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ABSTRACT - Accounting for the effect of rebar depth variation is one of the most important and 
challenging tasks to accurately assess the condition of reinforced concrete elements using ground 
penetrating radar (GPR) technique. In current practices, this task is performed on the individual  
basis, as for each bridge deck a unique depth correction model is derived from the GPR data  
collected on it. It is found that such a practice has led to a limited capability of GPR in assess-
ing the condition of highly-deteriorated concrete. Therefore, a generic model to account for the  
depth-amplitude effect is proposed in this research. Using artificial neural network (ANN) modeling, a 
model for depth correction was calibrated from extensive data collected for a group of bare concrete 
bridge decks. The obtained ANN for depth correction was then used to assess the condition of a 
bridge deck, and the attenuation map was compared with those using a traditional depth correction 
technique. Whereas the conventional approach only detected the relative difference in condition  
between local deck areas, the outputs using the proposed methodology clearly indicated its  
capability to assess deck deterioration in absolute terms. 

Keywords: Nondestructive Testing (NDT), Ground Penetrating Radar (GPR), Concrete, Inspection, 
Condition Assessment, Artificial Neural Network (ANN).

1.  INTRODUCTION
The effect of asphalt and concrete cover  
thickness on the ground penetrating radar 
(GPR) rebar reflection amplitude, and the need 
for amplitude depth correction, have been  
investigated by many researchers/ practitioners 
in the evaluation of condition of concrete bridge 
decks. These variations are encountered as a 
result of deck design, inconsistent construction, 
deck repair or overlaying, and due to many other 
reasons. The main purpose of depth correction is 
to remove the signal loss due to depth-amplitude 
effects and to normalize rebar reflection ampli-
tudes with respect to a common cover thickness 
[1, 2]. Once all rebar reflection amplitudes have 
been depth corrected and contour mapped,

certain amplitude threshold values will be 
used to delineate areas of concrete at various  
severity levels of deterioration. The thresh-
olds may vary from one bridge to another and  
usually are defined from comparisons with  
inspection results using other NDT methods, or 
using a statistically-based data interpretation [1, 
2, 3, and 4]. 

In current practices, the depth correction  
analysis is usually performed for each indi-
vidual bridge deck based on the GPR data  
collected for that same deck. Although the reported  
results have shown that the depth correction 
analysis significantly improves the accuracy of 
condition assessment of bridge decks [1, 2], one 
must note that the assessment based on such
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depth-corrected amplitudes is still a  
relative evaluation technique. Specifically, a  
rebar in a deck having the strongest reflection 
would always be considered being associated 
with sound/good concrete, whereas the ones 
with amplitude below the threshold would be  
considered as being in a deteriorated region. As a  
consequence, it was reported that a GPR  
survey alone usually provides results with 
grossly underestimated concrete repair  
quantities [5]. The reason, as explained by Dinh 
et al. [6], is that the area with the strongest  
reflection may have already been deteriorated 
and attenuated itself.
 

2.  RESEARCH OBJECTIVES
The main goal of this research was to develop 
an analytical approach that can correct for the 
effects of signal loss due to the rebar depth vari-
ation, and at the same time can eliminate the 
relative nature of the current depth-correction 
approaches. In contrast to the traditional meth-
ods, a generic depth correction model is being 
implemented for an entire network of bridg-
es of the same deck type. As the signal loss 
may be different between various materials, 
GPR antennas, as well as utilized frequency 
ranges, it was decided that only bare (without  
overlays) concrete bridge decks and a 1.5 GHz  
ground-coupled antenna would be investigated 
in this research. Since the absolute amplitude  
measured (voltages or data units) depends on 
the transmit power of each antenna, and the 
gain set during data collection, the amplitudes 
need to be normalized using a common basis/
scale. Given these explanations, three research  
objectives were identified:

(i) To explore methods for rebar reflection  
        amplitude normalization;
(ii) To better understand the impact of  
    signal loss solely due to rebar depth  
        variation; and
(iii) To develop a generic depth correction  
        procedure.

