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Abstract: This work presents a study on thermo-optical properties of three Schiff bases (imines) in the solid state. The Schiff bases were obtained 
by means of mechanochemical synthesis using monosubstituted o-hydroxy aromatic aldehydes and monosubstituted aromatic amines. The 
keto-enol tautomerism and proton transfer via intramolecular O∙∙∙N hydrogen bond of the reported compounds was found to be influenced 
more by supramolecular interactions than by a temperature change. All products were characterised by powder X-ray diffraction (PXRD), FT-IR 
spectroscopy, thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). Molecular and crystal structures of compounds 1, 2 
and 3 were determined by single crystal X-ray diffraction (SCXRD). The molecules of 1 appear to be present as the enol-imine, the molecules of 
2 as the keto-amine tautomer and the molecules of 3 exhibit keto-enol tautomeric equilibrium in the solid state. An analysis of Cambridge 
structural database (CSD) data on similar imines has been used for structural comparison. 
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INTRODUCTION 
-SUBSTITUTED imines or Schiff bases can be easily 
synthesized by condensation of aldehydes (or ke-

tones) and primary amines.[1] They are a very good class of 
organic compounds for the investigation of faster and 
ecologically and economically more acceptable ways of 
preparation.[2,3] Many Schiff bases have been synthesized 
in such manner by grinding using a mortar and pestle or ball 
mill grinders or merely by putting the reactants in close 
contact and leaving the reaction mixture to age.[4–8] 
 The physico-chemical, biological, pharmacological 
properties of N-substituted imines and their metal com-
plexes are well recognized reasons of a widespread and 
continuous strong interest in their investigation.[9,10] In this 
big class of compounds, o-hydroxy aromatic imines are 
drawing special attention for many years. Their optical 
properties in the solid state can be switched by various 
stimuli, for example temperature change in thermochromic 
or by changing the wavelength of irradiation in 
photochromic Schiff bases.[11] The microscopic reasons of 

such macroscopic properties are still under 
investigation,[7,8,12–19] and this work is one of them. There 
are three described mutually dependant reasons for such 
behaviour in the solid state: proton transfer via 
intramolecular O⋯N hydrogen bonds and thus the change 
of the tautomeric form,[12–17] the contribution of 
fluorescence and not only of light absorption as a 
consequence of the tautomeric change and the change in 
molecular geometry.[18] The scientists are still trying to 
either reaffirm the mentioned reasons or to find imines in 
which the reasons cannot be strictly determined but they 
do show such chromic change.[7,8,18–23] 
 In this work, we report both the mechanochemical 
synthesis and the investigation of structure-
thermochromism correlation of three Schiff bases 
(Scheme 1) derived from three aromatic aldehydes –  
o-vanillin (ovan), o-hydroxysalicylaldehyde (oOH) and  
p-hydroxysalicylaldehyde (pOH) and three aromatic 
amines – 2-amino-4-methylphenol (2a4mp), 3-amino-
acetophenone (3aa) and 4-aminoacetophenone (4aa). The 
aldehydes and amines were selected according to the 
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possibility of their substituents to participate as acceptors 
and/or donors in H-bonds. We have succeeded to prepare 
one Schiff base in enol-imine tautomeric form, compound 
1, one in keto-amine form, compound 2, and one which 
exhibits keto-enol equilibrium affected by temperature 
change in the solid state, compound 3.  
 

EXPERIMENTAL 
Details for synthetic procedures, PXRD, SCXRD, FT-IR, TG 
and DSC characterization are given in ESI. 

Cambridge Structural Database[24] (CSD) 
Investigations 

The purpose of the search was to find out how many 
reported Schiff bases derived from ovan, oOH and pOH are 
in keto-amine and/or in enol-imine tautomeric form in the 
solid state and to use the data to compare the crucial bond 
lengths and values of dihedral angles (Φ) with the values of 
compounds 1–3 and not only to use the criteria proposed 
by Allen et.al. obtained on data reported until 1987.[25]  

A study of the CSD Version 5.37 (November 2015 release, 
February 2016 Update)[24] was done using ConQuest[26] 
Version 1.18 and the data analysis was done using Mercury 
3.8.[27] The search was made with the filtering criteria that 
the entries had to have their 3-D coordinates determined. 

Synthesis and Characterization 
In all three cases 1 mmol : 1 mmol stochiometric ratio of 
aldehyde and amine was used in order to obtain the Schiff 
base. Syntheses were performed at room temperature (RT) 
and at 40–60 % relative humidity. Bulk products of 
syntheses and recrystallization were characterized by 
means of PXRD, DSC, TGA and FT-IR. The structural 
investigations were performed at RT (298 K) and LT (110 K). 
 Compound 1 (1-{4-[(2-hydroxy-3-methoxy-benzyli-
dene)-amino]-phenyl}-ethanone) was obtained from ovan 
and 4aa, compound 2, (2-hydroxy-6-[(2-hydroxy-5-methyl-
phenylamino)-methylene]-cyclohexa-2,4-dienone), from 
oOH and 2a4mp and compound 3 (1-{3-[(2,5-dihydroxy-
benzylidene)-amino]-phenyl}-ethanone was obtained from 
pOH and 3aa. 

