ Nf−1Vj+m

(X) ≥ NUj
(X).

This easily implies (4.1).

Let p = {pi} : X →X = {Xi,Ui, pii′} be an approximate resolution. For
each i ∈ N, let

βi(X) = lim
j→∞

Np−1
ij Ui

(Xj).

Then we define the upper and the lower box-counting dimensions of p : X →
X respectively by

dimB(p : X →X) = lim
i→∞

log3 βi(X)

i

and

dimB(p : X →X) = lim
i→∞

log3 βi(X)

i
.

If the two values coincide, then we write dimB(p : X → X) for the common
value and call it the box-counting dimension of p : X → X. Note that by [9,
Proposition 5.5], for m ≥ 1,

dimB(stp : X → stX) = dimB(stm p : X → stmX),

and

dimB(stp : X → stX) = dimB(stm p : X → stmX).

Hence, we define

DimB(p : X →X) = dimB(stp : X → stX),

and

DimB(p : X →X) = dimB(stp : X → stX).

The fundamental properties of the box-counting dimension for approx-
imate resolutions can be found in [9]. In particular, we have the following
Lipschitz subinvariance property for the box-counting dimension.



144 T. MIYATA AND T. WATANABE

Theorem 4.3. Let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} :
Y → Y = {Yj ,Vj , qjj′} be approximate resolutions, and let f = {fj , f} :
X → Y be an approximate map with property (APS). If stf : stX → stY
satisfies (ALip)m for some m ≥ 0, then

dimB(stp : X → stX) ≥ dimB(st q : Y → stY )

and

dimB(stp : X → stX) ≥ dimB(st q : Y → stY ).

Proof. See [9, Corollary 7.2].

Now we prove the opposite inequalities:

Theorem 4.4. Let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} :
Y → Y = {Yj ,Vj , qjj′} be approximate resolutions, and let f = {fj , f} :
X → Y be an approximate map. If f : X → Y satisfies (ALip)m for some
m ∈ Z, then

(4.2) dimB(p : X →X) ≤ dimB(q : Y → Y )

and

(4.3) dimB(p : X →X) ≤ dimB(q : Y → Y ).

Proof. It suffices to prove the assertion for (ALip)m for some m ≥ 0,
because the case for m < 0 is similar. Let i ∈ N, and take j0 > i as in
(ALip)m. Fix j > j0. Then there exists i0 > f(j), i +m such that for each
i′ > i0,

p−1
f(j),i′f

−1
j q−1

ij Vi < p−1
i+m,i′Ui+m.

This implies that for each i′ > i0,

Nq−1
ij Vi

(Yj) ≥ Np−1

f(j),i′
f−1

j q−1
ij Vi

(Xi′) ≥ Np−1

i+m,i′
Ui+m

(Xi′ ).

So Nq−1
ij

(Yj) ≥ βi+m(X) for each j > j0, and thus, βi(Y ) ≥ βi+m(X). This

easily implies (4.2) and (4.3).

Theorems 4.3 and 4.4 now imply the following Lipschitz invariance prop-
erty for box-counting dimension:

Corollary 4.5. Let p, q and f be as in Theorem 4.4. If stf : stX →
stY satisfies (ALip)m and (ALip)n for some m,n ∈ Z, then

dimB(stp : X → stX) = dimB(st q : Y → stY )

and

dimB(stp : X → stX) = dimB(st q : Y → stY ).
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5. Category whose morphisms are Lipschitz maps

Before considering biLipschitz maps, in this section we construct a cate-
gory LIP whose morphisms are based on those approximate maps which cor-
respond to Lipschitz maps, so that the box-counting dimension is invariant in
this category.

Let the objects of LIP be all admissible approximate resolutions. We
defined morphisms as follows: Let UALip(X,Y ) denote the set of all uniform
approximate maps with properties (ALip)∗m for some m ≥ 0 and (APS).