3.  BACKGROUND
The American Infrastructure Report Card in 
2013 estimates that an annual investment of 
$20.5 billion would be needed to eliminate 
the United States’ bridge deficient backlog by  
2028 [7]. As many bridges are considered  
structurally deficient because of the deteriora-
tion of decks [8],

a major portion of this investment would 
be allocated to maintenance, rehabilita-
tion and replacement of bridge decks alone.  

Bridge decks deteriorate as a result of various 
factors. However, rebar corrosion has been 
identified as one of the most common problems 
[9] and, thus,  numerous research efforts have 
been directed toward development of inspection 
techniques that can detect signs of this deterio-
ration mechanism, and to it related damage. In 
that context, the GPR stands out as one of the 
most commonly used NDT technologies.

Exploiting the principles and phenomena of 
electromagnetic wave propagation, the GPR 
has shown to be an effective NDT technol-
ogy for bridge deck condition assessment. To  
acquire the condition information for a particu-
lar bridge deck location, a GPR antenna sends 
a short duration microwave into the deck and 
receives energy partially reflected from vari-
ous interfaces. These reflections are produced 
as a result of difference in dielectric properties. 
The strength of reflections is proportional to 
the dielectric contrast between two adjacent  
media. However, in a concrete deck with a highly  
conductive environment caused by free  
chloride ions (Cl-), pore moisture, along with 
products (Fe2+) from rebar corrosion, the  
reflections tend to be attenuated and even  
diminish to zero. These phenomena have 
formed the basis for condition assessment of 
reinforced concrete bridge decks by GPR, and 
reinforced concrete elements in general. While 
a comprehensive review of literature regarding 
the application of GPR in the assessment of  
reinforced concrete elements is beyond the 
scope of this text, a detailed description of 
the most common practices in the GPR data  
analysis for bridge decks is provided in the  
subsequent paragraphs.

4.  CURRENT PRACTICES FOR 
GPR DATA ANALYSIS
Current GPR data analysis practices for  
inspection of concrete bridge decks closely  
follow the guidance provided by ASTM [10]. 
With respect to ground-coupled antennas, 
it recommends the following procedure for 
GPR data analysis: (1) migration to focus the  
rebar reflection; (2) recording of rebar  
reflection amplitude from the migrated data; (3)  
conversion of reflection amplitude to 
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decibels (dB); (4) definition of the deterioration 
threshold and contour mapping; and (5) calcula-
tion of the percentage of deteriorated deck area. 

As a detailed guidance, some major assump-
tions have, however, rendered the standard 
inappropriate for the condition assessment of 
many bridge decks. The two major assumptions 
behind the standard are: the top concrete cover 
(rebar depth) is uniform throughout the deck, 
and there is always a portion of the deck area 
that is in a sound/good condition. Whereas the 
former assumption regarding the rebar depth 
uniformity has been criticized [1, 2, 11], the  
latter has barely been discussed. 

To account for the signal loss due to rebar 
depth variation, Barnes et al. [1] proposed a  
statistical method that is based on the 90th 
percentile linear regression. The method was 
conceived when they observed the scatter plots 
(point cloud) of normalized rebar reflection  
amplitude versus two-way travel time of GPR 
signals for some bridge decks being studied. As 
the upper points in the semi-log plots appeared 
to form a straight line, they assumed that the 
relationship was linear and further assumption 
was made regarding the 90th percentile value. 
The reason for choosing this value has been to 
obtain an appropriate statistical reference when 
deterioration may have affected the reflected 
amplitude and created outliers.

In a comprehensive study, Romero et al. [2] 
summarized and compared three different  
methods for performing depth correction. In 
terms of implementation, one method is done 
manually by GPR experts and the other two 
are automated through computer software.  
Although each method was described as involv-
ing a different mathematical manipulation, they 
were all based on the idea previously explained. 
As a result, it was reported that the analysis  
outputs using the three approaches were similar. 
With respect to the deterioration threshold value, 
the research stated that it may vary regionally 
and that the values tend not to be disclosed.