 Neat grinding (NGam) of solid reactants (ovan and 
4aa) in an agate mortar lead first to a moist paste-like 
reaction mixture and then to an orange powder after three 
minutes (Figure S1a)). The paste-like intermediate phase is 
expected in this case since the melting points of both 
reactants (40–42 °C for ovan and 103–107 °C for 4aa) are 
low enough for such behaviour and reaction pathway to 
take place.[7,28–33] However the conversion to compound 1 
was incomplete according to the PXRD data as can be seen 
in Figure 1 (left). For that reason, the reaction was repeated 
in a mortar by means of liquid-assisted grinding (LAGam) 
using 20 μL acetonitrile (MeCN) yielding in complete 
conversion of reactants into compound 1. 
 Neat grinding of oOH and 2a4mp in a mortar for  
11 minutes did not give any change in colour or aggrega-
tion state of the reaction mixture and for that reason a 
catalytic amount (20 μL) of tetrahydrofuran (thf) was 
added (Figure S2a)). In three minutes of further grinding 
an orange powder was obtained. PXRD experiments have 
shown that a complete conversion of reactants to 
product, compound 2, was achieved as can be seen in 
Figure 1 (middle). Since the melting points of both 
reactants are well above 100 °C (104–108 °C for oOH and 
133–136 °C for 2a4mp) the formation of a liquid or a paste 
was not expected.[7,28–33] 
 The reaction mixture starts to change its colour 
already after one minute of NGam of pOH and 3aa (Figure 
S3a)). As expected from the values of the melting points of 
reactants (97–99 °C for pOH and 94–98 °C for 3aa) the 
route of conversion of reactants is via a paste-like 
intermediate phase.[7,27–32] The paste forms slowly and 
starts to solidify after about 13 minutes of grinding. Finally, 
a red powder of compound 3 was obtained after 14 
minutes of grinding and there were no traces of reactants 
in it, revealed by PXRD experiments (Figure 1 (right)). 

Structural Investigations 
PXRD experiments were performed on a PHILIPS PW 1840 
X-ray diffractometer with CuKα1 (1.54056 Å) radiation at  
40 mA and 40 kV. The scattered intensities were measured 
with a scintillation counter. The angular range (2 ) was 
from 5 to 45° with steps of 0.02°, and the measuring time 
was 0.5 s per step. The data collection and analysis were 
performed using the program package Philips X'Pert. SCXRD 
experiments were performed at 298 K (RT) and 110 K (LT) 
in order to explore thermochromic behaviour of these 
compounds using an Oxford Diffraction Xcalibur Kappa CCD 
X-ray diffractometer with graphite-monochromated MoKα 
(λ = 0.71073 Å) radiation (for details see the ESI). 

Thermal Analysis 
The measurements were performed on a Mettler Toledo 
DSC823e and on a Mettler Toledo TGA/SDTA 851 module. 

 

Scheme 1. Molecular structures of compounds 1, 2 and 3 
with the numbering scheme. 
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The data was analysed using STARe Software V10.00., 
Mettler-Toledo AG, 1993–2011. 

Spectroscopic Study on Recrystallized 
Material 

Infrared spectra were recorded on a PerkinElmer Spectrum 
Two FTIR spectrophotometer using the KBr pellet method. 
For details see ESI. 
 

RESULTS AND DISCUSSION 

CSD[24] Data Analysis 
Data obtained by means of the search are comprised in 
Table S6 and the structural motifs used for CSD[24] search 
are shown in top row of the table (see ESI). 
 The search revealed that there are 96 entries in total, 
47 entries that correspond to Schiff bases derived from 
ovan, 40 entries for ones derived from oOH and 9 for pOH. 
The scatterplot of d(C7–N1) vs. d(C2–O1) of all data 
obtained by the CSD search is shown in Figure 2 while 
Figure 3 shows a diagram of incidence of imines being 
(non)planar e.g. having the dihedral angle ≤ 25° ≥. 
 Using the data reported by Allen et. al.[25] (Table S7 
in ESI) and the data obtained by the search we can conclude 
that the imines derived from ovan (Figure 2, red dots) and 
pOH (Figure 2, green dots) are mostly in enol-imine 
tautomeric form in the solid state. However, the Schiff 

bases derived from oOH (Figure 2, blue dots) in most cases 
have intermediary values of C2–O1 and C7–N1 bond 
lengths. According to the bond length criterion, compound 
1 is a pure enol-imine (and is so) while compound 2 and 3 
should exhibit keto-enol tautomerism in the solid state. 
Such behaviour was found only for compound 3 and 
compound 2 is a keto-amine, opposite than one can expect 
and conclude from Figure 2. 

 

Figure 1. Molecule of compound 1 (bottom) and (top) PXRD patterns of (a) ovan; (b) 4aa; (c) 1 prepared by NG (green and 
orange rhombi indicating unreacted reactants diffraction maxima); (d) 1 prepared by LAG; (e) 1 obtained by evaporation of 
MeCN; and (f) the calculated pattern of compound 1. Molecule of compound 2 (bottom) and (top) PXRD patterns of (a) oOH;
(b) 2a4mp; (c) 2 prepared by NG; (d) 2 prepared by LAG; (e) 2 obtained by evaporation of thf; and (f) the calculated pattern of 
compound 2. Molecule of compound 3 (bottom) and (top) PXRD patterns of (a) pOH; (b) 3aa; (c) 3 prepared by NG; (d) 3
obtained by evaporation of MeCN; and (e) the calculated pattern of compound 3. 
 

 

Figure 2. Scatterplot of d(C7–N1) vs. d(C2–O1) of data 
obtained by the CSD[24] search. Red dots – ovan imines; blue 
dots – oOH imines; green dots – pOH imines; pink hearts –
compound 1, yellow hearts – compound 2; black hearts –
compound 3; blue line – limiting values of d(C7–N1) and 
d(C2–O1) for an enol-imine,[25] red line – limiting values of 
d(C7–N1) and d(C2–O1) for a keto-amine,[25] green line –
average values of d(C7–N1) and d(C2–O1).[25] 
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 In all three cases of o-hydroxy imines reported here, 
the dihedral angles between aromatic subunits are well 
under 25° (Table 1), the value which has been declared in 
literature and several times disproved as an important 
criterion for thermochromic behaviour.[12–23] A molecular 
overlay of molecules of all three Schiff bases is given in 
Figure 3b and shows the small deviation of the molecules 
from planarity. The influence of temperature on the 
planarity of these three imines is neglectable. 
 Most of the imines found reported in the CSD are 
planar (Table S6) and as such should show thermochromic 
properties, but we emphasize once again that this criterion 
should be taken prudently into consideration. Once again, 
we prove here that though the dihedral angles in molecules 
of 1–3 are well < 25°, compound 3 is not thermochromic. 