Theorem 5.1. Let p = {pi} : X → {Xi,Ui, pii′} and q = {qj} : Y →
Y = {Yj ,Vj , qjj′} be admissible approximate resolutions of X and Y , respec-
tively. For each approximate map f = {fj , f} : stX → stY with prop-
erty (ALip)∗m for some m ≥ 0, there exists a uniform approximate map
f ′ = {f ′j , f ′} : st2X → st2 Y with property (ALip)∗m+1 that represents the
same limit map f : X → Y as f .

Proof. For each j ∈ N, let f ′(j) be the smallest integer i with the
following four properties:

1) i ≥ f(j);
2) (pf(j),i′pi′i′′ , pf(j),i′′ ) < f−1

j stVj for i′′ > i′ ≥ i;
3) p−1

j+m,i′ stUj+m < p−1
f(j),i′f

−1
j stVj for i′ ≥ i; and

4) i ≥ f ′(j − 1) if j ≥ 2.

For each j, let f ′j : Xf ′(j) → Yj be defined as f ′j = fjpf(j),f ′(j).

Claim. f ′ = {f ′j , f ′} : st2X → st2 Y forms a uniform approximate map

with property (ALip)∗m+1.

First, show that f ′ is an approximate map, i.e., have property (AM). Let
j < j′. Then (AM) for f means that there exists i0 > f(j), f(j′) such that
for each i′ > i0,

(5.1) (fjpf(j),i′ , qjj′fj′pf(j′),i′) < stVj .

Let i′0 > f ′(j), f ′(j′), i0. By the choices of f ′(j) and f ′(j′), for i′ > i′0,

(5.2) (fjpf(j),i′ , fjpf(j),f ′(j)pf ′(j),i′ ) < stVj ,

and

(5.3) (fj′pf(j′),i′ , fj′pf(j′),f ′(j′)pf ′(j′),i′) < stVj′ .

(5.3) and (U) imply

(5.4) (qjj′fj′pf(j′),i′ , qjj′fj′pf(j′),f ′(j′)pf ′(j′),i′) < stVj .

By (5.2), (5.1) and (5.4),

(fj′pf(j′),f ′(j′)pf ′(j′),i′ , qjj′fj′pf(j′),f ′(j′)pf ′(j′),i′) < st2 Vj ,

which means
(f ′jpf ′(j),i′ , qjj′f

′
j′pf ′(j′),i′) < st2 Vj ,
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verifying (AM) for f ′ : stX → stY and thus, for f ′ : st2X → st2 Y . The
approximate map f ′ : st2X → st2 Y is uniform since, by (U) and 3), for each
j,

st2 Uf ′(j) < p−1
j+m,f ′(j) stUj+m < f ′−1

j stVj < f ′−1
j st2 Vj .

It remains to verify (ALip)∗m+1. Indeed, by 3), for each i′ > f ′(j), j +m+ 1,

(5.5) p−1
j+m,i′ stUj+m < p−1

f(j),i′f
−1
j stVj .

But by (A1) and (U),

(pj+m,i′ , pj+m,j+m+1pj+m+1,i′ ) < Uj+m,

so

(5.6) p−1
j+m+1,i′ st2 Uj+m+1 < p−1

j+m+1,i′p
−1
j+m,j+m+1Uj+m < p−1

j+m,i′ stUj+m.

By 2),

(5.7) p−1
f(j),i′f

−1
j stVj < p−1

f ′(j),i′p
−1
f ′(j),f(j)f

−1
j st2 Vj .

By (5.7), (5.6) and (5.5),

p−1
j+m+1,i′ st2 Uj+m+1 < p−1

f ′(j),i′f
′−1
j stVj ,

verifying property (ALip)∗m+1 for f ′ : st2X → st2 Y . This proves the claim.

It is easy to see that f and f ′ induce the same limit map f : X → Y .
Hence f ′ is the desired map.

