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Abstract: Caffeine is the most commonly ingested alkylxantine and is recognized as a psycho-stimulant. It improves some aspects of cognitive 
performance, however it reduces the cerebral blood flow both in animals and humans. In this paper a QSAR study on caffeine derivatives, 
docked on the Poly(A)RNA polymerase protein cid1, is reported. A set of forty caffeine derivatives, downloaded from PubChem, was modeled, 
within the hypermolecule strategy; the predicted activity was LD50 and prediction was done on similarity clusters with the leaders chosen as 
the best docked ligands on the Poly(A)RNA polymerase protein cid1. It was concluded that LD50 of the studied caffeines is not influenced by 
their binding to the target protein. 
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INTRODUCTION 
AFFEINE (1,3,7-trimethylxanthine) is found in vary 
quantities in some plants: coffee beans, tea leaves, co-

coa beans etc.[1–3] Caffeine selectively reverts the inhibitory 
effect of adenosine.[4] There are evidences that caffeine 
might cause an increase in hypoxic pulmonary vasocon-
striction but improbably it contributes to the development 
of high altitude pulmonary edema.[5,6] 
 Structure of Poly(A) RNA polymerase protein cid1 
(see Figure 1) revealed that caffeine can be accommodated 
at the active site, the binding difference within different de-
rivatives suggesting how this enzyme selects UTP (pyrimi-
dine nucleoside triphosphate) over other nucleotides.[7] 
 Molecular docking has become a standard tool in 
computational chemistry for predicting the binding affinity 
and orientation of small molecule ligands to protein targets 
in order to predict the activity of ligands.[8] 
 In a previous work,[9] we have performed a QSAR 
study on a set of flavonoids, by the similarity cluster predic-
tion approach, proposed by TOPO Group Cluj.[10] In this pa-
per we continue the investigation with a docking study to 
identify the geometric description of a pharmacophore in 

the interaction of this class of ligands with Poly(A) RNA pol-
ymerase protein cid1.[11] 
 Quantitative structure–activity relationship (QSAR) 
searches relate the molecular structure information to 
biological and other activities by developing a 
quantitative model. Because of their great number and 
positive biological effects, caffeine is a popular subject for 
QSAR. 
 In this study, clusters of similar structures (aimed to 
be quasi-congeneric subsets, in a better prediction of the 
toxicological activity) were chosen, with the leaders the 
best scored in the docking on the target protein cid1. 
 

MOLECULAR DATA 
Molecular docking was carried out by using AutoDock Vina 
docking software,[12–14] in order to explore the binding 
mode of caffeine derivatives (Table 1) at the binding pocket 
of Poly(A) RNA polymerase protein cid1 and to understand 
their structure-activity relationship. The protein Poly(A) 
RNA polymerase protein cid1 (Figure 1) was downloaded 
from RCSB protein data bank, bearing the PDB code-
4FH3.[15] 
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 A set of 40 Caffeine derivatives were taken from Pub-
Chem Database (in Smiles code, Table 1). The three dimen-
sional structure of the caffeine was downloaded in sdf 
format using Pubchem[16] and converted to PDB format us-
ing OpenBabel 2.3.2[17] for further use in docking studies. 
For targeting protein 4FH3 interactions, the critical binding 
motifs were replaced by caffeine derivative ligands. The lig-
ands, with their molar mass, molecular formula, and num-
ber of torsions are given in Table 2. 
 

COMPUTATIONAL DETAILS 
In the present study, a molecular docking analysis has 
been performed on 40 caffeine derivatives on the Poly(A) 
RNA polymerase protein cid1; a further QSAR study was 
done to predict their LD50. The structures have been 
optimized at HF (6-2g(p)) level of theory, in gas phase, by 
Gaussian 09. [18] Topological indices have been computed 
by TOPOCLUJ software;[19] some of them (Cluj indices: 
IEmax and IEmin, SD) and LD50 (on mouse, oral route ad-
ministered) are listed in Table 3 with the highest cor-
relation QSAR model. 
 

