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Abstract

Sensor array with pattern recognition method is often used
for gas detection and classification. Processing time and
accuracy have become matters of widespread concern in
using data analysis with semiconductor gas sensor array
for volatile organic compound gas mixture classification.
In this paper, a sensor array consisting of four nanostruc‐
tured semiconductor gas sensors was used to generate the
response signal. Three main categories of gas mixtures,
including single-component gas, binary-component gas
mixtures, and four-component gas mixtures, are tested. To
shorten the training time, extreme learning machine (ELM)
is introduced to classify the category of gas mixtures and
the concentration level (low, middle, and high) of formal‐
dehyde in the gas mixtures. Our results demonstrate that,
compared to traditional neural networks and support
vector machines (SVM), ELM networks can achieve 204 and
817 times faster training speed. As for classification
accuracy, ELM networks can achieve comparable results
with SVM.

Keywords Gas Classification, Nanostructured Semicon‐
ductor Gas Sensors, Volatile Organic Compounds, Extreme
Learning Machine

1. Introduction

Some volatile organic compounds (VOCs), including
formaldehyde (HCHO), acetone, toluene, ethanol, 2-
propanol (isopropyl alcohol), and limonene, are emitted as
gases from certain solids or liquids. Some VOCs have
adversely impact people’s health [1, 2]. Among various
harmful VOC gases, HCHO is recognized as one of the
carcinogens and an important air pollutant [3]. Traditional
techniques to identify HCHO are based on gas chromatog‐
raphy, mass spectroscopy, FTIR analysis, electrochemistry
sensors, and semiconductor sensors. Semiconductor gas
sensors possess some advantages, such as cheap to make
and easy to use, and can convert the gas concentration
directly to electrical signals. However, one of the disad‐
vantages of semiconductor sensors is poor selectivity.

The electronic nose is a relatively convenient way to solve
the problem of poor selectivity and recognize gas mixtures
[4–6] and has a wide range of applications, such as detect‐
ing explosive gas, controlling production processes, and
monitoring environmental pollutions [7, 8]. The electronic
nose is mainly composed of two parts. One is a semicon‐
ductor gas sensor array for getting signals. Another one
deals with pattern recognition methods for converting
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signals into conclusion, including gas classification and/or
concentration estimation. In many cases, the relationships
between the sensor signals and conclusion are nonlinear
correlative. Therefore, pattern recognition plays a crucial
role in detecting the characteristics of the sensor signals.
Many existing pattern recognition methods are used for gas
detection and classification [9–11]. Artificial neural net‐
works (ANN) and support vector machines (SVM) are most
commonly used [12–14] in pattern recognition methods.

Extreme learning machine (ELM) is a single-hidden-layer
feedforward neural network with a fast novel learning
algorithm. In ELM learning algorithm, the input weights of
linking the input layer to the hidden layer and hidden
biases are randomly chosen. ELM parameters do not need
to be manually tuned and ELM only needs to predefine the
network architecture [15]. Target gas and interfering gases
always exist at the same time in gas detection and classifi‐
cation application. Accuracy has become a matter of
widespread concern in this application. In this report, a
sensor array consisting of four different nanostructured gas
sensors with pattern recognition methods were used for gas
detection and classification. Three methods were used to
classify the category of gas mixtures and the concentration
level (low, middle, and high) of HCHO in the gas mixtures.
Our experimental results showed that, compared to
traditional neural networks (BP) and the SVM method,
ELM has an extremely fast training speed in classifying
VOC gas mixtures. In addition, a sensor array with ELM
can successfully classify the category of gas mixtures and
the concentration level of HCHO under different interfer‐
ing gas conditions.

