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MOVABLE CATEGORIES
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Abstract. The notion of movability for metrizable compacta was in-
troduced by K.Borsuk [1]. In this paper we define the notion of a movable
category and prove that the movability of a topological space X coincides
with the movability of a suitable category, which is generated by the topo-
logical space X (i.e., the category WX , defined by S.Mardešić [9]).

1. Introduction

The notion of movability was introduced, for metrizable compacta, by
K. Borsuk [1]. For the more general cases this notion was extended by S.
Mardešić and J. Segal [10], J. Segal [12], P. Shostak [13]. In the equivariant
theory of shape this notion was studied in the works of the author of present
article [4, 5, 6, 7, 8] and of Z. Čerin [3].

It is necessary to note that in the works mentioned above the movabil-
ity of topological spaces was defined by means of neighborhoods of the given
space (embedded as closed set in a certain AR-space) or by means of inverse
systems, depending on the approach to shape theory used. However, the cate-
gorical approach to shape theory of S. Mardešić [9] lacks a suitable categorical
definition of movability.

In this article we define the notion of movable category and prove that the
movability of a topological space is equivalent to the movability of a certain
category.

The author is extremely grateful to the referee for his helpful remarks and
comments.
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2. Basic notions and conventions concerning shape and
movability

Let HT OP denote the homotopy category of topological spaces and ho-
motopy classes of maps and HCW the full subcategory of HT OP whose ob-
jects are all topological spaces having the homotopy type of a CW-complex.

Definition 2.1 (K. Morita [11]). An inverse system {Xα, pαα′ , A} in
HCW is called associated with or an expansion of a topological space X if
there are homotopy classes pα : X → Xα for α ∈ A such that the following
conditions are satisfied.

(1) pαα′pα′ = pα, if α < α′.
(2) For any homotopy class f : X → Q with Q ∈ Ob(HCW), there exists

α ∈ A and a homotopy class fα : Xα → Q such that f = fαpα.
(3) For α ∈ A and for homotopy classes fα, gα : Xα → Q with Q ∈

Ob(HCW) such that fαpα = gαpα, there exist α′ ∈ A with α 6 α′ such
that fαpαα′ = gαpαα′ .

For any topological space X there exist an inverse system in HCW asso-
ciated with X [11], and so there is a shape theory for all topological spaces
because the abstract theory of shape yields that there is a shape theory for
HT OP iff every topological space has an expansion, i.e., iffHCW is a so-called
”dense” subcategory of HT OP .

On the categorical approach to shape theory of S. Mardešić [9] for each
topological spaceX it is introduced a new comma categoryWX , whose objects
are homotopy classes f : X → Q and whose morphisms are the following com-
mutative triangles where Q,Q′ ∈ Ob(HCW). Then a shape map f : X → Y

Q′

X

Q

�
�

�	

@
@

@R
�

f ′ f

µ

is defined as a covariant functor f : WY → WX which keeps morphisms µ
fixed.

Definition 2.2 ([10]). An inverse system {Xα, pαα′ , A} in HCW is called
movable if

(*) for every α ∈ A, there exists an α′ ∈ A, α′ > α such that for all

α′′ ∈ A, α′′ > α, there exists a homotopy class rα′α′′

: Xα′ → Xα′′

such that

pαα′ = pαα′′rα′α′′

.

The topological space X is called movable if there exist an inverse system
{Xα, pαα′ , A} in HCW which associated with X and which is movable.
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The reader is referred to the book by S. Mardešić and J. Segal [9] for
general information about shape theory.

3. The movable categories

Let K be an arbitrary category and K ′ any subcategory of the category
K.

Definition 3.1. We say that a subcategory K ′ is movable in a category
K, if for any object X ∈ Ob(K ′) there exists an object Y ∈ Ob(K ′) and
a morphism f ∈ K ′(Y,X) such that for any object Z ∈ Ob(K ′) and any
morphism g ∈ K ′(Z,X) there is a morphism h ∈ K(Y, Z) which make the
following diagram commutative

X

Z

Y�������

f

HHHHHHY

g ?

h

Definition 3.2. We say that a category is movable if it is movable in
itself.