RESULTS AND DISCUSSION 

Docking at Poly(A) RNA Polymerase  
Protein Cid1 

To study the interaction between caffeine derivatives and 
4FH3, AutoDock Vina, a molecular modeling program, was 
run; data were collected in Table 4. Interaction ligand-pro-
tein is illustrated in Figures 2 and 3. A grid box size of x = –
13.133 Å, y = 2.669 Å, z = –10.786 Å was generated and allo-
cated at the center of the receptor binding site. 
 The binding energy ranges between –7.5 kcal/mol 
(lowest) and –6.2 kcal/mol (highest), see Figure 4. 

 To obtain a pharmacophore model that fits at the re-
ceptor Poly(A) RNA polymerase protein cid1, conformers 
with the most favorable interactions with the receptor re-
sulting from docking, were chosen. Ligands 2, 18, 23 and 38 
have the lowest binding energy between –7.5 and –7.3; 
based on these compounds we constructed the pharmaco-
phore (by using HyperChem7.52[20] and PyMOL[21] software 
programs). The resulting pharmacophore is shown in Figure 5. 

Figure 1. Poly(A) RNA polymerase protein cid1. 
 

Table 1. Caffeine derivatives molecular structure, in SMILES 
code (taken from PubChem) 

 Canonical SMILES 

1 CN1C=NC2=C1C(=O)N(C(=O)N2C)C 
2 CCCCC1=NC2=C(N1)C(=O)N(C(=O)N2CC(C)C)C 
3 CC1=NC2=C(N1)C(=O)N(C(=O)N2CC(C)C)C 
4 CC=CC1=NC2=C(N1C)C(=O)N(C(=O)N2C)C 
5 CN1C=NC2=C1C(=O)N(C(=O)N2C)CC=C 
6 CCN1C(=O)C2=C(N=CN2C)N(C1=O)C 
7 CC=CCN1C(=O)C2=C(N=CN2C)N(C1=O)C 
8 CCCN1C(=O)C2=C(N=CN2C)N(C1=O)C 
9 CCOC1=NC2=C(N1C)C(=O)N(C(=O)N2C)C 

10 CN1C=NC2=C1C(=O)N(C(=O)N2C)CC(CO)O 
11 CN1C=NC2=C1C(=O)N(C(=O)N2C)CC(CO)O 
12 CC(C)CN1C2=C(C(=O)N(C1=O)C)N(C=N2)CC(CO)O 
13 CC(CN1C(=O)C2=C(N=CN2C)N(C1=O)C)O 
14 C1=NC2=C(N1)C(=O)NC(=O)N2 
15 C1=NC2=C(N1)C(=O)NC(=O)N2O 
16 CN1C2=C(C(=O)NC1=O)NC=N2 
17 C1=NC2=C(N1)C(=O)NC(=O)N2CCO 
18 CCCN1C(=O)C2=C(N=CN2CCCCC(C)O)N(C1=O)C 
19 CCCCN1C2=C(C(=O)N(C1=O)CCCC)N(C=N2)CC(=O)C 
20 CC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
21 CN1C=NC2=C1C(=O)NC(=O)N2C 
22 CN1C2=C(C(=O)N(C1=O)C)N(C=N2)CCO 
23 CN1C2=C(C(=O)N(C1=O)C)NC=N2 
24 CCC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
25 CCCCCCC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
26 CCN(CC)CCN1C=NC2=C1C(=O)N(C(=O)N2C)C 
27 CCCC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
28 CC(C)CC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
29 CN1C(=O)C2=C(NC1=O)N=CN2 
30 CCCN1C2=C(C(=O)N(C1=O)C)NC=N2 
31 CC(C)CN1C2=C(C(=O)N(C1=O)C)NC=N2 
32 CC1=NC2=C(N1C)C(=O)N(C(=O)N2C)C 
33 CC(C)CN1C2=C(C(=O)N(C1=O)CC(C)C)NC=N2 
34 CC(=O)CCCCN1C(=O)C2=C(N=CN2C)N(C1=O)C 
35 CCCCN1C2=C(C(=O)N(C1=O)C)NC=N2 
36 CC(CN1C=NC2=C1C(=O)N(C(=O)N2C)C)O 
37 CN1C2=C(C(=O)N(C1=O)CC(CO)O)NC=N2 
38 CCC1=NC2=C(N1)C(=O)N(C(=O)N2CC(C)C)CC(C)C 
39 CC1(N=C2C(=N1)N(C(=O)N(C2=O)C)C)C 
40 CCCCC1=NC2=C(N1)C(=O)N(C(=O)N2C)C 
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It contains three pharmacophore centers:  
 Nucleophilic site of the substituted imidazole nitro-

