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The article presents opportunities offered by the data mining analysis as applied to studies of the effect of process 
parameters on the mechanical properties of ADI. The applied methods of regression trees and cluster analysis allow 
for the detection of relationships between parameters and also allow determination of strength and form of the 
impact of different factors. The results of this study allow the creation of knowledge bases for systems supporting 
the decision-making process in technology.
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INTRODUCTION

Austempered Ductile Iron, known as ADI, is a very 
interesting cast material due to (1) high mechanical prop-
erties which, compared to other types of cast iron, make 
ADI an excellent alternative for certain steel grades and 
even aluminium alloys, and (2) relatively low cost of pro-
duction compared to steel and aluminium. ADI has a high 
fatigue strength, is resistant to wear and abrasion, and 
offers good toughness [1]. ADI has well proven function-
al properties, which make it a very attractive material for 
the manufacture of components used in various sectors of 
industry such as automotive, rail transportation and agri-
culture [2]. The use of ADI allows reducing the cost of 
production process, among others, due to its high fluidity 
enabling the near-net-shape manufacture of intricate 
parts and good machinability before the heat treatment 
increasing the life of tools [3, 4].

The price to pay for such attractive features is the de-
manding high precision process of casting production 
preparation. ADI is made by spheroidization of the base 
cast iron with a specific chemical composition, followed 
by heat treatment involving the process of austenitizing 
and isothermal transformation [5, 6]. Parameters defining 
this process include chemical composition, temperature 
and time of austenitizing (TA, tA), and temperature and 
time of isothermal transformation (Ti, ti). Changes in 
these parameters affect the structure of material, and con-
sequently also its properties [7]. Alloying additions such 
as Cu and Ni can reduce the fatigue strength [8]. Impor-
tant parameters are: tensile strength, yield strength, frac-
ture toughness and elongation [9]. Analyzing the effect of 
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the temperature of ausferritizing treatment on the resist-
ance to cracking it can be noted that with increasing tem-
perature the fracture toughness initially increases up to 
approx. 316 °C and then declines [10]. At lower tempera-
tures of ausferritizing the yield strength, tensile strength 
and hardness are lower [11].

More comprehensive discussion of the ADI produc-
tion process the Reader can find in earlier publications 
of the Authors [12, 13], however in this paper we in-
clude new additional important information.

Based on previous studies, data was collected on the 
ADI manufacturing process carried out under various 
conditions. The data covered 196 records discussing var-
ious heat treatment scenarios and chemical compositions.

Table 1  Ranges of values of individual process variables for 

collected process variants

average minimum maximum s. deviation
C 3,49 3,21 3,85 0,17
Si 2,60 2,13 3,25 0,24
Mn 0,27 0,12 0,61 0,09
Mg 0,05 0,02 0,15 0,03
Cu 0,29 - 1,44 0,38
Ni 1,09 - 2,26 0,67
Mo 0,15 - 0,47 0,15
S 0,01 - 0,02 0,00
P 0,04 - 0,08 0,02
Cr 0,02 - 0,05 0,02
TA/ °C 902,3 830,0 950,0 27,4
tA/ s 6 502,0 3 600,0 7 200,0 1 317,9
Ti/ °C 330,3 230,0 400,0 41,8
ti/ s 8 399,2 900,0 28 800,0 5 860,8
tensile 
strength/ MPa

1 187,7 719,0 1 602,0 194,8

elongation/ % 5,9 0,0 20,0 3,7
hardness/ HRC 36,1 21,5 51,0 6,7
yield strength/ 
MPa

914,0 455,0 1 418,0 206,9
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REGRESSION TREES

The CART (Classification And Regression Trees) al-
gorithm of regression trees allows predicting the continu-
ous dependent variable based on variations of the inde-
pendent variables. The essence of the algorithm is the 
division of the range of dependent variable into classes 
characterized by a mean and a variance. These classes 
group cases with similar characteristics based on the sim-
ilarity of attribute values, which are the explanatory vari-
ables. This algorithm is known from the literature. It was 
developed by Brainman [14] and gained fame owing to 
the use by Quinlan [15]. It is currently widely applied as 
part of the STATISTICA software package [16]. The ad-
vantages of this algorithm mainly include easy interpre-
tation of results and efficacy higher than the efficacy of 
other techniques for induction of decision trees [17]. 
Trees induction algorithm iteratively divides the learning 
data set into partitions, performing this operation until 
each partition shows a strong similarity between the ob-
jects. The division is based on a least squares deviation 
criterion for regression trees.