Structural Analysis 
Single crystals suitable for SCXRD experiments were 
obtained by slow evaporation of solvent (MeCN for 1 and 2 
and thf for 3). General and crystallographic data for all 
three compounds are given in ESI (Tables S2-S4) and CCDC 
1442712–1442714 contain crystallographic data for this 
paper. Table 1 comprises data on C7–N1 and C2–O1 bond 

lengths and values of dihedral angles (Φ) at RT and LT while 
the details on intra- and intermolecular contacts are given 
in Table 2 and Table 3, respectively. 
 Compound 1 crystallizes in monoclinic system in the 
general position of P21/c space group with four molecules 
per unit cell. The molecular formula with the numbering 
scheme of 1 is given in Figure S4. As stated prior in text, the 
molecules of 1 are in enol-imine form both at RT and LT. 
The hydrogen atom H1 is located closer to the oxygen O2 
atom then to the nitrogen atom N1 as can be seen in δF 
maps calculated through N1–C7–C1–C2–O1 chelate ring of 
1 at RT and LT (Figure 4). The crystal of compound 1 
changes its colour from red to yellow upon cooling (Figure 
4). The values of C2–O1 and C7–N1 are also in agreement 
with enol-imine form at both temperatures (Table 2). 
 The crystal of 2 changes its colour from red at RT to 
orange-yellow at LT (Figure 4). The molecules of 2 
crystallize in orthorhombic system, in general position of 
P212121 space group with four molecules per unit cell. The 
molecular formula with the numbering scheme of 2 is given 
in Figure S5. The H1-atom (at both temperatures) is located 
closer to the N1 than to the O1 atom in the intermolecular 
H-bond (Figure 4). In this case the O1∙∙∙N1 distance is 
approximately 0.045 Å shorter than in 1 (Table 2). The 
position of H1 indicates that the molecules of compound 2 
 
Table 1. C7–N1 and C2–O1 bond lengths and dihedral angle 
(Φ) values in compounds 1–3. 

Compound d(C7–N1) / Å d(C2–O1) / Å Φ / ° 

1 
RT 1.2740(17) 1.3566(15) 12.97(5) 

LT 1.2808(16) 1.3582(15) 11.74(4) 

2 
RT 1.307(5) 1.278(5) 3.9(2) 

LT 1.314(4) 1.293(4) 3.8(1) 

3 
RT 1.2954(18) 1.3442(17) 8.86(5) 

LT 1.2967(13) 1.3355(17) 8.27(5) 

 

 

 

Figure 3. a) A diagram of incidence of imines being 
(non)planar e.g. having the dihedral angle ≤ 25° ≥; b) a 
molecular overlay of 1 (blue), 2 (red), and 3 (purple) – blue 
and yellow squares represent planes in which the aromatic 
moieties lye, hydrogen atoms were omitted for clarity. 

 
Table 2. Intramolecular O1∙∙∙N1 H-bond parameters in 
compounds 1–3 (D = donor atom, A = acceptor atom). 

 T / K D–H∙∙∙A d(D∙∙∙A) / Å ∢(D–H∙∙∙A) / ° 

1 
298 

O1–H1∙∙∙N1 
2.629(0) 151(1) 

110 2.625(2) 152(2) 

2 
298 

N1–H1∙∙∙O1 
2.576(0) 138(1) 

110 2.588(0) 141(1) 

3 

298 
O11–H11a∙∙∙N11 
N11–H11b∙∙∙O11 

2.525(2) 
151(1) 

150(6) 

110 2.507(2) 
151(5) 

150(4) 
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are in keto-amine tautomeric form both at RT and LT while 
according to Figure 2 keto-enol tautomeric equilibrium 
would be expected Compound 2 shows reversible thermo-
chromic properties (Figure 4) although a bit weaker than 
compound 1. 
 In the case of compound 3, two molecules per unit 
cell crystallize in P1

_

 space group of the triclinic system. The 
influence of the temperature change on the colour was not 
found in this case, however there is an influence on the 
tautomeric equilibrium (Figure 4). At RT about 60 % of the 
molecules are in enol-imine form and 40 % in keto-amine 

form (Figure 1). By lowering down the temperature to  
110 K the position of the tautomeric equilibrium changes 
and about 50 % of the molecules are in enol-imine and  
50 % in keto-amine form. The split position of the H1-atom 
in the intramolecular O1∙∙∙N1 hydrogen bond can be easily 
seen in Figure 4. The C2–O1 bond length at both 
temperatures is on the limiting value of the intermediary 
and the tabulated value (ESI, Table S7) for a pure enol-imine 
form (Figure 2).[25] The N1–C7 bond length points to an 
equilibrium of both tautomers. The intramolecular H-bond 
is even a bit shorter than in 1 and 2 (Table 3). 

Supramolecular Influences 
A detailed study of the differences in crystal packing of 
these three Schiff bases has led us to the opinion that the 
thermo-optical properties and keto-enol tautomerism are 
governed by supramolecular influences. 

 
Table 3. Intermolecular H-bond parameters in compounds 
1–3 (D = donor atom, A = acceptor atom). 