gen atom 
 Strong nucleophilic site of carbonyl groups 
 Nitrogen atom substituted by an isobutyl group 

QSAR STUDY 
This study was performed following Diudea’s algorithm:[22] 
an alignment of molecules over a hypermolecule[25] is per-
formed and described by correlation weighted local de-
scriptors (e.g. fragment mass, partial charges, etc.) coupled 

Table 2. Caffeine ligands with their molecular formula, molar weight, hydrogen bond acceptors, hydrogen bond donors, torsions
and the energy of HOMO (in au) 

Ligand Molecular Formula Molar Weight /  
g mol–1 

H-Bond Donor H-Bond Acceptor Torsions 
(No. of rotatable bonds) 

HOMO / 
(au) 

1 C8H10N4O2 194.19 0 3 0 –0.315 

2 C14H22N4O2 278.35 1 3 5 –0.310 

3 C11H16N4O2 236.27 1 3 2 –0.312 

4 C11H14N4O2 234.25 0 3 2 –0.307 

5 C10H12N4O2 220.23 0 3 2 –0.315 

6 C9H12N4O2 208.22 0 3 1 –0.315 

7 C11H14N4O2 234.25 0 3 2 –0.314 

8 C10H14N4O2 222.24 0 3 2 –0.315 

9 C10H14N4O3 238.24 0 4 2 –0.301 

10 C10H14N4O4 254.24 2 5 5 –0.311 

11 C10H14N4O4 254.24 2 5 5 –0.310 

12 C13H20N4O4 296.32 2 5 7 –0.310 

13 C10H14N4O3 238.24 1 4 3 –0.311 

14 C5H4N4O2 152.11 3 3 0 –0.333 

15 C5H4N4O3 168.11 3 4 1 –0.334 

16 C6H6N4O2 166.13 2 3 0 –0.325 

17 C7H8N4O3 196.16 3 4 3 –0.327 

18 C15H24N4O3 308.38 1 4 8 –0.311 

19 C16H24N4O3 320.39 0 4 8 –0.314 

20 C8H10N4O2 194.19 1 3 0 –0.309 

21 C7H8N4O2 180.16 1 3 0 –0.319 

22 C9H12N4O3 224.22 1 4 3 –0.319 

23 C7H8N4O2 180.16 1 3 6 –0.320 

24 C9H12N4O2 208.22 1 3 1 –0.312 

25 C13H20N4O2 264.32 1 3 5 –0.311 

26 C13H21N5O2 279.34 1 4 5 –0.312 

27 C10H14N4O2 222.24 1 3 2 –0.312 

28 C11H16N4O2 236.27 1 3 2 –0.311 

29 C6H6N4O2 166.14 2 3 0 –0.329 

30 C9H12N4O2 208.22 1 3 2 –0.319 

31 C10H14N4O2 222.24 1 3 2 –0.319 

32 C9H12N4O2 208.22 0 3 0 –0.308 

33 C13H20N4O2 264.32 1 3 4 –0.319 

34 C13H18N4O3 278.31 0 4 5 –0.316 

35 C10H14N4O2 222.24 1 3 3 –0.319 

36 C10H14N4O3 238.24 1 4 3 –0.315 

37 C9H12N4O4 240.21 3 5 5 –0.321 

38 C15H24N4O2 292.38 1 3 5 –0.311 

39 C9H12N4O2 208.22 0 4 0 –0.298 

40 C11H16N4O2 236.27 1 3 3 –0.307 
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with a predictive validation of the model within similarity 
clusters[23] performed for each molecule in the test set. 
 