2. Experiments

2.1 Sensor array and gas mixture preparation

The sensor array consists of four different semiconductor
gas sensors. Table 1 gives the details of the sensors in the
sensor array. Four sensors are located on the vertices of a
square test board, and the distance between two sensors is
0.8 cm. The principle in the choice of sensors is that each
sensor has responses to four kinds of gas, but the response
sensitivity is different. In this report, four sensors are all
sensitive to HCHO, toluene, ethanol, and acetone. Sensors
#1 and #4 are commercial SnO2 gas sensors with stable
performance. The other two are fabricated in our laborato‐
ry. Sensor #2 is made of a mixture of In2O3 and TiO2

nanofibers, which has a relatively high response value.
In2O3 nanofibers were prepared using an electrospinning
system [16]. In(NO3)3 4.5H2O was added into ethanol under
vigorous stirring. Then, PVP and DMF were added into the
In(NO3)3 solution. The mixture of In(NO3)3 solution was
stirred for 8 h at room temperature. Subsequently, the
mixture of In(NO3)3 solution was loaded into a glass syringe
and electrospun by applying 20 kV at an electrode distance
of 10 cm. The polymer of In2O3 nanofibers was ejected from
jets. The as-synthesized nanofibers were heated at 600°C

for 2 h in air. PVP, DMF, and water in the polymer compo‐
site were volatilized during the heating process. Finally,
In2O3 nanofibers were obtained. TiO2 nanofibers were
prepared in the same way, except that Ti(OC4H9)4 was
added in the spinning solution instead of In(NO3)3 4.5H2O.

Sensor #3 is made of La0.7Sr0.3FeO3 nanowires. The nano‐
wires were synthesized by a hydrothermal method assisted
CTAB [17]. In a typical synthesis process, the nitrate
aqueous solution [La(NO3)3 6H2O, Sr(NO3)2, and Fe(NO3)3

9H2O] was added into the CTAB solution under constant
stirring. Then, NH3⋅H2O was added dropwise into the
mixed solution under vigorous stirring. The mixture was
then transferred to Teflon-lined stainless autoclave, sealed
tightly, and maintained at 180°C for 9 h. When the hydro‐
thermal reaction was over, the brown precipitates were
collected and washed. La0.7Sr0.3FeO3 nanowires were
obtained after the washed precipitates were dried and
annealed at 700°C for 6 h in air.

Sensors with nanometer sensing materials have higher
response and batter selectivity. However, the selectivity of
semiconductor gas sensors is not satisfactory in the
application. Sensors still have a similar response value to
different categories and concentration of gas mixtures.
Each of the response of the gas sensor has the characteristics
of itself. A sensor array consisting of multiple sensors can
provide more useful information in the detection and
classification of gas mixtures. Therefore, a pattern recogni‐
tion method with sensor array can classify the target gas.
In our sensor array, sensor #3 has very low response value,
but its response value changed to each change of gas kind
and concentration.

Sensors Model Manufacturers Sensing
materials

1 MQ-3
Beijing Huatakunyuan
Technology Co., Ltd.

SnO2

2 Our laboratory In2O3/TiO2

3 Our laboratory La0.7Sr0.3FeO3

4 TGS 2602
Tianjing Figaro

Electronic Co., Ltd.
SnO2

Table 1. Details of the sensors in the sensor array

The purpose of this work is to classify HCHO from VOC
gas mixtures. In the experiments, three major categories gas
mixtures were prepared: single-component gas, binary-
component gas mixtures, and four-component gas mix‐
tures. Single-component gas is HCHO, toluene, ethanol, or
acetone. Binary-component gas mixtures are composed of
HCHO and one of the three gases, including toluene,
ethanol, and acetone. HCHO, toluene, ethanol, and acetone
are included in four-component gas mixtures. Among the
three major categories of gas mixtures, the concentration
levels of HCHO are low (10 ppm), middle (50 ppm), and
high (100 ppm).

2 Nanomater Nanotechnol, 2015, 5:38 | doi: 10.5772/62115



2.2 Sensor measurement

Gas sensing properties were measured by a static state
distribution. The sensor was put into a 50 L test chamber
for the measurement of the sensing properties. The resist‐
ance of the sensor was measured using a conventional
circuit. The sample gas was injected into the test chamber.
When the responses reached a constant value, the front
door of the chamber was opened to recover in air. The
resistance of the sensor was measured using a conventional
circuit. An external resistor was used to connect with the
sensor in series at a circuit voltage of 10 V. The resistance
of the gas sensor in target gas was calculated as follows:
RS=RL×(10-VL)/VL, where RS, RL, and VL are the resistance of
sensor, the resistance of reference resistor, and the meas‐
ured voltage, respectively. A computer monitored and
recoded the change of voltage signal VL by an A/D data
acquisition card. The responses of the gas sensor were
defined as S=Rg/Ra, where Rg and Ra are the resistance of the
gas sensor in target gas and in air, respectively.