T / K D–H∙∙∙A d(D∙∙∙A) / Å ∢(D–H∙∙∙A) / ° 

Compound 1 

298 
C4–H4∙∙∙O3 

3.544(2) 173.97(10) 

110 3.500(2) 174.53(9) 

298 
C14–H14c∙∙∙O3 

3.359(2) 125.62(10) 

110 3.296(2) 121.83(9) 

298 
C14–H14b∙∙∙O3 

3.509(2) 157.72(10) 

110 3.460(2) 161.26(8) 

298 
C12–H12∙∙∙O2 

3.502(2) 145.79(9) 

110 3.428(1) 145.28(8) 

Compound 2 

298 
O2–H2∙∙∙O1 

2.619(5) 164(5) 

110 2.627(4) 160(4) 

298 
C12–H12∙∙∙O1 

3.559(6) 121.24(34) 

110 3.514(5) 122.06(23) 

298 
C12–H12∙∙∙O2 

3.330(7) 105.24(34) 

110 3.320(5) 101.57(23) 

298 
C5–H5∙∙∙O3 

3.484(6) 152.37(32) 

110 3.441(5) 150.34(23) 

Compound 3 

298 
O2–H2∙∙∙O1 

2.683(2) 176(2) 

110 2.650(2) 176(2) 

298 
C3–H3∙∙∙O2 

3.459(2) 126.50(9) 

110 3.399(2) 126.67(9) 

298 
C4–H4∙∙∙O3 

3.466(2) 125.71(9) 

110 3.424(2) 124.33(9) 

298 
C9–H9∙∙∙O2 

3.479(1) 145.46(7) 

110 3.412(1) 144.76(7) 

298 
C15–H15b∙∙∙O2 

3.517(2) 132.73(11) 

110 3.468(2) 135.87(10) 

 

 

 

Figure 4. Photos of single crystals of compounds 1, 2 and 3
at 298 K and 110 K. δF maps calculated through 
N1–C7–C1–C2–O1 chelate ring of 1, 2 and 3. 
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 The molecules are held together by three C–H∙∙∙O3 
and one C–H∙∙∙O2 interaction of limiting values (Table 3) in 
dimers of 1D-chains formed via [100] direction. The π∙∙∙π 
interactions via [010] direction are actually a bit shorter 
than the C–H∙∙∙O bonds and are governing the formation of 
2D-sheets as can be seen in Figure 5 The O1 atom of mole-
cules of compound 1 does not participate in any 
intermolecular bonding. the enol-imine form is favoured. 
 The molecules of 2 form 1D-chains via [001] 
direction by means of a strong O2–H2∙∙∙O1 via [001] 
direction and 2D-sheets by means of three moderate  
C–H∙∙∙O (Table 3) interactions via [010]. These chains are 
further connected into 3D-sheets by π∙∙∙π interactions  
(3.3–3.5 Å) via [001] direction (Figure 5). In this case the O1 
atom participates in a strong intermolecular bond 
mentioned above as a hydrogen bond acceptor. That led to 
“pushing” the H1-atom away from the parent oxygen O1 to 
the N1-atom. The intramolecular N1–H1∙∙∙O1 bond is just a 
bit shorter (Table 2) than the intermolecular O2–H2∙∙∙O1 

interaction. Consequently, O1 atom is under supramolecular 
impact resulting in keto-amine tautomeric form.  
 In the case of compound 3 there is a tautomeric 
equilibrium The O1 atom participates in O2–H2∙∙∙O1 
interaction as well. However, here the O2∙∙∙O1 distance is a 
bit longer than in 2 (Table 3). This apparently facilitates the 
proton transfer from the parent oxygen O1 atom to the 
nitrogen N1 atom and vice versa and is crucial for the keto-
enol tautomerism in this compound. The molecules of 3 
form 1D-chains via [010] direction which are further 
connected into 3D-networks by means of four C–H∙∙∙O 
(Table 3) and by π∙∙∙π interactions (3.3–3.4 Å), Figure 5. 
 In compound 3, the supramolecular influence is 
greater than in 1 and milder than in 2 and consequently 
keto-enol tautomeric equilibrium can be observed. The 
described interactions in compounds 1–3 can be seen in 
2D-fingerprint plots obtained from Hirshfeld surfaces[34] 
(Figure 6). 

Thermal Study 
The thermal properties of the compounds were studied 
using DSC and TGA. This study, accompanied by PXRD 
experiments, revealed that compound 1 undergoes an 
endothermic polymorphic transition upon heating (Figure 
S10, S11) from form I reported here to form II. Compound 
1 is stable up to 120 °C. From 121 °C to 131 °C it transforms 
to, for now, an unknown form, 
 form II, which crystallizes upon cooling to 25 °C 
(Figure 7). At temperatures above 132 °C the decompo-
sition of 1 takes place at temperatures above 260 °C. The 
DSC curve of compound 2 has an endothermic peak with an 
onset at 225 °C which corresponds to melting of 2. Starting 
at approx. 250 °C compound 2 decomposes exothermally 
(Figure S10, S12). Compound 3 starts to melt at 157 °C and 
decomposes exothermally above 200 °C (Figure S10, S13). 

 

Figure 5. Packing diagrams of 1, 2 and 3. Interactions 
between molecules are highlighted. 

 
(a)                  (b)                          (c) 

Figure 6. Hirshfeld surfaces and 2D-fingerprint plots of the molecules of (a) compound 1; (b) 2; and (c) 3. 
 



 
 
 
 M. ZBAČNIK and B. KAITNER: Supramolecular Influence on Keto-Enol Tautomerism… 131 
 

DOI: 10.5562/cca2881 Croat. Chem. Acta 2016, 89(1), 125–132 

 

 

 

 Intermolecular interaction strength vs. melting point 
as structure-property correlation has shown to be true in 
the case of the three compounds reported here. Table 4 
comprises the values of melting points and the values of 
means of d(D–H∙∙∙A). In the case of compounds 1–3, the 
smaller the value of ݀ ̅ the higher the melting onset meaning 
that the number and strength of the intermolecular 
interactions present directly impacts on the thermal 
stability i.e. melting of the material. 
 According to our experience and work on numerous 
examples of this kind of compounds this kind of structure-
property correlation should not be generalised. 