Remark 5.2. In Theorem 5.1, if f has property (APS), f ′ also has prop-
erty (APS).

Theorem 5.3. Let f : X → Y be an approximate map. Then if stf :
stX → stY has property (ALip)∗m for some m ≥ 0, then st2 f : st2X →
st2 Y has property (ALip)∗m+1.

Proof. Let i ∈ N. Then by (ALip)∗m and (A1), there exists i0 > i+m+
1, f(i) such that for each i′ > i0,

(5.8) p−1
i+m,i′ stUi+m < p−1

f(i),i′f
−1
i stVi,

and

(5.9) (pi+m,i′ , pi+m,i+m+1pi+m+1,i′) < Ui+m.

Then, by (U), (5.9) and (5.8), for i′ > i0,

p−1
i+m+1,i′ st2 Ui+m+1 < p−1

i+m+1,i′p
−1
i+m,i+m+1Ui+m

< p−1
i+m,i′ stUi+m < p−1

f(i)i′f
−1
i stVi < p−1

f(i)i′f
−1
i st2 Vi,

as required.
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By Theorem 5.3, there is a well-defined direct sequence:

UALip(stX, stY )→ UALip(st2X, st2 Y ) · · · → UALip(stnX, stn Y )→ · · · .
Let UALip∗(X,Y ) denote the direct limit of this sequence. For each admissi-
ble approximate resolutions p : X → X and q : Y → Y , let the set LIP(p, q)
of morphisms from p to q be the set UALip∗(X ,Y ).

We wish to define the composition as follows: Let f = {fj , f} : X → Y

and g = {gk, g} : Y → Z be uniform approximate maps, where p = {pi} :
X → X = {Xi,Ui, pii′}, q = {qj} : Y → Y = {Yj ,Vj , qjj′} and r = {rk} :
Z → Z = {Zk,Wk, rkk′} are admissible approximate resolutions. Define
h = fg : N→ N and for each k, define hk = gkfg(k) : Xfg(k) → Yk.

Theorem 5.4. h = {hk, h} : stX → stZ is a uniform approximate map.

Proof. Let k < k′. Then (AM) for g : Y → Z implies that there exists
j > g(k), g(k′) such that

(5.10) (gkqg(k),j , rkk′gk′qg(k′),j) < stWk.

(AM) for f : X → Y implies that there exists i0 > fg(k), fg(k′), f(j) such
that for i > i0,

(5.11) (fg(k)pfg(k),i, qg(k),jfjpf(j),i) < stVg(k),

and

(5.12) (fg(k′)pfg(k′),i, qg(k′),jfjpf(j),i) < stVg(k′).

Since g is uniform,

(5.13) Vg(k) < g−1
k Wk,

and

(5.14) Vg(k′) < g−1
k′ Wk′ .

By (5.11), (5.13), (5.10), (5.12) and (5.14),

(gkfg(k)pfg(k),i, rkk′gk′fg(k′)pfg(k′),i) < st2Wk,

proving (AM) for h : stX → stZ.

Theorem 5.5. If stf : stX → stY has property (ALip)∗m and if st2 g :
st2 Y → st2Z has property (ALip)∗n for some m,n ≥ 0, then st2 h : st3X →
st3Z has property (ALip)∗m+n+2.

Proof. Let k ∈ N. By (ALip)∗m for st2 g : st2 Y → st2Z, there exists
j0 > g(k) such that for j > j0,

(5.15) q−1
k+n,j st2 Vj+n < q−1

g(k),jg
−1
k st2Wk.

By (ALip)∗n for stf : stX → stY and (AM) for f , there exists i0 > k + n+
m, f(j + n), fg(k), f(j) such that for i > i0,

(5.16) p−1
k+n+m,i stUk+n+m < p−1

f(k+n),if
−1
k+n stVk+n,
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(5.17) (fk+npf(k+n),i, qk+n,jfjpf(j),i) < stVk+n,

and

(5.18) (fg(k)pfg(k),i, qg(k),jfjpf(j),i) < stVg(k).

