APPLICATION OF RISK ANALYSIS AND QUALITY CONTROL METHODS FOR IMPROVEMENT OF LEAD MOLDING PROCESS

Received – Primljeno: 2016-01-29 Accepted – Prihvaćeno: 2016-05-20 Preliminary Note – Prethodno priopćenje

The aim of the paper is to highlight the significance of implication of risk analysis and quality control methods for the improvement of parameters of lead molding process. For this reason, Fault Mode and Effect Analysis (FMEA) was developed in the conceptual stage of a new product TC-G100-NR. However, the final product was faulty (a complete lack of adhesion of brass insert to leak) regardless of the previously defined potential problem and its preventive action. It contributed to the recognition of root causes, corrective actions and change of production parameters. It showed how these methods, level of their organization, systematic and rigorous study affect molding process parameters.

Key words: lead, molding process, risk analysis, quality control

INTRODUCTION

The improvement of production processes is a natural activity of the enterprise which it is oriented on continuous development and increase of competiveness. A variety of methodologies are available for process improvement (e.g. Six Sigma, Lean Management, Lean Six Sigma, Agile Management, Re-engineering, Total Quality Management, Just-In-Time, Kaizen, Hoshin Planning, Poka-Yoka, Design of Experiments, and Process Excellence) [1-3], however, their choice depends on information obtained from the process on the basis of the applied methods of risk analysis and quality control.

Fault Mode and Effect Analysis (FMEA) is a basic method used for process risk analysis in any industry. It is conducted to identify and assess risk of potential failure modes in a process and the effects of their appearance in relation to fulfilling clients' expectations. This method also allows to indicate the elements of the process where preventive and corrective actions should be undertaken. Moreover, its application leads to the recognition of causes which can make it difficult to meet client specifications or disturb the manufacturing process. They can be related to work methods, process parameters, measurement and control devices or machines and tools used in the technological process [4]. FMEA is supported by the tools which facilitate conducting two important steps such as: identification of hazards and their cause-effect analysis. The first tool, which can be used to identify hazards, is brainstorming. In industrial practice two variations of this method are applied: individual brainstorming to use intellectual potentials of participants and

Brainwriting 635. Firstly, the employees participating in the analysis, are urged to generate and note down all problems and provide them to the leader of the team who is responsible for their record. The obtained results are compared with the outcomes of Brainwriting 635. This technique involves 6 participants whose task is to write down three ideas in 5 minutes on a piece of paper. After that time the paper is passed to the next person in a clockwise direction. After the course of 5 rounds a total of 108 ideas is collected [5].

The next tool, which can support FMEA, is Ishikawa diagram (also called fishbone diagram). It is a visual presentation of the analysis of diverse connections between an event (effect) and its possible causes. For manufacturing problems it encompasses such categories as 5 M's + E (manpower, machine, method, material, measurement and environment) [6]. Its application is supported by 5Why method of root cause analysis which allows to identify how the causes of a failure event arise and define the cause-effect failure path [7].

The hazard risk analysis cannot substitute control and monitoring of manufacturing process. During the control of molding process not only manufacturing process parameters are measured but the attention is also paid to the final product. It is required to monitor temperature of liquid raw material, mold and submerged elements in the the mold. Furthermore, in order to conduct quality control of the casting product it is necessary to carry out destructive and non-destructive testing. In destructive testing special samples or final products are destroyed, and therefore it is done on very limited samples (3-5 items). In contrast to it, non-destructive testing covers a wide group of analysis techniques which provide information about the properties of the investigated casting without causing damage, i.e. changing its operation usability.

H. Gołaś, A. Mazur, B. Mrugalska, Faculty of Engineering Management, Poznan University of Technology, Poznan, Poland

The aim of the paper is to show how the methods of risk analysis and quality control influence molding process parameters. The choice and frequency of the application of these methods resulted from the observations and analyses made together with organization staff responsible for performing molding process. The investigation is done on the example of gravity lowmelting heavy metal – lead, which is relatively soft metal resistant to corrosion and has good self-lubricating properties.

LEAD MOLDING PROCESS IN THE ANALYSED COMPANY

In the investigated company the molding process is done manually by pouring the liquid lead to a metal mold. These molds are multi-use and their spacers allow to use them to diverse product dimensions such as height and diameters. The final product is a pilar which constitutes a component of battery or industrial battery. The quality of the pilar depends on the adhesion of brass insert to lead. The adhesion is assured by tin alloy coating of insert. In this paper the molding process of TC-G100-NR is presented (Table 1).