CONCLUSION 
Herein, we report three o-hydroxy imines obtained by 
means of grinding. In the solid state, the molecules of 
compound 1 (ovan4aa) are in enol-imine tautomeric form, 
compound 2 (oOH2a4mp) was obtained as a keto-amine 
while there is a keto-enol tautomeric equilibrium in 
compound 3 (pOH3aa). The tautomerism of 1 and 2 is not 
influenced greatly by a temperature change although they 
do show thermochromic properties. On the other hand, 
there is a slight decrease in the population of molecules in 
enol-imine form with cooling but the colour change was not 
observed. We have demonstrated a huge effect of the type 
and strength of hydrogen bonds that involve the oxygen 
atom O1 on the keto-enol tautomerism. This has proved 
that the proton transfer via intramolecular O∙∙∙H∙∙∙N 
hydrogen bond is influenced strongly by supramolecular 
effects rather than by a change in molecular geometry in 
this type of compounds and that there is finally no doubt 
about the causes of keto-enol tautomerism in this class of 
compounds in the solid state. 
 The presented results are important for the under-
standing of supramolecular influences on macroscopic 
properties of imines, as well as on the possible design of 
other similar compounds that could be used as dyes or 
pigments. This study states out the importance of further 
research on this class of organic compounds in order to get 
better and detailed insight in solid-state and materials 
chemistry. 
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1. EXPERIMENTAL DETAILS  

 

1.1. Materials  

 All reagents and solvents were purchased from commercial sources and used as received. Table 

S2 comprises all starting materials and solvents used for syntheses, crystallization or liquid-

assisted grinding experiments.  

Table S1 Starting materials used for various experiments.  

Name Acronym Manufacturer 

Ortho-vanillin ovan Acros Organics 

Ortho-hydroxysalicylaldehyde oOH Aldrich 

Para-hydroxysalicylaldehyde pOH Aldrich 

3-aminoacetophenone 3aa Merck 

4-aminoacetophenone 4aa Merck 

Acetonitrile MeCN J.T.Baker 

Tetrahydrofuran thf Kemika 

 

 
 

1.2. Mechanochemical synthesis accompanied by PXRD experiments 

All grinding experiments were performed in an agate mortar at RT and 40-50 % relative humidity. The 

required grinding time in the agate mortar was determined empirically when the colour of the reaction 

mixture stopped changing. PXRD experiments were performed on all powder products obtained by 

grinding to check if the condensation reaction of the aldehyde and amine yielded in product.  

 

1.2.1. Synthesis of compound 1 

Equimolar quantities of ovan (0.153 g, 1 mmol) and 4aa (0.135 g, 1 mmol) were first ground in an agate 

mortar at 25 °C. After 40 s an orange paste appears which solidifies in an orange powder after 3 minutes 

(Figure S1 A)). The PXRD data of that material revealed some traces of unreacted material so the reaction 

was repeated but by means of LAG in presence of 20 μL of MeCN added in the reaction mixture. Orange 

powder of compound 1 (ovan4aa) was obtained again and the PXRD data of the powder product is in 

good agreement with the calculated pattern. Small amount of the obtained powder was dissolved in acn 

and the single crystals suitable for SCXRD experiments were obtained by slow evaporation of solvent.  
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0 s 10 s 40 s 50 s 1 min 1.5 min 2 min 3 min 

Figure S1 Neat grinding of ovan and 4aa in an agate mortar.  

 

1.2.2. Synthesis of compound 2 

 Compound 2, oOH2a4mp, was obtained by NG of equimolar quantities of oOH (0.135 g, 1 mmol) and 

2a4mp (0.123 g, 1 mmol) in an agate mortar at 25 °C for 11 minutes and the reaction mixture did not 

change its colour. For that reason, 20 μL of thf was added in the reaction mixture and the mixture started 

changing its colour from yellow to orange. Finally, an orange powder of compound 2 was obtained in 14 

minutes of grinding in total. The PXRD data of the powder product obtained by LAG is in a good 

agreement with the calculated pattern. Small amount of the obtained powder was dissolved in thf and 

the single crystals suitable for SCXRD experiments were obtained by slow evaporation of solvent.   

 

 

0 s 10 s 1 min 10 min 11 min 12 min 13 min 14 min 

Figure S2 Liquid-assisted grinding of oOH and 2a4mp in an agate mortar.  

 

1.2.3. Synthesis of compound 3 

Red powder of compound 3, pOH3aa, was obtained as by NG of equimolar quantities of pOH (0.135 g, 

1 mmol) and 3aa (0.135 g, 1 mmol) in an agate mortar at 25 °C. After about 10 minutes of grinding a red 

paste starts to appear and it starts to solidify in about 2 minutes. The PXRD data of the red powder 

product is in good agreement with the calculated pattern. Small amount of the obtained powder was 

dissolved in MeCN and the single crystals suitable for SCXRD experiments were obtained by slow 

evaporation of solvent.  

 

 

0 s 10 s 1 min 10 min 11 min 12 min 13 min 14 min 

Figure S3 Neat grinding of pOH and 3aa in an agate mortar.  
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1.3. Powder X-Ray diffraction experiments 

Powder X-ray diffraction (PXRD) experiments were performed on a PHILIPS PW 1840 X-ray 

diffractometer with CuKα1 (1.54056 Å) radiation at 40 mA and 40 kV. The scattered intensities 

were measured with a scintillation counter. The angular range (2 ) was from 5 to 45° with steps 

of 0.02°, and the measuring time was 0.5 s per step. The data collection and analysis were 

performed using the program package Philips X'Pert. [1,2,3] 

 

1.4. Single Crystal X-Ray diffraction experiments 

Crystal and molecular structures were determined at 298 and 110 K using single crystal X-ray 

diffraction. Diffraction measurements were made on an Oxford Diffraction Xcalibur Kappa CCD 