5.  RESEARCH METHODOLOGY
The main hypothesis in this research is that 
the effects of concrete cover thickness on the  
rebar reflection amplitude can be better studied 
on the network level, rather than for each bridge 
deck individually.

A generic relationship (if any) between the 
two factors can then be applied for the depth 
correction for all bridges in the network. If the  
current depth correction methods are used,  
highly-deteriorated bridge decks will appear to be 
in a better condition than they actually are, since 
all depth-corrected amplitudes will converge to a 
certain, very low value. Whereas the knowledge 
about true condition of the deck in such cases 
can be obtained by comparing the GPR results 
to those from other NDE techniques, it is not 
a favorable solution. Using a generic, network 
wide depth correction model can, therefore,  
ensure that different bridge decks on the  
network level be evaluated consistently by the 
GPR.

The research idea was enabled by the data  
collected within the scope of the Long-Term 
Bridge Performance (LTBP) Program, a  
research project funded by the Federal Highway 
Administration (FHWA). Specifically, as part 
of the project, a cluster of twenty-four bridge 
decks in the Mid-Atlantic region was surveyed 
by the team from the Center for Advanced Infra-
structure and Transportation (CAIT) at Rutgers  
University, using a range of NDT technologies. 
All the decks were selected by the research 
team in coordination with the participating 
State Departments of Transportation (DOTs) 
to be representative samples of bridges of the 
same type. As the first cluster, untreated/bare  
cast-in-place concrete decks that rest either 
on steel or prestressed concrete girders were  
investigated in this study. Whereas the data  
collected for the cluster bridges were used to 
develop the depth-amplitude model, as shown 
in Figure 1, two independent bridge decks of 
the same type were used for the validation of 
the proposed methodology. 

As can be seen in Figure 1, the depth-amplitude 
model was developed based on the GPR data 
collected from areas of sound/good concrete. 
These areas were identified for each bridge 
deck from the combined results of three NDT 
techniques, namely Half-Cell Potential (HCP), 
Electrical Resistivity (ER) and Impact Echo 
(IE). Specifically, the criteria for defining sound  
concrete from these techniques are as follows: 
(1) potential measurement greater than -200 mV 
for HCP; (2) resistivity greater than 100 kOhm•cm 
for ER; and (3) no signs of delamination for 
IE. After the sound concrete areas have been  
identified, the GPR data from these areas
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were processed to extract the rebar reflection 
amplitude and corresponding two way travel 
time. Finally, a total of 23,587 data points

(rebars) were obtained, and used to study the 
effects of rebar depth on reflection amplitude.

GPR Data
GPR Data

Cluster 
Bridges

Identify Sound 
Concrete Areas

Half-Cell 
Potential

Impact Echo

Electrical 
Resistivity

Rebar Picking

Normalized 
Amplitude (dB)

Two-way Travel 
Time (ns)

GPR Data for 
Sound Concrete

Artificial Neural 
Networks

Depth-Amplitude 
Model

Figure 1 Development of Depth-Amplitude Model

5.1  Amplitude Normalization
There are situations that require the amplitude 
to be normalized when evaluating GPR data 
for different bridge decks. For example, for the 
same frequency antenna, the decks may be 
collected using different GPR units, or different 
gains may be set during the data collection. The 
comparison, in such cases, requires these data 
be normalized to a common basis/background. 
The ideal normalization would be to have the 
reflection amplitude measured using a metal 
plate. Such a data, unfortunately, does not usu-
ally exist during the most GPR data collections 
on bridge decks. 

As a potential basis for amplitude normaliza-
tion, direct-coupling is the effect in which the 
“air wave” and the “surface wave” merge when 
a GPR antenna is moved toward the surface 
of a bridge deck. Since having the air wave  
component, in comparison to the surface wave 
detected by an air-coupled (horn) antenna, 
the amplitude of this mixed reflection does not 
vary much with the local concrete condition.  
Figure 2 is the illustration of this with two GPR

waveforms collected on the same deck. As can 
be seen, while the rebar reflection amplitude 
is very sensitive to concrete deterioration, the 
direct-coupling amplitudes are almost identical 
for the two waveforms. This observation forms 
the basis for using direct-coupling as a normali-
zation approach in this study. 