2.3 Extreme learning machine (ELM)

ELM is a single-hidden-layer feedforward neural network.
It has three layers: input layer, hidden layer, and output
layer. g( ) is the activation function, wi = wi1, wi2, ..., win

T  is
the weight vector connecting the ith hidden node and the
input nodes, βi = βi1, βi2, ..., βim

T  is the weight vector
connecting the ith hidden node and the output nodes, and
bi is the threshold of the ith hidden node. Given N arbitrary
samples (xi, ti), where xi = xi1, xi2, ..., xin

T ∈R n,
ti = ti1, ti2, ..., tim

T ∈R m, the mathematically modeled of
ELM [18] is
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Equation (1) can be written compactly as
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In the training process, there are given samples (x, t) of a
problem, and w and b are randomly generated. The
parameters in Equation (3) are all known, and the value of
β is obtained by solving Equation (5).

-1 ,H Tb = (5)

In the testing process, the values of H and β, which are
obtained in the training process, should be used to calculate
the approximation value of testing samples.

3. Results and discussion

3.1 Nanomaterials and sensor response

Figure 1 shows the X-ray diffraction (XRD) patterns of the
sensing materials used for the fabrication of sensors #2 and
#3. The electrospun TiO2 powders indicate two phases
(rutile and anatase) coexisting in the sample as shown in
Figure 1a. The diffraction peaks show that the content of
anatase TiO2 is higher than that of rutile TiO2 and the grain
growth of anatase phase is better than that of rutile TiO2.
In2O3 shows the typical single cubic phase (Figure 1b). All
the main diffraction peaks can be indexed to the cubic
structure of In2O3 (JCPDS 65-3170). Figure 1c displays the
XRD pattern of La0.7Sr0.3FeO3 nanowires. The major phase
coincides with the corresponding phase of the orthorhom‐
bic perovskite structure of La0.7Sr0.3FeO3 with pbnm (62)
space group provided by JCPDS 89-1269.

Figure 2 shows the SEM and TEM microstructures of the
three oxides: (a–c) SEM images of TiO2, In2O3, and
La0.7Sr0.3FeO3 and (d–f) TEM images of TiO2, In2O3, and
La0.7Sr0.3FeO3. TiO2 and In2O3 oxides show a typical porous
nanofiber, and La0.7Sr0.3FeO3 oxides show porous nano‐
wires. These one-dimensional porous nanostructures are
highly desirable for the metal oxide-based resistive-type
gas sensors, which can enhance the gas diffusion in the
sensing materials leading to a possible higher sensitivity
[19,20].

Figure 3 shows the responses of the sensor array to gas
mixtures: (a–d) responses of sensors #1 to #4, respectively.
The X-coordinate denotes the component of gas mixtures.
“1” stands for single gases, and it is one of HCHO toluene,
ethanol, and acetone, respectively. “2” stands for binary gas
mixtures, and it is composed of HCHO and one of the three
gases, including toluene, ethanol, and acetone, respective‐
ly. “4” stands for gas mixtures, and it is composed of
HCHO, toluene, ethanol, and acetone. The Y-coordinate
denotes the concentration of HCHO. When the concentra‐
tion of HCHO is zero, the responses of the sensor are for
other gases in gas mixtures.

It is obvious that the responses of the sensor are nonlinear
correlative to the concentration of HCHO with different
interfering gases. It is not easy to classify the category of
gas mixtures and the concentration level of HCHO.

3.2 Discussion of training time

Three kinds of pattern recognition methods were used to
classify the components of gas mixtures: back-propagation
neural network, SVM, and ELM.
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The three methods (BP, SVM, and ELM) were trained with
86 training samples that were picked from experimental
data. The three methods were all carried out in MATLAB
7.0 environment running in a Core2 Duo CPU 2.20 GHz.
Table 2 shows the mean training time of the three methods.
The ELM learning algorithm spends 0.034 s CPU time.
However, it takes 6.948 s CPU time for the SVM algorithm
to finish the training. The ELM runs 204 times faster than

the SVM. Compared with the traditional BP networks, the
training speed of the ELM is 817 times higher.