X-ray diffractometer with graphite-monochromated MoK ( = 0.71073 Å) radiation and the 

instrument was operated using CrysAlis CCD and RED.[4] The data sets were collected using the 

 scan mode over the 2  range up to 54°. The structures were solved by direct methods and 

refined using the SHELXS and SHELXL programs, respectively.[5] The structural refinement was 

performed on F2 using all data. The hydrogen atoms not involved in hydrogen bonding were 

placed in calculated positions and treated as riding on their parent atoms [C–H = 0.93 Å and 

Uiso(H) = 1.2 Ueq(C); C–H = 0.97 Å and Uiso(H) = 1.2 Ueq(C)] while the others were located from 

the electron difference map. All calculations were performed using the WinGX crystallographic 

suite of programs.[6] The data concerning the results of the crystallographic experiments are 

listed in Table S2. Further details are available from the Cambridge Crystallographic Centre 

(1442712–1442714).[7] Molecular structures of compounds are presented using ORTEP-3[8] and 

are presented in Figures S4-S6 and their packing diagrams were prepared using Mercury.[9]  

 
 
1.5. Thermal study 

 

1.5.1. DSC experiments 

 The measurements were performed on a Mettler Toledo DSC823e module in sealed aluminium 

pans (40 μL), heated in flowing nitrogen (200 mL min−1) at a rate of 10 °C min−1. The data collection and 

analysis was performed using the program package STARe Software 9.01.[10].   

Samples of compound 1, were heated to fifteen different temperatures (60 °C, 120-135 °C) and then 

kept at those selected temperatures for 5 minutes as well. After that, the samples were cooled to 25 °C 
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and PXRD measurements on the obtained material were done revealing that form I of compound 1 

undergoes a temperature induced transformation at temperatures between 121 and 131 °C.  

1.5.2. TG experiments 

 The measurements were performed on a Mettler Toledo TGA/SDTA 851 module in sealed 

aluminium pans (40 μL), heated in flowing nitrogen (200 mL min−1) at a rate of 10 °C min−1. The data 

collection and analysis was performed using the program package STARe Software 9.01.[11].   

 

1.6. FT-IR spectroscopy 

 Infrared spectra were recorded on a PerkinElmer Spectrum Two FTIR spectrophotometer 

using the KBr pellet method. The data collection and analysis was performed using the program 

package PerkinElmer Spectrum 10.4.2.279[12] Table S5 comprises data for the characteristic 

stretching bands for 1, 2 and 3. 
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2. RESULTS  

2.1. Results of SCXRD 

Table S2 General and crystallographic data for 1 at 298 and 110 K.  

Structural formula 

OH3C OH

N

CH3

O  

Photo 

  

Systematic name 1-{4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-phenyl}-ethanone 

Molecular formula C16H15NO3 

Mr 269.30 

Crystal system Monoclinic 

Space group P 21/c 

T / K 298  110 

a / Å 14.9202(8) 14.8923(9) 

b / Å 6.9123(4) 6.7057(4) 

c / Å 13.9675(8) 13.8901(9) 

β / ° 113.493(7) 113.392(7) 

V / Å3 
1321.10(13) 1273.10(14) 

Z 4 

Dcalc / g cm–3 1.354 1.405 

λ(Kα) / Å 0.71073 

μ / mm–1 0.094 0.098 

Crystal size / mm3 0.64 x 0.52 x 0.08 

F(000) 568 

Refl. collected/unique 5597 / 2847 5301 / 2744 

Data/Restraints/Parameters 186 

Δρmax, Δρmin / e Å−3  0.181; –0.167 0.343; –0.193 

RF2 ≥ 2(F2) 0.0382 0.0372 

wR(F 2) 0.0990 0.1057 

Goodness-of-fit, S 0.815 0.902 
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Table S3. General and crystallographic data for 2 at 298 and 110 K.  

Structural formula 

OHO

HN

HO

CH3

 

Photo 

  

Systematic name 2-Hydroxy-6-[(2-hydroxy-5-methyl-phenylamino)-methylene]-cyclohexa-2,4-dienone 

Molecular formula C14H13NO3 

Mr 243.26 

Crystal system Orthorhombic 

Space group P 212121 

T / K 298  110 

a / Å 8.7264(10) 8.3476(9) 

b / Å 22.276(2) 22.809(3) 

c / Å 6.1501(7) 6.0922(6) 

V / Å3 1195.5(2) 1160.0(2) 

Z 4 

Dcalc / g cm–3 1.352 1.393 

λ(Kα) / Å 0.71073 

μ / mm–1 0.096 0.099 

Crystal size / mm3 0.86 x 0.10 x 0.01 

F(000) 512 

Refl. collected/unique 9272 / 2536 8489 / 2515 

Data/Restraints/Parameters 173 

Δρmax, Δρmin / e Å−3  0.107; –0.107 0.194; –0.205 

RF2 ≥ 2(F2) 0.0445 0.0587 

wR(F 2) 0.0739 0.1026 

Goodness-of-fit, S 0.625 0.829 
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Table S4. General and crystallographic data for 2 at 298 and 110 K.  