For clarification, the normalization is done by  
dividing the amplitude from rebar reflection 
by the average direct-coupling amplitude  
measured in the corresponding profile. As can be  
imagined, the process will eliminate the  
difference in the transmit power of the antenna 
or gain set during the data collection, as long 
as the gain was set as a constant (one point 
gain). For the same radar unit, if a constant gain 
of 1 dB was used, the direct-coupling reflection  
amplitude would be amplified by 1 dB, as would 
be the reflection amplitude from a rebar. After 
the normalization through direct-coupling, the 
data for all sound concrete areas are convert-
ed to decibels to be investigated further for the  
effects of rebar depth variation.  
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Figure 2 Effects of deterioration on the direct-coupling amplitude.

5.2  Artificial Neural Network (ANN)
Figure 3 shows a scatter plot illustrating the 
relationship between rebar depth and rebar  
reflection amplitude obtained in this study. In 
the literature, this relationship is assumed to 
be linear. The only rationale used has been the  
observation of the points in the upper part of

scatter plots of the GPR data [1, 2]. As the  
linear regression may not represent the true  
relationship between the two factors, artificial 
neural network (ANN), an information-processing 
technique, is employed to better investigate such 
a dependency.

Figure 3 Effects of deterioration on the direct-coupling amplitude.

ANNs found beneficial applications in numerous 
research areas. Comprised of layers of parallel 
processing elements, or neurons, they simulate 
biological nervous systems to process acquired 
data and provide meaningful results/informa-
tion. The strength of ANN models is that they 
are capable to learn from examples so as to

extract essential characteristics or information 
without assuming the relationship between vari-
ables/factors. In comparison to the regression 
analysis, ANNs are much more appropriate for 
modeling problems in which the physical nature 
is too complex or not well understood [12,13].
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Structurally, an ANN consists of an input  
layer, an output layer and one or several hidden  
layers in between. Each layer comprises one or 
more processing elements, also called neurons, 
which are connected as illustrated in Figure 4. 
As can be seen, each neuron in the hidden  
layer is connected to the neurons in neighboring 
layers by the so-called weighting factors. These 
factors are modifiable and will be adjusted  
during the training process when example  
input-output patterns are presented into the  
network. An ANN with this type of training  
algorithm is called a backpropagation (BP)  
neural network [14, 15].

Figure 4 Typical ANN Structure.

As the name implies, a BP neural network 
trains itself from examples by propagating the  
errors of the output backward to the neurons in  
previous layers of the network. This task is  
iteratively implemented in two phases. In the 
first phase, or forward pass, the input signals 
propagate from input through hidden layer(s) 
to produce output signals that are calculated 
based on the initial weights set randomly during 
the network initialization. In the second phase, 
the errors, i.e., the difference between the  
actual and the desired output (target), are  
propagated backward to adjust the weight-
ing factors. As described in Equation 1 below 
[16], the purpose of the adjustment is to reduce 
the errors corresponding to each input-output  
pattern. The process is repeated for all training 
data until the network stops improving. In other 
words, the training is completed when adjust-
ing weighting factors does not result in reduced  
errors.

(1)

Where:
 tpj is the target output for jth element of the  
output pattern p,

opj is the actual output for jth element of the  
output pattern p, 
ipi is the value of the ith element of the input  
pattern p,
 Δpwij is the change to be made to the weight 
from the ith to jth neuron following the  
presentation of pattern p, and 
η is the learning rate.