By (5.17),

(5.19) p−1
f(k+n),if

−1
k+n stVk+n < p−1

f(j),if
−1
j q−1

k+n,j st2 Vk+n.

By (5.19) and (5.15),

(5.20) p−1
f(k+n),if

−1
k+n stVk+n < p−1

f(j),if
−1
j q−1

g(k),jg
−1
k st2Wk.

(5.18) and the fact that g is uniform imply that

(5.21) p−1
f(j),if

−1
j q−1

g(k),jg
−1
k st2Wk < p−1

fg(k),if
−1
g(k)g

−1
k st3Wk.

By (5.16), (5.20), (5.21),

p−1
k+n+m,i stUk+n+m < p−1

fg(k),if
−1
g(k)g

−1
k st3Wk.

This means (ALip)∗m+n for ist2 Zist Zh : stX → st3Z. Using Theorem 3.9 4)

twice, this implies (ALip)∗m+n+2 for st2 h : st3X → st3Z.

Theorem 5.6. If approximate maps f : X → Y and g : Y → Z both
have property (APS), then so does h : stX → stZ.

Proof. Let k ∈ N, and let W ∈ Cov(Zk). TakeW ′ ∈ Cov(Zk) such that
st2W ′ < W . By (A3) and (APS) for g : Y → Z, there exists k0 > k such
that for each k′ > k0,

(5.22) Wk′ < r−1
kk′W ′,

and there exists k′0 > k′ with the property that for each k′′ > k′0 there exists
j0 > g(k′) such that for each j′ > j0,

(5.23) rkk′′ (Zk′′) ⊆ st(rkk′gk′qg(k′),j′(Yj′ ),W ′).
Furthermore, if we fix j′ > j0, by (APS) and (AM) for f : X → Y , there
exists j′0 > j′ such that each j′′ > j′0 admits i0 > fg(k′), f(j′) such that for
each i′ > i0,

(5.24) qg(k′),j′′(Yj′′ ) ⊆ st(qg(k′),j′fj′pf(j′),i′(Xi′), g
−1
k′ r
−1
kk′W ′),

and

(5.25) (qg(k′),j′fj′pf(j′),i′ , fg(k′)pfg(k′),i′) < stVg(k′).

Then by (5.24),

(5.26) rkk′gk′qg(k′),j′′ (Yj′′ ) ⊆ st(rkk′gk′qg(k′),j′fj′pf(j′),i′(Xi′),W ′).
Since g : Y → Z is uniform,

(5.27) stVg(k′) < g−1
k′ stWk′ .
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By (5.26), (5.25), (5.27) and (5.22),

(5.28) rkk′gk′qg(k′),j′′(Yj′′ ) ⊆ st(rkk′gk′fg(k′)pfg(k′),i′(Xi′), stW ′).
Since j′′ > j0, by (5.23) and (5.28),

rkk′′ (Zk′′ ) ⊆ st(rkk′gk′fg(k′)pfg(k′)i′(Xi′), st
2W ′)

⊆ st(rkk′gk′fg(k′)pfg(k′)i′(Xi′),W).
(5.29)

Thus, each k′′ > k′0 admits i0 > fg(k′) such that for each i′ > i0,

rkk′′ (Zk′′) ⊆ st(rkk′hk′ph(k′)i′(Xi′),W),

which verifies (APS) for h.