Structural formula 

O

N

HO H3C

O

H

RT occ. 60 %
LT occ. 50 %  

Photo 

  

Systematic name 1-{3-[(2,5-Dihydroxy-benzylidene)-amino]-phenyl}-ethanone 

Molecular formula 255.27 

Mr Triclinic 

Crystal system P 1
_

 

Space group C15H13NO3 

T / K 298  110 

a / Å 6.9766(4) 6.8437(4) 

b / Å 7.0995(5) 7.0600(5) 

c / Å 13.5996(8) 13.5340(7) 

α / ° 87.879(5) 87.618(5) 

β / ° 79.905(5) 79.528(5) 

γ / ° 66.670(6) 66.455(6) 

V / Å3 608.55(7) 589.14(6) 

Z 2 

Dcalc / g cm–3 1.393 1.439 

λ(Kα) / Å 0.71073 

μ / mm–1 0.098 0.101 

Crystal size / mm3 0.80 x 0.62 x 0.04 

F(000) 268 

Refl. collected/unique 5123 / 2624 4682 / 2530 

Data/Restraints/Parameters 180 

Δρmax, Δρmin / e Å−3  0.151; –0.195 0.320; –0.204 

RF2 ≥ 2(F2) 0.0382 0.0399 

wR(F 2) 0.0915 0.1004 

Goodness-of-fit, S 0.813 0.874 
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2.2. Thermal ellipsoid plots with crystallographic labelling scheme 

 

  
RT LT 

Figure S4 Thermal ellipsoid (50 %) plot of compound 1 molecule with the atom-labelling scheme. Dashed line 

indicates intramolecular interaction.  
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RT LT 

Figure S5 Thermal ellipsoid (50 %) plot of compound 2 molecule showing the atom-labelling scheme. Dashed line 

indicates intramolecular interaction.  
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RT LT 
Figure S6 Thermal ellipsoid (50 %) plot of compound 3 molecule showing the atom-labelling scheme and indicating 

the occupancy of the hydrogen atom. Dashed line indicates intramolecular interactions.  
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2.3. δF maps 

  

RT LT 
Figure S7 δF maps calculated through N1–C7–C1–C2–O1 chelate ring of 1 at RT and LT.  

  

RT LT 
Figure S8 δF maps calculated through N1–C7–C1–C2–O1 chelate ring of 2 at RT and LT.  

 

  

RT LT 
Figure S9 δF maps calculated through N1–C7–C1–C2–O1 chelate ring of 3 at RT and LT.  
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2.4. Thermal study  

 

 

Figure S10 DSC curves of recrystallized material of compound 1 (pink), 2 (purple) and 3 (blue).  

 

Figure S11 TGA and SDTA curves of recrystallized material of compound 1.  

MZ_ov4aa_TG_25-500_N2, 09.02.2013 15:06:59 
MZ_ov4aa_TG_25-500_N2, 5,3800 mg 

mg 2 

min 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

SDTA MZ_ov4aa_TG_25-500_N2,09.02.2013 15 
MZ_ov4aa_TG_25-500_N2, 5,3800 mg 

°C 10 

min 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

^exo 
S TA R e  SW 10.00 

METTLER TOLEDO 
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Figure S12 TGA and SDTA curves of recrystallized material of compound 2.  

 

 

Figure S13 TGA and SDTA curves of recrystallized material of compound 3.  

 

 

MZ_253aa_SC_TG_25-500_N2, 09.02.2013 15:07:15 
MZ_253aa_SC_TG_25-500_N2, 5,5050 mg 

mg 1 

min 
°C 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

SDTA MZ_253aa_SC_TG_25-500_N2,09.02.2013 
MZ_253aa_SC_TG_25-500_N2, 5,5050 mg 

°C 5 

min 
°C 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

^exo 
S TA R e  SW 10.00 

METTLER TOLEDO 

MZ_23mMe_SC_TG_25-500_N2, 09.02.2013 15:06:59 
MZ_23mMe_SC_TG_25-500_N2, 6,8980 mg 

mg 2 

min 
°C 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

SDTA MZ_23mMe_SC_TG_25-500_N2,09.02.2013 
MZ_23mMe_SC_TG_25-500_N2, 6,8980 mg 

°C 10 

min 
°C 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 

^exo 
S TA R e  SW 10.00 

METTLER TOLEDO 
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2.5. Results of FT-IR spectroscopic measurements 

 

 

Figure S14 IR spectrum of compound 1.  
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Figure S15 IR spectrum of compound 2.  

 

 

Figure S16 IR spectrum of compound 3.   

 

Table S5 Characteristic stretching bands for 1, 2 and 3 found in the FT-IR spectra. 
 

   ν~ / cm–1    

 
X–H, 

X = N or O 
Car–H,  
C–H 

C=N Car–O Car– Car Car–N Car-O-CH3 C=O 

1 3442 3057, 2996 1614 
1255 

(1468) 
1573 1357 1186 1677 

2 3458 3031, 2918 1621 
1462 

(1284) 
1543, 1519 1357   

3 3427, 3263 3061 1624 
1271, 
1435 

1576, 1547 1358  1651 
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2.6. Results of the SCD search 

 
Table S6 Data obtained from the CSD on d(C7–N1), d(C2–O1) and Φ for imines derived from ovan (red data), oOH 
(blue data) and pOH (green data). Structural motifs used for searches are given in top row.  
 

N

O

O

H

H

H H

H3C         

N

O

OH

H

H

H H

 
 

N

O

H

H

HO

H H

 
Refcode Φ/° d(C7–N1)/Å d(C2–O1)/Å 

AJETUF 7.451 1.274 1.355 

AVUYUM 2.564 1.270 1.351 

CICTOY 52.176 1.285 1.354 

CIKPIW 8.522 1.281 1.369 

CUCZUW 6.873 1.278 1.355 

DUMSEK 21.242 1.278 1.349 

DUPCIB 5.594 1.312 1.288 

EKUGEW 11.941 1.301 1.346 

EKUGIA 27.010 1.271 1.335 

EVIMEB 53.933 1.271 1.347 

EVOXIW 2.661 1.302 1.299 

EVOXIW 12.944 1.288 1.325 

EVOXIW01 2.607 1.308 1.300 

EVOXIW01 12.631 1.299 1.322 

EZUWIG 38.555 1.308 1.298 

EZUWIG 39.488 1.311 1.299 

EZUWIG 37.773 1.307 1.303 

EZUWIG 36.565 1.302 1.305 

FAGSUE 6.232 1.324 1.281 

FAGSUE 7.180 1.322 1.282 

FEXRIK 10.656 1.280 1.316 

FEXRIK 11.510 1.265 1.377 

FEXRIK01 29.200 1.283 1.348 

FEXRIK01 30.860 1.279 1.350 

FEXRIK01 32.406 1.284 1.351 

FEXRIK01 21.672 1.272 1.358 

FEXRIK02 32.339 1.277 1.347 

FEXRIK02 29.175 1.279 1.348 
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FEXRIK02 33.682 1.279 1.348 