	Controlled parameter	Requirement			
ocess	Temperature of 4,5 % lead	500 °C ± 25 °C			
	Temperature of mold	90 °C – 180 °C			
P	Temperature of tray	60 ºC			
	Test of torque wrench	50 Nm			
Final product	Adhesion of insert to pilar	Detected traces of lead on insert			
	Diameter 1	Ø 20,2 – 0,2			
	Diameter 2	Ø 24 – 0,1			
	Total height	97 ± 0,2			
	Height of undercut	55 ± 0,2			
	Surface	Lack of defects			

Table 1 Molding parameters for TC-G100-NR

The product dimensions, which are mentioned in Table 1, are shown in Figure 1.

Figure 1 Dimensions of TC-G100-NR

APPLICATION OF METHODS OF RISK ANALYSIS AND QUALITY CONTROL: A CASE STUDY

Launching a new product (TC-G100-NR) to production was preceded by the Process FMEA. It allowed to identify mishap hazards resulting from potential failure modes at the stages of material reception in warehouse, production of brass insert, molding and preparing goods for shipping to customers. Totally, it consisted of 17 process steps and it was possible to implement 14 corrective actions in the manufacturing process. During the team work it was possible to use brain storming to identify potential hazards and 5Why to define effects. Table 2 shows the Process FMEA for molding.

FMEA was one of the elements of Production Part Approval Process (PPAP) which aim was to show that the supplier of the component (TC-G-100NR) developed the design and production process to meet client's requirements. It included process flow diagram, control plan, measurement systems analysis, calculation of process capability indices (Cpk, Cp), records of material tests, initial sample inspection reports, indication of machines and equipment used in this process and their control equipment, and Part Submission Warrant (PSW). The applied methods of process and product quality control are presented in Table 3.

In spite of the fact that the PPAP was set up, a total lack of adhesion of brass insert to lead appeared in some production batches. The client's requirement was to make immediate corrections and then take corrective actions and present their results. For this aim FMEA was checked to verify that such a potential failure was identified and what corrective or preventive actions were implemented. It appeared that a potential failure mode "inappropriate adhesion of insert" was documented in FMEA form. It resulted from "inappropriate temperature" and its corresponding preventive action was "follow production instruction". The risk priority number was 96.

Due to the fact that the preventive action taken to eliminate the cause of a potential nonconformity was not successful it was necessary to identify other potential causes of lack of adhesion. It was concluded that during the introduction of a new product it was not made sure that such a potential failure mode as "incorrectly written instruction" could appear and thereby, it was not written down in FMEA. The application of Ishikawa diagram and 5Why allowed to ascertain that the production instructions of new products are prepared on the basis of the previous long-standing experience in the lead foundry and the production of similar products from the same type of lead. The result of this diagnosis was the possibility of indicating three source causes and corrective actions (Table 4).

The implementation of the proposed corrective actions was perceived positively and the client accepted all new products with the proposed changes of process parameters to the manufacturing process. The implemented changes in product and process parameters after tests are presented in Table 5.

Table 2 Fragmen	t of application o	f Process FMEA	for TC-G-100NR	
		the second s	the first sector of the sector	the second state of the se

ALCOMOT				AILUREMODE AND EFFECTS ANALYSIS				Number of FMEA: 1										
Number of part (level of changes):			(PROCESS FMEA) Responsible for process:				Page:											
TC-G100-NR (001888)				Plant manager				Team: P. Piasek, M. Kita, G. Wiśniewska, T. Szukała, H. Gołaś,										
Nu	imber of p TERM	art: INAL CC TC-G-10() LLECTC) NR	R		Figure: 02.8601/02.C.6757G				M. Smal, M. Gras Date of Revision: issue: 09.05.2014		: 14						
Nu	mber and 160	name of j Serial pr	process: oduction			Process scheme: 17.03.2015 Revision						R	esult	s				
No.	Operation	Potential failure mode	Potential effect(s) of failure	Severity	Classification	Potential failure cause(s) of failure	Occurrence	Current process control Preven- tion	Current process control Detec- tion	Detection	RPN	Recom- mended actions RPN>100	Respon- sibility and term	Undertaken actions	Severity	Occurrence	Detection	RPN
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
160	. Serial pr	oduction	Dural	0		T 1	-	I tota	171	-	110	Estable 1	Our!'		0	1	7	51
160.5/2	Putting inserts into mold	Putting unheated insert	Product does not comply with require- ments	8		Too low tempera- ture of insert	2	Using FIFO on heating trays	Visual control of adhesion	7	112	Establish- ment of standard for utilization of insert in molding	Quality control, 16.05.15	Done	8	1	7	56
												Training of molding operators						
160.6/1	Molding of pole in a mold	Cracks	Product does not comply with require- ments	9	I	Mold defect	2	Appro- piate material and construct ion of mold	Visual check	7	126	Establish- ment of guides for testing molds	Quality control, Foreman 15.04.15	Done	9	1	7	63
160.6/2	Molding of pole in a mold	Cracks in casting	Product does not comply with require- ments	9	Ι	Too short time of cooling	2	Training of molding operators	Visual check	7	126	Establish- ment of standard for cooling cast in mold Training of molding operators	Forman, Quality control, Master 30.04.15	Done	9	1	7	63
160.6/3	Molding of pole in a mold	Cracks in casting	Product does not comply with require- ments	9	Ι	Too much of cork emulsion in mold	2	Training of molding operators	Visual check	7	126	Establish- ment of standard of using cork emulsion	Quality control, 30.04.15	Done	9	1	7	63