Let ϕ ∈ LIP(p, q) and ψ ∈ LIP(q, r), where p = {pi} : X → X =
{Xi,Ui, pii′}, q = {qj} : Y → Y = {Yj ,Vj , qjj′} and r = {rk} : Z →
Z = {Zk,Wk, rkk′} are admissible approximate resolutions. Let ϕ and ψ be
represented by uniform approximate maps f : stsX → sts Y with (ALip)∗m
and (APS) and g : stt Y → sttZ with (ALip)∗n and (APS) for some m,n ∈ Z.
By Theorem 5.3, taking the maximum of s and t, we can assume s = t.
If we let h = fg and hk = gkfg(k) : Xfg(k) → Zk, then by Theorem 5.4

h = {hk, h} : sts+1X → sts+1Z is a uniform approximate map which has
property (APS), by Theorem 5.6. Note that stf : sts+1X → sts+1 Y has
property (ALip)∗m+1 and st2 g : sts+2 Y → sts+2Z has property (ALip)∗n+2

by Theorem 5.3. So Theorem 5.5 implies that st2 h : sts+3X → sts+3Z

has property (ALip)∗m+n+5. Now define ψ ◦ ϕ as the morphism in LIP(p, r)

represented by st2 h : sts+3X → sts+3Z. It is easy to see that the definition
of ψ ◦ ϕ does not depend on the choice of the representative of f or g. Let
1p ∈ LIP(p,p) be the morphisms represented by the identity approximate
map 1X : X → X. Then it is easy to see 1q ◦ ϕ = ϕ and ϕ ◦ 1p = ϕ.
Associativity of the composition also holds. Hence, we have

Theorem 5.7. LIP is a category.

Theorem 5.8. DimB and DimB are invariants in the category LIP.

Proof. Let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} : Y →
Y = {Yj ,Vj , qjj′} be admissible approximate resolutions. Suppose that ϕ ∈
LIP(p, q) and ψ ∈ LIP(q,p) satisfy ψ ◦ϕ = 1p and ϕ ◦ψ = 1q, and let ϕ and
ψ be represented by f = {fj , f} ∈ UALip(stmX, stm Y ) and g = {gi, g} ∈
UALip(stm Y , stmX), respectively, for somem ≥ 1. Then f : stmX → stm Y

and g : stm Y → stmX have properties (APS) and (ALip)∗l for some l ≥ 0.
Thus by Theorems 3.9 and 4.3,

dimB(stm q : Y → stm Y ) = dimB(stm p : X → stmX),

and

dimB(stm q : Y → stm Y ) = dimB(stm p : X → stmX),
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which implies

DimB(q : Y → Y ) = DimB(p : X →X),

and

DimB(q : Y → Y ) = DimB(p : X →X),

as required.

6. Category whose morphisms are biLipschitz maps

In this section we construct another category BILIP whose morphisms are
based on those approximate maps which correspond to biLipschitz maps, so
that this is another category where the box-counting dimension is invariant.

Remark 6.1. For eachm ∈ Z and for each approximate map f : X → Y ,
in properties (ALip)m, (ALip)m, (ALip)∗m, (ALip)m

∗ , replace “for each i ∈ N”
by “there exists N ∈ N such that for each i ≥ N” and call the so obtained

properties (̂ALip)m, (̂ALip)m, (̂ALip)∗m, (̂ALip)m
∗ , respectively. In a similar

way, for eachm,n ≥ 0, for each f : X → Y , and for normal sequences U and V
on X and Y , respectively, define properties (̂M)m,n, (̂N)m,n, (̂M)

m,n
, (̂N)

m,n

as properties (M)m,n, (N)m,n, (M)
m,n

, (N)
m,n

for ΣNU and ΣNV for some
N , respectively. Then it is easy to see that all the results involving properties
(ALip)m, (ALip)m, (ALip)∗m, (ALip)m

∗ , (M)m,n, (N)m,n, (M)m,n, (N)m,n also

hold for properties (̂ALip)m, (̂ALip)m, (̂ALip)∗m, (̂ALip)m
∗ , (̂M)m,n, (̂N)m,n,

(̂M)
m,n

, (̂N)
m,n

.

Let the objects of BILIP be all addmissible approximate resolutions. We
define the morphisms as follows: Let UABiLip(X,Y ) denote the set of all

uniform approximate maps with properties (APS), (̂ALip)∗m and (̂ALip)n
∗ for

some m,n ∈ Z.