Definition 3.3 ([2]). It is said that K is a category with zero-morphisms
if for any pair (A,B) of objects from a category K there exist morphisms
oBA : A → B which, for all morphisms ν : B → C and u : D → A, where C
and D are objects of the category K, satisfy the following equalities

νoBA = oCA, oBAu = oBD.

Definition 3.4 ([2]). An object O ∈ Ob(K) is called initial if for any
object X ∈ Ob(K) the set MorK(O,X) consists of a single morphism.

Proposition 3.5. Any category K with zero-morphisms is movable.

Proof. Let X ∈ Ob(K) be an arbitrary object. It appears that for
the object we seek (see definition 3.1), we may take any object Y ∈ ob(K)
and for the morphism f ∈ K(Y,X) it is necessary to take a zero-morphism
oXY : Y → X . Indeed, let g ∈ K(Z,X) be an arbitrary morphism. It is
clear that zero-morphism oZY : Y → Z is the morphism we seek, that is
goZY = oXY , which follows from definition 3.3.

Proposition 3.6. Any category K with initial objects is movable.
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Proof. Let X ∈ Ob(K) be any object. Let us consider the initial object
O of the category K. We denote by uX the single morphism from the object
O to the object X . Now it is not difficult to note that the object O and the
morphism uX : O → X satisfies the condition of definition 3.1. Indeed: let
Y ∈ ob(K) be any object and g : Y → X be any morphism of the category
K. It is clear that the single morphism uY : O → Y satisfies the condition
uX = g ◦ uY .

4. The movability of topological spaces

Theorem 4.1. The topological space X is movable if and only if the
category WX is movable.

This theorem is a simple reformulation of the following theorem.

Theorem 4.2. The topological space X is movable if and only if the
following condition is satisfied.

(*) For any Q ∈ Ob(HCW) and any homotopy class f : X → Q there
exist Q′ ∈ Ob(HCW) and homotopy classes f ′ : X → Q′, η : Q′ → Q,
satisfying f = η ◦ f ′, such that for any Q′′ ∈ Ob(HCW) and homotopy
classes f ′′ : X → Q′′, η′ : Q′′ → Q, satisfying the condition f = η′◦f ′′,
there exist a homotopy class η′′ : Q′ → Q′′ which satisfies the condition
η = η′ ◦ η′′ (Diagram 1).

Q′

Q

X Q′′
6

���������:

PPPPPPPPi

�����

HHHHY

-η
f ′
f

η′

f ′′

η′′

Diagram 1.

Proof. Let condition (∗) be satisfied. We must prove that X is movable.
Let us consider an inverse system {Xα, pαα′ , A} in HCW which is associated
with the topological space X .

Let α ∈ A be any element and pα : X → Xα be the natural projection. By
(∗) for the homotopy class pα : X → Xα let Q′ ∈ Ob(HCW), and f ′ : X → Q′,
η : Q′ → Xα are homotopy classes satisfying the condition η ◦ f ′ = pα

(Diagram 2).
Since inverse system {Xα, pαα′ , A} is associated with X , there exists α̃ ∈

A, α̃ > α and f̃ ′ : Xα̃ → Q′ such that

(4.1) f ′ = f̃ ′ ◦ pα̃.

It is not difficult to verify that

(4.2) pαα̃ ◦ pα̃ = η ◦ f̃ ′ ◦ pα̃.
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Indeed:

η ◦ f̃ ′ ◦ pα̃ = η ◦ f ′ = pα = pαα̃ ◦ pα̃.

From the equality (4.2) and the definition 1 we infer the existence of an
index α′ ∈ A, α′ > α̃ for which

(4.3) pαα̃ ◦ pα̃α′ = η ◦ f̃ ′ ◦ pα̃α′ .