CONCLUSIONS

The effective Process FMEA requires not only understanding fundamentals and procedures but also applying the learned lessons. Therefore, it should be periodically updated on the basis of the observed potential hazards before their effects are noticed. In the analysed company the application of the tests, development of labour standard for founder and quality control allowed to eliminate other similar serious problems in the future.

Table 3 Process and product quality control for TC-G-100NR

Controlled parameter		Requirement	Quality control			
Process	Temperature of 4,5 % lead	500 °C ± 25 °C	Records of temperatures once per 8 hours On-line monitoring of temperature on display by molding operator			
	Temperature of mold	90 ºC – 180 ºC	On-line monitoring of temperature on display by molding operator			
	Temperature of tray	60 °C	On-line monitoring of temperature on display by molding operator			
	Test of a torque wrench	50 Nm	Records of tests 3 times per shift from each mold form			
uct	Adhesion of insert to pilar	Traces of lead on insert	Visual check after cutting the casting and forging			
lpo,	Diameter 1	Ø 20,2 – 0,2	Calipering			
Final pr	Diameter 2	Ø 24,0 – 0,1	Calipering			
	Total height	97 ± 0,2	Calipering			
	Height of un- dercut	55 ± 0,2	Calipering			
	Surface	Lack of defects	Visual check			

REFERENCES

- M. Butlewski, A. Misztal, M. Jasiulewicz-Kaczmarek, S. Janik, Ergonomic and work safety evaluation criteria of process excellence in the foundry industry, Metalurgija 53 (2014) 4, 701-704.
- [2] M. Gershon, Choosing which process improvement methodology to implement, Journal of Applied Business & Economics 10 (2010) 5, 61-69.
- [3] D. Nave, How to compare Six Sigma, Lean and the theory of constraints: a framework for choosing what's best for your organization, Quality Progress 35 (2002) 3, 73-78.
- [4] D. Vykydal, J. Plura, P. Halfarová, P. Klaput, Advanced approaches to failure mode and effect analysis (FMEA) applications, Metalurgija 54 (2015) 4, 675-678.

Table 4 Root causes of problem

No.	Root Causes	Corrective actions
1.	Lack of labour standard for founder	Establish standard
2.	Lack of agreement with cli- ent on applied temperature	Determine temperature after testing
3.	Lack of agreement on stan- dards for quality control	Develop and agree on assess- ment of product standard

Table 5 Comparison of product and process parameters before and after tests

Controlled parameter	Before test	After test
Temperature of 4,5 % lead	500 °C ± 25 °C	440 °C ± 25 °C
Temperature of mold	90 °C – 180 °C	120 °C – 160 °C
Temperature of tray	60 ºC	80 ºC – 100 ºC, one layer
		of inserts on tray
Test of a torque	50 Nm, record 3	30 Nm, test 100 % of
wrench	times per shift	casts
Adhesion of insert to	Record 3 times	Test of adhesion of
pilar	per shift	insert to pilar every 50
		pilar – until cancelation

- [5] B. Schröer, A. Kain, U. Lindemann, Supporting creativity in conceptual design: method 635-extended, DS 60: Proceedings of DESIGN 2010, the 11th International Design Conference, Dubrovnik, Croatia (2010), 591-600.
- [6] A. Gwiazda, Quality tools in a process of technical project management, Journal of Achievements in Materials and Manufacturing Engineering 18.1-2 (2006) 439-442.
- [7] J.M. Myszewski, On improvement story by 5 whys, The TQM Journal 25 (2013) 4, 371-383.
- Note: The responsible translator for English language is Paulina Butlewski, Poznan, Poland