Theorem 6.2. Let f : X → Y be an approximate map. Then if st2 f :

st2X → st2 Y has property (̂ALip)
m

∗ for some m ∈ Z, then st3 f : st3X →
st3 Y has property (̂ALip)

m−1

∗ .

Proof. Assume m ≥ 1 since the case m ≤ 0 is similar. Take N ∈ N
so that property (ALip)

m
∗ holds for each i ≥ N , and let i ≥ N . Then by

(̂ALip)
m

∗ for st2 f : st2X → st2 Y and (AM) for f : X → Y , there exists
i0 > i+m, f(i+ 1) such that for each i′ > i0,

(6.1) p−1
f(i),i′f

−1
i st2 Vi < p−1

i+m,i′ st2 Ui+m,

and

(6.2) (fipf(i),i′ , qi,i+1fi+1pf(i+1),i′) < stVi.
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(6.2) and (6.1) imply

p−1
f(i+1),i′f

−1
i+1q

−1
i,i+1 stVi < p−1

f(i),i′f
−1
i st2 Vi < p−1

i+m,i′ st2 Ui+m

< p−1
i+m,i′ st3 Ui+m.

(6.3)

(U) implies

(6.4) st3 Vi+1 < q−1
i,i+1 stVi.

By (6.3) and (6.4),

p−1
f(i+1),i′f

−1
i+1 st3 Vi+1 < p−1

i+m,i′ st3 Ui+m,

which means (̂ALip)
m−1

∗ for st3 f : st3X → st3 Y .

Theorem 6.3. Let p = {pi} : X → X = {Xi,Ui, pii′} and q = {qj} :
Y → Y = {Yj ,Vj , qjj′} be admissible approximate resolutions of X and Y ,
respectively. For each approximate map f = {fj , f} : st3X → st3 Y with
properties (ALip)m+3

∗ and (ALip)∗n for some m,n ∈ Z, there exists a uniform

approximate map f ′ = {f ′j , f ′} : stX → stY with properties (̂ALip)
m

∗ and

(̂ALip)
∗
n+1 which represents the same limit map f : X → Y as f .

Proof. First assume that m,n ≥ 0. For each j, let f ′(j) be the smallest
integer i with the following properties:

1) i > f(j);
2) (pf(j),i′pi′i′′ , pf(j),i′′ ) < f−1

j Vj for i′′ > i′ ≥ i;
3) p−1

f(j),i′f
−1
j st3 Vj < p−1

j+m+3,i′ st3 Uj+m+3 for i′ ≥ i;
4) p−1

j+n,i′ stUj+n < p−1
f(j),i′f

−1
j stVj for i′ ≥ i; and

5) i ≥ f ′(i− 1) if j ≥ 2.

For each j, let f ′j : Xf ′(j) → Yj be defined as f ′j = fjpf(j),f ′(j).

Claim. f ′ = {f ′j , f ′} : st4X → st4 Y defines a uniform approximate

map with properties (̂ALip)
m

∗ and (ALip)∗n+1.

That f ′ : st4X → st4 Y is a uniform approximate map with property
(ALip)∗n+1 follows from the proof of Theorem 5.1. For each j, let i0 = f ′(j),
and let i′ > i0. Then by 2),

p−1
f ′(j),i′p

−1
f(j),f ′(j)f

−1
j st2 Vj < p−1

f(j),i′f
−1
j st3 Vj .

This together with 3) implies

(6.5) p−1
f ′(j),i′f

′−1
j st2 Vj < p−1

j+m+3,i′ st3 Uj+m+3.

But
(pj+m+2,i′ , pj+m+2,j+m+3pj+m+3,i′ ) < Uj+m+2,

and so

(6.6) p−1
j+m+3,i′p

−1
j+m+2,j+m+3 stUj+m+2 < p−1

j+m+2,i′ st2 Uj+m+2.
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By (U),

(6.7) st3 Uj+m+3 < p−1
j+m+2,j+m+3 stUj+m+2.