One of the issues with regression analysis and 
ANNs is problem “overfitting” [17]. It refers to 
the case when the regression or ANN model 
performs well for the training patterns, but has 
poor performance on new data sets present-
ed to the model. In the literature, there have 
been several methods available to solve this  
problem, of which one is called “early  
stopping” [18]. In this technique, the available 
data is, basically, divided into three random data 
sets: training, validation, and test sets. While 
the training set is utilized to train the neural  
network and update weighting factors, the network  
performance (generalization) is monitored 
by observing the errors associated with the  
validation set patterns. After the training, the 
test set can be used to provide independ-
ent evaluation of the obtained model or to  
compare the performance of different networks. 
Initially in the training process, the errors for both 
training and validation sets normally decrease.  
However, when the overfitting occurs, the  
errors of the validation set will increase.  
Therefore, by stopping the training process at 
this point, a properly-trained neural network can 
be achieved.

With the theoretical background described 
above, ANNs are used to investigate the effects 
of concrete cover thickness on rebar reflec-
tion amplitude. Specifically, 23,587 data points  
(rebar peaks) were divided randomly into three 
sub sets with the following percentages: 70% 
for the training set plus 15% for both valida-
tion and test sets. With respect to the network  
topology, it consists of an input layer with one 
neuron representing concrete cover thickness 
(rebar depth); one hidden layer as recom-
mended by Flood and Kartam [12] for one-input  
neural network; and an output layer of one  
neuron for predicting the amplitude of rebar  
reflection. As for the number of neurons in the 
hidden layer, since there is no specific rule for 
determining the appropriate number [12], trials 
were made to find acceptable values.
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While the experiment has shown that a range 
of values can provide approximately the same 
accuracy, a hidden layer of 3 neurons was  
employed in this study. 

Figure 5 depicts the performance of the  
obtained ANN through regression plots. Each 
data set in the plot shows the correlation  
between the target output and the one  
predicted by the network. As can be observed, 
a small difference in the correlation  
coefficients (R) between the three data sets

indicates that the neural network has been 
properly trained. In addition, since the R2 
value (coefficient of determination) for the  
entire data set is 0.91 (0.954272), one may say 
that the 91% variance of the rebar reflection  
amplitude can be attributed to the variation of the  
concrete cover thickness and therefore can 
be well predicted by the network. The small  
remaining variance can be caused by variables 
such as measuring errors, concrete properties,  
different sizes of reinforcing bar, or by  
other random factors.

Figure 5 Regression plots for (a) training set, (b) validation set, (c) test set, and (d) all data points.

Figure 6 presents the fit function from 
the obtained ANN. As can be seen, the  
function does not exactly form a straight line,  
as expected by the conventional depth  
correction methodologies. It is especially more 
nonlinear in the region with a small concrete  
cover thickness. The reason is that, for a shallow  
reinforcing mat, the rebar reflection is blended 
with a portion of the

direct-coupling signal, so that its amplitude is  
affected by the configuration of this mixture. 
In addition, Figure 6 also reveals that the  
difference in rebar reflection amplitude  
before the depth correction for sound concrete 
may be up to 18 dB. Clearly, this difference is  
significantly larger than the threshold of -6 to  
-8 dB specified in the ASTM standard.
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Figure 6 Function fit with the artificial neural network (ANN).

5.3  Depth Correction Procedure
As explained previously, it is clear that the  
relationship between concrete cover thickness 
and rebar reflection amplitude for sound con-
crete can be used for the depth correction of 
GPR data along with the “absolute” condition 
assessment of bridge decks. The proposed  
procedure for doing this is depicted in Figure 7. 
Specifically, for a concrete bridge deck that 
needs to be assessed, after time-zero cor-
rection, rebar locations (pixels) are picked on 
the profiles as in the conventional amplitude 
analysis. These locations are then used to  
extract rebar reflection amplitudes in data 
units and two-way travel time for implement-
ing the next steps. While the purpose of the  
two-way travel time is to determine the reference  
amplitude from the ANN depth-amplitude  
model, the direct-coupling normalization is 
used to normalize the amplitude to the same 
background. Finally, the differences between 
the normalized and reference amplitudes 
are the depth-corrected amplitudes obtained  
using the proposed methodology. As can be  
realized, the more negative the depth-corrected  
amplitude, the more deteriorated the concrete.