This allows for the construction of decision rules based 
on explanatory (independent) variables. Decision trees are 
a graphical representation of the rules in user-friendly form 
[18]. CART algorithm enables not only the creation of 
rules, but also determines the validity of individual varia-
bles in a model. The variable is defined as important in the 
process of regression, or requesting information on class-
es, depending on its readiness to participate in the succes-
sive divisions of the dependent variable, which is meas-
ured during the construction of the tree.

In industrial applications and measurements, less 
expensive methods of classification and regression are 
applied, to mention as an example the k-nearest neigh-
bours method, neural networks [19] or methods based 
on patterns and measures of the distance [20]. However, 
none of these methods allows for the induction of rules, 
and thus for the acquisition of new knowledge about the 
phenomena.

The resulting knowledge can be formalized by 
means of logic programming languages - binary or mul-
tiple-valued logics such as fuzzy logic or logic of plau-
sible reasoning are used here. Thus stored knowledge 
allows for building of intelligent systems to support the 
decision-making process in the field of technology [21].

The use of regression trees in this study allowed the 
generation of 16 rules for the dependent variable: tensile 
strength, 18 rules for elongation, 11 rules for hardness 
and 9 rules for the dependent variable: yield strength.

Each dependent variable – which stands for a differ-
ent mechanical property - depends to a different extent 
on the process parameters. Strength is the variable most 
dependent on the austenitizing temperature, but also on 
the content of C and Mg. Hardness is mainly related to 
the austenitizing temperature, but can be controlled 
equally well also by the content of Ni, S and Mo. Simi-
larly, the yield strength depends on the temperature of 

austenitizing and on the content of Ni. A sample frag-
ment of the decision tree for dependent variable: hard-
ness is shown in Figure 1.

From the fragments of this tree it follows that under 
the maintained constant conditions (the cut off part of 
the root 284 °C < = Ti < = 327,5 °C; TA > 840 °C), in 52 
cases, the Ni content>0.77% results in a decrease of the 
average hardness to 38.8 HRc. In this group, the de-
crease of hardness is also caused by the increasing tem-
perature of isothermal transformation (Ti). These rela-
tionships are shown in Figure 2.

CLUSTER ANALYSIS 

The weakness of regression trees is the possibility to 
establish only one dependent variable. Due to this, it is 
necessary to study separately the impact of individual 
factors on the variable properties. An integrated analysis 
of the impact of process parameters is possible by cluster 
analysis based on EM (Expectation Maximization) meth-
od [22]. This method allows grouping of objects into 
clusters based on the values of characteristic features de-
scribing these objects (variables) using two-criteria opti-
mization: minimizing the distance within the clusters and 
maximizing the inter-cluster distances (Figure 3).

Cluster analysis leads to the conclusion that e.g. the 
effect of nickel reduces hardness but raises elongation; 
shorter time of austenitizing raises hardness; high con-

Figure 1  Fragment of regression tree for dependent variable: 
hardness

Figure 2  Effect of Ni content and isothermal transformation 
temperature on hardness
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tent of Cu results in low elongation, but high yield 
strength, etc.

CONCLUSIONS

The aim of this study was to determine the effect of 
parameters of ADI manufacturing process on the me-
chanical properties of products obtained. The study 
used data mining, in particular CART regression trees 
and cluster analysis by EM method. Owing to these 
methods it was possible to determine which of the fac-
tors present in the process had the strongest impact on 
the final properties of castings and to create rules for 
process control to obtain the expected end effects. Algo-
rithmically acquired knowledge influences the im-
provement of ADI production process control.
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Figure 3  Chart of normalized averages in groups by 
properties (fragment)