By (6.5), (6.7) and (6.6),

p−1
f ′(j),i′f

′−1
j st2 Vj < p−1

j+m+2,i′ st2 Uj+m+2.

This means property (ALip)m+2
∗ for f ′ : st2X → st2 Y . By Theorem 6.2,

redefining f ′ as st2 f ′, f ′ : st4X → st4 Y has property (̂ALip)
m

∗ , which proves
the claim.

For the case m < 0 (resp., n < 0), for each j ∈ N, define f ′(j) as f(j), for
j ≤ −m (resp., j ≤ −n) and the smallest integer i with properties 1) - 4), for
j > −m (resp., j > −n). Then, by the same argument as above, we obtain

a uniform approximate map f ′ : st4X → st4 Y with properties (̂ALip)
m

∗ and

(̂ALip)
∗
n+1.

By Theorems 5.3 and 6.2, there is a well-defined direct sequence

UABiLip(st2X, st2 Y )→UABiLip(st3X, st3 Y )→
· · · → UABiLip(stnX, stn Y )→ · · · .

Let UABiLip∗(X,Y ) denote the direct limit of this sequence. For any ad-
missible approximate resolutions p : X → X and q : Y → Y , let the set
BILIP(p, q) of morphisms from p to q be the set UABiLip∗(X ,Y ).

We define the composition similarly to the case of LIP: Let f = {fj , f} :
X → Y and g = {gk, g} : Y → Z be uniform approximate maps, where
p = {pi} : X → X = {Xi,Ui, pii′}, q = {qj} : Y → Y = {Yj ,Vj , qjj′} and
r = {rk} : Z → Z = {Zk,Wk, rkk′} are admissible approximate resolutions.
Define h = fg : N → N and for each k, define hk = gkfg(k) : Xfg(k) → Yk.
Then by Theorem 5.4, h = {hk, h} : stX → stZ is a uniform approximate
map.

Theorem 6.4. If st3 f : st3X → st3 Y has property (ALip)m
∗ (resp.,

(̂ALip)
m

∗ ) and if st2 g : st2 Y → st2Z has property (ALip)n
∗ (resp. ,(̂ALip)

n

∗ )
for some m,n ∈ Z, then h : stX → stZ has property (ALip)m+n−2

∗ (resp.,

(̂ALip)
m+n−2

∗ ).

Proof. Assume m,n ≥ 1 since the case for m ≤ 0 or n ≤ 0 is similar.
Let k ∈ N. By (ALip)n

∗ for st2 g : st2 Y → st2Z, there exists j > k + n, g(k)
such that

q−1
g(k),jg

−1
k st2Wk < q−1

k+n,j st2 Vk+n.

So,

(6.8) p−1
f(j),if

−1
j q−1

g(k),jg
−1
k st2Wk < p−1

f(j),if
−1
j q−1

k+n,j st2 Vk+n.
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By (AM) for f : X → Y and (ALip)m
∗ for st3 f : st3X → st3 Y , there is

i0 > f(k + n), f(j) (> gf(k)) such that for each i > i0,

(6.9) (fk+npf(k+n),i, qk+n,jfjpf(j),i) < stVk+n,

(6.10) (fg(k)pfg(k),i, qg(k),jfjpf(j),i) < stVg(k),

and

(6.11) p−1
f(k+n),if

−1
k+n st3 Vk+n < p−1

k+n+m,i st3 Uk+n+m.

Fix i > i0. Since g : Y → Z is uniform, (6.10) implies

(gkfg(k)pfg(k),i, gkqg(k),jfjpf(j),i) < stWk,

so

(6.12) p−1
fg(k),if

−1
g(k)g

−1
k stWk < p−1

f(j),if
−1
j q−1

g(k),jg
−1
k st2Wk.