Data Set 
A set of 40 molecular structures, belonging to the class of 
caffeine, have been downloaded from the Pubchem 

database (Table 1), together with their LD50. The set was 
split into the training set (25 molecules) and test set (15 
molecules, taken with the lowest docking energy). 
 A hypermolecule (Figure 6) was built up as the reunion 
of all structural features in the 40 molecules under study. Hy-
permolecule works like a biological receptor, over which the 
ligands (i.e. caffeines) are aligned. Thus, according to this fit-
ting, binary vectors were constructed, with 1 when for a given 
position of the hypermolecule exists an atom in the current 
molecule, and zero, otherwise. In the above binary vectors, the 
values 1 are next replaced by local characteristics: partial 
charges, mass fragments or local topological descriptors. We 
used here partial charges in building the weighted vector for 
every molecule; the modeled property was LD50. 
 

Data Reduction 
Before starting to build the models, the descriptors with a 
variance lower than 10 % and intercorrelation larger than 
0.80 have been discarded. With the reduced number of 
desriptors, a correlation over all the positions in the 
hypermolecule was performed; the correlating coefficients 
of the statistically significant positions in the 

Table 3. LD50 and topological indices computed for the 
caffeines in Table 1 

Mol. LD50 / mg kg–1 SD IEmax IEmin 

1 127 –277.934 46.5 211.5 

2 340 –75.181 210.5 550.0 

3 25 –401.944 112.5 348.5 

4 100 –343.546 102.5 348.5 

5 191 –217.209 89.0 301.0 

6 61 –373.773 64.0 252.5 

7 667 –237.511 122.0 357.5 

8 126 –281.663 89.0 301.0 

9 56 –468.875 102.5 348.5 

10 1954 1274.586 149.5 414.5 

11 1920 1489.318 149.5 408.5 

12 784 255.729 250.5 622.0 

13 580 166.912 115.0 350.5 

14 500 79.153 18.5 119.0 

15 100 –276.869 26.5 145.5 

16 894 644.611 26.5 145.5 

17 490 103.002 61.0 217.0 

18 1345 908.047 349.0 741.0 

19 1000 178.215 342.5 791.0 

20 130 –301.007 45.5 212.5 

21 837 568.528 36.0 177.5 

22 400 295.322 89.0 304.0 

23 235 –172.267 36.0 176.0 

24 175 –256.765 50.5 219.0 

25 500 63.166 208.0 510.0 

26 1237 800.610 237.0 566.0 

27 250 –175.190 86.0 307.0 

28 250 –175.190 111.0 359.0 

29 510 52.796 27.0 146.5 

30 79 –314.996 74.0 255.0 

31 44 –348.197 97.5 299.0 

32 100 –333.136 131.0 355.0 

33 796 368.853 184.5 467.0 

34 1225 786.868 265.5 571.5 

35 237 –165.120 104.0 305.5 

36 739 356.680 111.0 359.0 

37 18.2 –387.763 57.5 249.5 

38 322 –94.549 235.5 608.0 

39 265 –156.431 56.0 250.0 

40 250 –175.190 118.0 366.0 

 

 

Figure 2. Active site analysis by Ligand Explorer. 
 

 

Figure 3. The interaction of caffeine with Poly(A) RNA 
polymerase protein cid1. 
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hypermolecule were used to weight the local descriptors, 
actually the partial charges (computed at HF level of 
theory), thus resulting new weighted vectors ijCD . Next, 
these new descriptors are summed to give a global 
descriptor, i ijj

SD CD . This new descriptor is a linear 
combination of the local correlating descriptors for the 
significant positions in the hypermolecule (e.g.). It 
correlates with LD50 as shown further. 