6.  CASE STUDY  
IMPLEMENTATION
The Pohatcong Bridge in Warren County, New 
Jersey, was built in 1978. It has a bare concrete 
deck resting on five single-span steel girders. 
The bridge is 36-m long and 11-m wide, and the 
deck is 25-cm thick. The bridge was scanned in 
August of 2014 using three NDE technologies, 
namely: GPR, ER, and IE. 
For the comparison, GPR condition maps were 
created using both methodologies, i.e., the  
proposed and conventional depth correction 
techniques. As depicted in Figure 8, while the 
spatial distribution of the more deteriorated  
areas in the two maps appear to be at the 
same locations, the absolute level of deck  
deterioration (color spectrum) predicted by the 
two methods is completely different. To under-
stand which method provides more reasonable  
results, the two GPR maps were compared 
to the results from the other NDT technolo-
gies. The results from those are provided in  
Figure 9. One can clearly observe from the ER  
results a very highly corrosive environment in  
the entire deck. Whereas this condition is the 
same as what was suggested by the proposed  
methodology, the conventional depth correc-
tion approach was unable to detect the global  
deterioration of the bridge deck.
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GPR Data
GPR Data

GPR Profiles

Rebar Picking

Rebar Reflection 
Amplitude (Data units)

Two-way 
Travel Time (ns)

Depth-Amplitude
 Model

Direct-coupling
Normalization

Normalized Rebar 
Reflection Amplitude (dB)

Reference Rebar 
Reflection Amplitude (dB)

Amplitude 
Subtraction

Depth-corrected 
Amplitude (dB)

Figure 7 Depth correction procedure.

Figure 8 GPR attenuation maps for the Pohatcong Bridge deck with (a) Proposed method and (b) Conven-
tional depth-amplitude analysis.

(a)

(b)
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Figure 9 Condition maps for the Pohatcong Bridge deck with (a) ER, and (b) IE.

(a)

(b)

7.  DISCUSSION
The implementation of the proposed method 
for the case study has proven that the GPR is 
an effective, powerful technology for condition  
assessment of bridge decks. As has been 
seen, through using a generic, network wide  
depth-amplitude model, the GPR has a capability 
to assess the condition of highly-deteriorated 
concrete. With the proposed methodology, it is 
anticipated that the GPR can be deployed as a 
tool for managing bridge deck assets in which 
the condition of different decks on the network 
level can be compared on the same basis. 
Specifically, the GPR can be used to estimate 
concrete repair quantity for each bridge deck, 
to develop bridge deck condition index, and to 
prioritize maintenance resources. 

In order to achieve the above anticipated  
objective, a clear roadmap for model develop-
ment is proposed. First, the ANN model should 
be expanded to include more types of bridge 
decks with different types of overlays, such 
as latex modified concrete (LMC), bituminous  
(asphalt), etc.

These materials have properties different from 
a monolithic (bare) concrete and may respond 
differently to the propagating electromagnetic 
source waves. Second, the model should be 
improved/trained continuously by feeding it with 
the new data sets. Based on that, the effects 
of different factors on GPR data will be better 
understood, including the influence of the rebar 
depth investigated in this research.

8.  CONCLUSIONS
The variation of rebar depth is the most  
visible factor affecting the condition  
assessment of bridge decks using the GPR  
technique. As has been demonstrated, a generic, 
network-wide depth correction model proposed 
in this research can minimize the effects of this  
variance. At the same time, the model can 
eliminate the relative nature of the overall deck  
condition when evaluating a depth-corrected 
data set. As a result, in comparison to the 
traditional depth correction techniques, the  
proposed model provides a better description 
of the absolute deterioration of bridge decks. 
It is anticipated that the current ANN will be
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expanded to include more types of bridge decks. 
In addition, its performance will be continuously 
improved with the addition of new data sets.
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