By (6.9),

(6.13) p−1
f(j),if

−1
j q−1

k+n,j st2 Vk+n < p−1
f(k+n),if

−1
k+n st3 Vk+n.

By (6.12),(6.8), (6.13) and (6.11),

(6.14) p−1
fg(k),if

−1
g(k)g

−1
k stWk < p−1

k+n+m,i st3 Uk+n+m.

But by (U),

p−1
k+n+m,i st3 Uk+n+m < p−1

k+n+m,i st p−1
k+n+m−1,k+n+mUk+n+m−1

< p−1
k+n+m,ip

−1
k+n+m−1,k+n+m stUk+n+m−1.

(6.15)

Since

(pk+n+m−1,i, pk+n+m−1,k+n+mpk+n+m,i) < Uk+n+m−1,

(6.16) p−1
k+n+m,ip

−1
k+n+m−1,k+n+m stUk+n+m−1 < p−1

k+n+m−1,i st2 Uk+n+m−1.

By (6.15) and (6.16),

(6.17) p−1
k+n+m,i st3 Uk+n+m < p−1

k+n+m−1,i st2 Uk+n+m−1.

By a similar argument,

(6.18) p−1
k+n+m−1,i st2 Uk+n+m−1 < p−1

k+n+m−2,i stUk+n+m−2.

By (6.14), (6.17) and (6.18), we have

p−1
fg(k),if

−1
g(k)g

−1
k stWk < p−1

k+n+m−2,i stUk+n+m−2 for i > i0.

This means (ALip)m+n−2
∗ for h : stX → stZ. Similarly for (̂ALip)

m

∗ and

(̂ALip)
n

∗ .
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Let ϕ ∈ BILIP(p, q) and ψ ∈ BILIP(q, r) where p = {pi} : X → X =
{Xi,Ui, pii′}, q = {qj} : Y → Y = {Yj ,Vj , qjj′} and r = {rk} : Z →
Z = {Zk,Wk, rkk′} are admissible approximate resolutions. Let ϕ and ψ be
represented by uniform approximate maps f : stsX → sts Y with properties

(̂ALip)∗m, (̂ALip)k
∗ and (APS) and g : stt Y → sttZ with properties (̂ALip)∗n,

(̂ALip)l
∗ and (APS) for some m,n, k, l ∈ Z. By Theorems 5.3 and 6.2, taking

the maximum of s and t, we can assume s = t. If we let h = fg and hk =
gkfg(k) : Xfg(k) → Zk, then h = {hk, h} : sts+1X → sts+1Z is a uniform
approximate map by Theorem 5.4 and has property (APS), by Theorem 5.6.
Similarly to the case of LIP, the approximate map st2 h : sts+3X → sts+3Z

has property (̂ALip)∗m+n+5. Also note that st3 f : sts+3X → sts+3 Y has

property (̂ALip)k−3
∗ and st2 g : sts+2 Y → sts+2Z has property (̂ALip)l−2

∗
by Theorem 6.2. So Theorem 6.4 implies that h : sts+1X → sts+1Z has

property (̂ALip)k+l−7
∗ , and hence by Theorem 6.2 again, st2 h : sts+3X →

sts+3Z has property (̂ALip)k+l−9
∗ . Now define ψ ◦ ϕ as the morphism in

BILIP(p, r) represented by st2 h : sts+3X → sts+3Z. It is easy to see that
the definition of ψ ◦ ϕ does not depend on the choice of the representative
f or g. Let 1p ∈ BILIP(p,p) be the morphism represented by the identity
approximate map 1st2 X : st2X → st2X . Then it is easy to see 1q ◦ ϕ = ϕ

and ϕ ◦ 1p = ϕ. Associativity of the composition also holds. Hence, we have

Theorem 6.5. BILIP is a category.

and

Theorem 6.6. DimB and DimB are invariants in the category BILIP.

Proof. This follows from Corollary 4.5.
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