QSAR Models  
The models were performed on the training set (25 struc-
tures in Table 1) and the best results that make best predic-
tions in validation sets (in decreasing order of R2) are listed 
below and in Table 5, test set has been chosen the one with 
the lowest docking energies.[24] 
(i) Monovariate regression 
 LD50 = 432.249 + 0.934 × SD 

Table 4. The final Lamarckian genetic algorithm docked state – Binding energy of ligands with the active site of the protein 
during nine conformations 

Ligand 1 2 3 4 5 6 7 8 9 Docked Energy / kcal mol–1 

1 –6.2 –5.9 –5.7 –5.7 –5.7 –5.6 –5.6 –5.1 –5.0 –6.2 
2 –7.3 –6.9 –6.3 –6.2 –6.1 –6.0 –6.0 –5.9 –5.9 –7.3 
3 –7.2 –7.1 –7.0 –6.8 –6.3 –6.0 –5.9 –5.6 –5.5 –7.2 
4 –7.0 –7.0 –6.5 –6.4 –6.3 –6.3 –6.0 –5.8 –5.8 –7.0 
5 –6.5 –6.3 –6.2 –6.2 –6.0 –5.8 –5.6 –5.6 –5.6 –6.5 
6 –6.5 –6.4 –6.3 –6.1 –6.0 –5.8 –5.7 –5.5 –5.5 –6.5 
7 –6.7 –6.4 –6.4 –6.2 –6.1 –6.1 –5.9 –5.8 –5.5 –6.7 
8 –6.5 –6.2 –6.2 –6.2 –6.0 –6.0 –5.8 –5.7 –5.6 –6.5 
9 –6.8 –6.6 –6.5 –6.1 –6.1 –6.0 –5.8 –5.8 –5.6 –6.8 