The obtained index α′ ∈ A satisfies the condition of the movability of
inverse system {Xα, pαα′ , A}. Indeed, let α′′ ∈ A, α′′ > α be any element.
For the homotopy classes pαα′′ : Xα′′ → Xα and pα′′ : X → Xα′′ (with the
condition pα = pαα′′ ◦ pα′′) there exist a homotopy class η′′ : Q′ → Xα′′ ,
which satisfies the equality

(4.4) η = pαα′′ ◦ η′′.
(see the condition (∗)). Now it is easy to see that g = η′′ ◦ f̃ ′ ◦ pα̃α′ is the
homotopy class we seek, i. e. the following condition is satisfied:

(4.5) pαα′ = pαα′′ ◦ g.
Indeed:

pαα′ = pαα̃ ◦ pα̃α′ = η ◦ f̃ ′ ◦ pα̃α′ = pαα′′ ◦ η′′ ◦ f̃ ′ ◦ pα̃α′ = pαα′′ ◦ g.

Xα

Xα̃

X

Xα′

Xα′′

Q′

PPPPPPPi Q
Q

QQs

� 
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pαα̃ pα′ η′′
pα̃α′

pα

pαα′′

f̃ ′ η

pα′′

Diagram 2.

Now we must prove the converse. Let X be a movable topological space
and some inverse system {Xα, pαα′ , A} associated with X . Let us prove that
the condition (∗) is satisfied. To this end, consider any homotopy class f :
X → Q (Diagram 3). From the association of the inverse system {Xα, pαα′ , A}
with the space X follows that there exist an index α ∈ A and a homotopy
class fα : Xα → Q such that

(4.6) f = fα ◦ pα.

For the index α ∈ A let us consider an index α′ ∈ A, α′ > α, which
satisfies the condition of movability of the inverse system {Xα, pαα′ , A}. From
(4.6) we get

(4.7) f = fα ◦ pαα′ ◦ pα′ .
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Now let us prove that Xα′ , the homotopy classes pα : X → Xα′ and
fα ◦ pαα′ : Xα′ → Q satisfy condition (∗). Indeed, let Q′′ ∈ Ob(HCW) and
f ′′ : X → Q′′, η′ : Q′′ → Q homotopy classes, which satisfy the condition

(4.8) f = η′ ◦ f ′′.
For the homotopy class f ′′ : X → Q′′ there exist an index α′′ ∈ A, α′′ > α

and a homotopy class f̃ ′′ : Xα′′ → Q′′ that

(4.9) f ′′ = f̃ ′′ ◦ pα′′ .

It is clear that

fα ◦ pαα′′ ◦ pα′′ = η′ ◦ f̃ ′′ ◦ pα′′ .

Therefore, according to the definition 1 of ”association”, we can find an index
α′′′ ∈ A, α′′′ > α′′ such that

(4.10) fα ◦ pαα′′ ◦ pα′′α′′′ = η′ ◦ f̃ ′′ ◦ pα′′α′′′ .

By the movability of the inverse system {Xα, pαα′ , A}, we can select the
homotopy class g : Xα′ → Xα′′′ satisfying the condition

(4.11) pαα′ = pαα′′ ◦ pα′′α′′′ ◦ g.

XQ Xα′′′
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fα pα pα′ g

η′ f ′′ pα′′ pα′′α′′′

f pα′′′

pαα′

f̃ ′′

Diagram 3.

Let us define η′′ = f̃ ′′ ◦pα′′α′′′ ◦g. It is remains to note that the homotopy
class η′′ : Xα′ → Q′′ satisfies the condition

(4.12) fα ◦ pαα′ = η′ ◦ η′′.
Indeed:

η′ ◦ η′′ = η′ ◦ f̃ ′′ ◦ pα′′α′′′ ◦ g = fα ◦ pαα′′ ◦ pα′′α′′′ ◦ g = fα ◦ pαα′ .

Remark 4.3. The condition (∗) of Theorem 2 one can consider as a
definition of movability of topological space.
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