Neural network BP SVM ELM

Training time (s) 27.810 6.948 0.034

Table 2. Comparison of training time
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The BP networks with Levenberg-Marquardt algorithm
have the same structure as that of the ELM networks. The
two neural networks consisted of an input layer with four
nodes, which received the data from the sensor array, a
hidden layer with 15 nodes with sigmoid function, and an
output layer. The nodes of the output layer are the category
of gas mixtures in the gas mixtures and the situation of the
HCHO concentration level in the gas mixtures. The training
time of ELM networks is hundred times faster than those
of the BP networks in the experiments. The main reason for
this is that the ELM training mechanism is different from
those of the BP networks. In the BP networks, the weight
vector of w, b, and β are iterative tuned until the accuracy
meets the requirements. The weights of the networks are
updated each time in the iteration procedure of the
learning. Therefore, the long training time is used in the
process of iteration. In this experiment, the simulations for
SVM are carried out using compiled C-coded SVM pack‐
ages: LIBSVM [21]. The parameter of the kernel function
and cost function was trained with cross-validation. It takes
a little time to train the function parameter with the training
sample. In the ELM network, all the weight vectors do not
need tuning or they need just tuning one time. Therefore,
the ELM has little training time.

3.3 Experimental result

In an attempt to compare the accuracy rate with BP, SVM,
and ELM, binary encoding and real number encoding were
applied in the categories of gas mixture samples. In binary
encoding, the output of the three methods is five bits binary
code. Figure 4 shows the signification of the bit in binary
code. In Figure 4, the first and second bits refer to the
situation of HCHO. Codes 00, 01, 10, and 11 represent the
concentration level of HCHO in gas mixtures. 00, 01, 10,
and 11 indicate nonexistent, low concentration, middle
concentration, and high concentration, respectively. The
remaining three bits refer to the situation of ethanol,
acetone, and toluene. If the value of the bit is 1, it means
that the component exists in gas mixtures. On the contrary,
the component does not exist.

Training time (s) 27.810 6.948 0.034 
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In real number encoding, the output are two real numbers.
The first number refers to the category of gas mixtures, and
the second refers to the concentration level of HCHO in the
gas mixtures.

The experiments were performed using the same training
samples and test samples. There were 22 samples tested.
Table 3 shows the accuracy rate of the three methods. In
binary encoding, the category of gas mixtures is obtained
by statistical data of the five bits binary code.

Method Binary encoding Real number encoding

Gas component HCHO
concentration

Gas component HCHO
concentration

BP 81% 73% 100% 91%

SVM 100% 100% 68% 68%

ELM 86% 73% 100% 91%

Table 3. Comparison of the accuracy rate

In this experiment, discrete binary code was suitable for
SVM and continuous real number was suitable for BP and
ELM networks. In the case of SVM, suppose some given
data points each belong to one of two classes, and the goal
is to decide which class a new data point will be in. In linear
classifier, the data of the same classes have a margin. There
are many hyperplanes that might classify the data. One
reasonable choice as the best hyperplane is the one that
represents the largest margin between the two classes. A
new data point is classified by judging the sign of the
hyperplane with input values. Discrete binary code is
suitable for this method. In the case of BP and ELM
networks, a discrete binary code will have a harmful impact
on the weight vector in the training process. Thus, contin‐
uous real number is suitable for the training and test.

4. Conclusion

In this work, a sensor array consisting of four different
nanostructured semiconductor gas sensors with pattern
recognition methods was used for gas detection and
classification. An ELM network was introduced to classify
the components of VOC gas mixtures. Compared with the
traditional neural networks (BP) and SVM, ELM networks
have no iteration procedure and therefore have very fast
training speed. The experimental results show that the
ELM networks can achieve 204 and 817 times faster training
speed than those of the SVM and BP neural networks.

The experiments were performed for two goals. One is the
category of gas mixtures in the gas mixtures. The other is
the concentration level (low, middle, and high) of HCHO
in the gas mixtures. The results show that the accuracy rate
of the three methods all can achieve 100% in the component
classification. SVM is better than those of the ELM and BP
networks in the classification of concentration level.

The experiments show that the accuracy rate was affected
by the encoding ways. Binary encoding is more suitable for

SVM. ELM and BP networks are performing better in real
number encoding.
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