10 –7.2 –6.9 –6.5 –6.4 –6.2 –6.2 –6.1 –6.0 –5.9 –7.2 
11 –6.8 –6.7 –6.7 –6.4 –6.4 –6.3 –6.1 –5.9 –5.9 –6.8 
12 –7.1 –6.6 –6.2 –6.1 –6.0 –5.9 –5.7 –5.7 –5.6 –7.1 
13 –6.5 –6.4 –6.3 –6.1 –6.1 –6.0 –5.9 –5.8 –5.8 –6.5 
14 –6.2 –6.1 –6.0 –5.9 –5.8 –5.7 –5.7 –5.7 –5.6 –6.2 
15 –6.5 –6.5 –6.4 –6.4 –6.3 –6.0 –5.9 –5.9 –5.6 –6.5 
16 –6.5 –6.2 –6.2 –6.1 –6.1 –6.0 –6.0 –6.0 –5.9 –6.5 
17 –6.5 –6.3 –6.2 –6.2 –5.9 –5.8 –5.8 –5.8 –5.6 –6.5 
18 –7.5 –7.0 –7.0 –6.9 –6.6 –6.5 –6.4 –6.3 –6.2 –7.5 
19 –6.8 –6.5 –6.5 –6.5 –6.4 –6.2 –5.8 –5.7 –5.7 –6.8 
20 –6.6 –6.6 –6.5 –6.2 –6.1 –6.0 –6.0 –5.7 –5.6 –6.6 
21 –6.7 –6.4 –6.2 –6.0 –5.7 –5.6 –5.6 –5.5 –5.5 –6.7 
22 –6.4 –6.2 –6.2 –6.2 –6.2 –6.1 –6.0 –5.9 –5.7 –6.4 
23 –7.5 –7.2 –6.9 –6.9 –6.9 –6.5 –6.5 –6.5 –6.5 –7.5 
24 –6.7 –6.5 –6.5 –6.5 –6.3 –6.2 –6.1 –5.9 –5.8 –6.7 
25 –6.8 –6.5 –6.5 –6.4 –6.2 –6.2 –6.1 –6.0 –5.8 –6.8 
26 –6.7 –6.6 –6.5 –6.4 –6.3 –6.2 –6.2 –6.1 –6.1 –6.7 
27 –6.7 –6.6 –6.5 –6.4 –6.0 –6.0 –5.9 –5.9 –5.6 –6.7 
28 –7.0 –6.9 –6.8 –6.6 –6.5 –6.4 –6.3 –6.3 –6.1 –7.0 
29 –6.5 –6.3 –6.2 –6.1 –6.0 –5.5 –5.4 –5.4 –5.2 –6.5 
30 –6.4 –6.3 –6.3 –6.1 –6.0 –5.7 –5.6 –5.5 –5.0 –6.4 
31 –6.8 –6.8 –6.5 –6.4 –6.3 –6.2 –6.1 –5.8 –5.8 –6.8 
32 –6.8 –6.5 –6.4 –6.4 –6.4 –6.1 –6.0 –5.5 –5.4 –6.8 
33 –7.1 –6.8 –6.4 –6.4 –6.2 –6.1 –6.0 –6.0 –5.9 –7.1 
34 –6.9 –6.9 –6.8 –6.8 –6.2 –6.1 –6.1 –6.0 –5.9 –6.9 
35 –6.6 –6.5 –6.5 –6.5 –6.5 –6.0 –5.6 –5.4 –5.3 –6.6 
36 –7.0 –6.7 –6.7 –6.2 –6.2 –6.0 –5.9 –5.9 5.9 –7.0 
37 –6.8 –6.4 –6.4 –6.3 –6.3 –6.2 –6.2 –6.1 –6.0 –6.8 
38 –7.4 –6.9 –6.9 –6.3 –6.3 –6.1 –6.1 –6.1 –6.0 –7.4 
39 –6.7 –6.7 –6.3 –5.9 –5.8 –5.6 –5.5 –5.5 –5.3 –6.7 
40 –6.9 –6.6 –6.6 –6.3 –6.1 –6.0 –5.9 5.9 –5.9 –6.9 
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(ii) Bivariate regression 
 LD50 = 308.206 + 0.872 × SD +1.385 × IEmax 
(iii) Three-variate regression 
 LD50 = 411.8272+ 0.856 × SD+ 3.339 × IEmax–0.956 × IEmin 
 

Model Validation  
(a) Leave-one-out 
The performances in leave-one-out analysis related to 
the models listed as the best in Table 5 are presented in 
Table 6.[25]  
 

(b) External Validation 
The values LD50 for the test set of caffeine were calculated 
by using entry 11 in Table 5. Data are listed in Table 7 and 
the monovariate correlation: LD50 = 0.918 × LD50calc. + 
129.9; n = 15; R2 = 0.929; s = 153.272; F = 169.735 is plotted 
in Figure 7. 
 
(c) Similarity Cluster Validation 
Validation can also be performed by using clusters of simi-
larity: each of the 15 molecules in the test set (chosen as 
the best scored in the docking set) is the leader of its own 
cluster, selected by 2D similarity among the 20 structures 
of the learning set (each cluster comprising about 14–17 
molecules). The values LD50 for the test set of caffeine 
were calculated by using the learning equations (with the 
same descriptors as in entry 11, Table 5) from each of the 
15 clusters. Data are listed in Table 8 and the monovariate 

 
Table 5. The best models in LD50 in the training set of 
caffeine in Table 1 

  Descriptors R2 
Adjust. 

R2 
St. 