FEXRIK02 22.808 1.274 1.353 

FOCCOQ 7.933 1.304 1.293 

FUGWEK 31.931 1.281 1.365 

GAWKEV 12.837 1.277 1.354 

GEPMIY 29.242 1.294 1.316 

GETTUV 38.980 1.287 1.359 

GETTUV 37.742 1.287 1.360 

HAGXUJ 35.153 1.280 1.352 

HUFLIE 6.173 1.303 1.303 

HUFLIE 6.752 1.307 1.303 

HUFLIE 23.665 1.306 1.306 

IFUMAZ 5.857 1.311 1.298 

IGECOM 6.737 1.279 1.346 

IJENAM 7.837 1.275 1.337 

IJUGUQ 70.525 1.261 1.379 

KATKAS 6.142 1.319 1.291 

KUFLUU 2.094 1.279 1.346 

KUFLUU01 28.768 1.281 1.349 

KUFLUU02 2.958 1.284 1.351 

KULPOX 35.459 1.274 1.366 

LOFSII 5.359 1.325 1.316 

LOFSOO 6.389 1.290 1.336 

MONGAZ 25.861 1.292 1.352 

MONGAZ 29.076 1.290 1.353 

MOYHAL 44.737 1.277 1.363 

MUBKUQ 48.110 1.278 1.362 

NEDMUF 8.786 1.306 1.286 

NEDMUF01 3.039 1.307 1.295 

NUQXAA 5.357 1.276 1.335 

NUQXAA 4.870 1.283 1.357 

NUQXAA01 5.352 1.282 1.337 

NUQXAA01 3.233 1.294 1.362 

NUQXAA02 3.952 1.276 1.345 

NUQXAA03 2.130 1.280 1.356 

POFWOX 3.099 1.319 1.286 

QOTTEZ 10.154 1.270 1.330 

QUYGOH 4.316 1.302 1.316 

REZSIZ 4.464 1.291 1.348 

REZSIZ01 4.437 1.288 1.348 

SAPBAN 17.832 1.270 1.346 

SOXGAO 2.809 1.28 1.356 

SUYRIO 56.787 1.279 1.375 

TEWKOX 20.885 1.309 1.288 

TEWKOX01 21.254 1.308 1.288 
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UDURER 6.036 1.301 1.306 

UDURER 12.979 1.299 1.311 

UNUWEG 30.588 1.285 1.350 

UNUWEG01 30.382 1.295 1.363 

VEFPAZ 2.926 1.296 1.299 

VIKLAD 13.211 1.303 1.296 

XEYSOK 5.086 1.293 1.324 

XOZJEC 30.404 1.284 1.354 

XOZJUS 4.599 1.297 1.333 

YALTEK 15.660 1.325 1.279 

YALTEK 10.211 1.309 1.297 

YAMZIW 8.375 1.295 1.290 

YAMZIW 10.817 1.295 1.296 

YAWXEB 9.866 1.325 1.365 

YESLUE 49.024 1.287 1.356 

YODXAS 13.856 1.285 1.347 

YODXAS01 14.421 1.281 1.355 

YODXUM 54.762 1.281 1.37 

YODXUM01 54.644 1.275 1.368 

ZAMLUU 2.781 1.303 1.344 

ZAMMAB 10.435 1.292 1.339 

ZAMMEF 4.473 1.305 1.323 

ZIKNOW 74.536 1.273 1.365 

 
 
 
 
2.7. Values of single and double bonds according to tabular values used often for tautomer selection 
 

Table S7 Generally accepted values of single and double bonds according to F. H. Allen et al., J. Chem. Soc. Perkin 

Trans. II, 1987, S1–S19.  

Enol-imine tautomer Keto-amine tautomer 

Car–C=N–C# / Å 1.279 C=C–NH–C# (Nsp2 planar) / Å 1.339 

Car–OH (in phenols) / Å 1.362 C=O (in benzoquinone) / Å 1.230 

 

 
 
 
 
 
 



20 | P a g e  
 

 
 
 
3. REFERENCES  

1 Philips X'Pert Data Collector 1.3e, Philips Analytical B. V. Netherlands, 2001. 
2 Philips X'Pert Graphic & Identify 1.3e Philips Analytical B. V. Netherlands, 2001. 
3 Philips X'Pert Plus 1.0, Philips Analytical B. V. Netherlands, 1999. 
4 Oxford Diffraction (2003), CrysAlis CCD and CrysAlis RED. Version 1.170., Oxford Diffraction Ltd, 

Wroclaw, Poland. 
5 G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112. 
6 L. J. Farrugia, WinGX, J. Appl. Cryst., 1999, 32, 837. 
7 Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, 12 Union 

Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.ac.uk or www: 
http://www.ccdc.cam.ac.uk). These data can be obtained free of charge from the Director upon request 
quoting the CCDC deposition numbers 1442712–1442714. 

8 L. J. Farrugia, ORTEP-3 for Windows, J. Appl. Cryst., 1997, 30, 565. 
9 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. 

Taylor, J.v.d. Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466. 
10 STARe Software V10.00., Mettler-Toledo AG, 1993- 2011. 
11 STARe Software V10.00., Mettler-Toledo AG, 1993- 2011. 
12 PerkinElmer Spectrum v10.4.2.279, PerkinElmer (2014), PerkinElmer Ltd, United Kingdom.  

                                                           