Error F 

1 SD 0.891 0.886 153.231 187.816 
2 Adj 0.129 0.091 432.908 3.412 
3 C 0.122 0.083 434.798 3.183 
4 IEmax 0.221 0.187 409.442 6.526 

5 SD, IEmax  0.934 0.928 121.562 156.484 
6 SD, De  0.932 0.926 123.459 151.375 
7 SD, C  0.931 0.925 124.451 148.799 
8 SD, D3D 0.931 0.925 124.084 149.746 
9 SD, Adj 0.925 0.918 129.761 135.988 

10 SD, HOMO 0.896 0.887 152.586 95.301 

11 SD, IEmax, IEmin  0.934 0.925 123.872 100.53 
12 SD, C, D3D  0.932 0.922 126.571 95.993 
13 SD, D3D, De 0.932 0.922 126.364 96.330 

14 
SD, HOMO, 

Adj 
0.926 0.916 131.984 87.719 

 

Figure 4. The free energy of binding elicited at the vicinity of 
active site by the caffeine ligands. 
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Figure 5. Pharmacophore model for the receptor Poly(A) 
RNA polymerase protein cid1 (a); distances within 
pharmacophore features in Å (b). 
 

 

Figure 6. Hypermolecule. 
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correlation: LD50 = 0.923 × LD50calc. + 99.785; n = 15; R2 = 
0.951; s = 127.328; F = 251.832 is plotted in Figure 8. 
 QSAR study results show that, if one uses the simi-
larity cluster validation (R2 = 0.951) the correlation is higher 
than in case of the external validation (R2 = 0.929). 

 The lowest binding energy of the molecules in the 
test set correlates with LD50calc. R2 = 0.032, with no statisti-
cal meaning; it means that the toxicity of caffeines is not 
related to the interaction with this protein cid1, more stud-
ies being necessary to find the cause of their toxicity. 
However, the lowest docking energy ligands were helpful in 
the choice of molecules in the test set and this choice was 
clearly better (R2 = 0.951) than in case of the random choice 
(R2 = 0.893 – see Caffeine CEEJ,[26] computed, however by 
the mass fragment description ). 
 

CONCLUSIONS 
In this paper a qsar study on 40 caffeine derivatives, docked 
on the protein (4FH3), was reported. Molecular docking 
was performed to investigate the binding modalities of lig-
ands toward possible targets comprised in poly (A) poly-
merase Cid1 (4FH3). A further QSAR study suggested that 
LD50 is not a result of interaction of caffeines with Cid1 pro-
tein, the docking energies being not correlated with the re-
ported toxicity. However, the docking information was 
helpful in the choice of leaders for the similarity test set, 
increasing the accuracy of the predicted LD50 values. 
 

Table 7. Calculated values of LD50 for the molecules in the 
test set (Table 1) 

Mol. LD50 LD50calc. 

2 340 672.74 
3 25 153.46 
4 100 1425.32 

10 1954 305.92 
12 784 126.81 
18 1345 289.24 
23 235 744.46 
25 500 872.36 
28 250 897.02 
31 44 110.21 
33 796 1605.55 
34 1225 524.43 
36 739 535.87 
38 322 1645.76 
40 250 216.30 

 

Table 8. Calculated values of LD50 by similarity clusters, for 
the molecules in the test set 

Mol. LD50 LD50calc. 

2 340 275.72 
3 25 132.89 
4 100 142.22 

10 1954 1675.11 
12 784 851.40 
18 1345 1576.73 
23 235 189.04 
25 500 554.94 
28 250 312.97 
31 44 155.17 
33 796 897.42 
34 1225 1348.17 
36 739 715.69 
38 322 535.14 
40 250 358.09 

 

Figure 7. The plot LD50 vs. LD50 calc. for the test set (external 
validation). 

LD50 = 0.918 × LD50calc. + 129.9
R² = 0.929
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Table 6. Leave-one-out analysis for best LD50 models 

  Descriptors Q2 R2-Q2 St. Errorloo Floo 

1 SD 0.873 0.018 165.428 157.876 
5 SD, IEmax 0.913 0.023 134.202 251.841 

11 SD, IEmax, IEmin 0.908 0.026 140.407 228.086 

 

Figure 8. The plot LD50 vs. LD50 calc. by similarity clusters. 
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