
GLASNIK MATEMATIČKI
Vol. 51(71)(2016), 45 – 58

A CHARACTERIZATION OF BIFLATNESS OF SEGAL

ALGEBRAS BASED ON A CHARACTER

Morteza Essmaili, Mehdi Rostami and Massoud Amini

Kharazmi University, Iran; Amirkabir University of Technology, Iran;
Tarbiat Modares University, Iran

Abstract. Let A be a Banach algebra and φ be a character on A.

In this paper, we give a necessary condition, called condition (W ), for
φ-biflatness of Banach algebra A as well as some hereditary properties.
We also study the relation between left φ-amenability and condition (W ).
Moreover, we apply these results and characterize the φ-biflatness of ab-
stract symmetric Segal algebras. In particular, we identify φ-biflatness
of the Lebesgue-Fourier algebra LA(G), where G is a unimodular locally
compact group. These results describe a homological property for Segal
algebras in the setting of biflatness based on character φ.

1. Introduction

Suppose that A is a Banach algebra and E is a Banach A-bimodule. We
regard the dual space E′ as a Banach A-bimodule with the operations defined
by,

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x) (a ∈ A, x ∈ E, f ∈ E′).

We let A⊗̂A denotes the projective tensor product which we view as a Banach
A-bimodule with operations determined by:

a · (b⊗ c) = ab⊗ c, (b⊗ c) · a = b⊗ ca (a, b, c ∈ A).

Kaniuth, Lau and Pym have recently introduced and studied in [10, 11] the
interesting notion of φ-amenability for Banach algebras, where φ : A −→
C is a character. Simultaneously, M. S. Monfared in [14] introduced and
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investigated the notion of character amenability for Banach algebras. Let
∆(A) be the set of all characters of the Banach algebra A, and let φ ∈ ∆(A).
Following [8], a Banach algebra A is called left φ-amenable if for all Banach
A-bimodules E for which the right module action is given by

x · a = φ(a)x (a ∈ A, x ∈ E),

every continuous derivation D : A −→ E′ is inner. We say that A is left
character amenable ifA is left φ-amenable for all φ ∈ ∆(A) and has a bounded
left approximate identity. Similarly, the right and two-sided version of φ-
amenability and character amenability can be defined. These notions have
been studied for various classes of Banach algebras. For more details, we
refer the reader to [8, 10, 11, 14].

Recently in [17], the authors introduced the notion of φ-biflatness for
Banach algebras. A Banach algebra A is called φ-biflat, if there exists a
bounded A-bimodule homomorphism ρ : A −→ (A⊗̂A)′′ such that

(π′′
A ◦ ρ(a))(φ) = κA(a)(φ) (a ∈ A),

where κA : A −→ A′′ is the canonical injection on A and the map πA :
A⊗̂A −→ A is specified by πA(a ⊗ b) = ab. They studied some relations
between φ-biflatness, φ-amenability and φ-Johnson amenability for Banach
algebras. Indeed, It is shown that φ-Johnson amenability of Banach algebras
is equivalent to left and right φ-amenability [17, Proposition 2.2]. Moreover,
it is proved in [17] that φ-Johnson amenability is equivalent to φ-biflatness
and φ-inner amenability. They also characterized φ-biflatness of some classes
of Banach algebras associated with locally compact groups. In [18], Samei,
Spronk and Stokke studied biflatness of various Segal algebras in both the
group algebra, L1(G), and the Fourier algebra, A(G), of a locally compact
group G. More precisely, they showed that a symmetric Segal algebra S1(G)
is flat as a Banach L1(G)-bimodule if and only if G is amenable. To our
knowledge, there is no characterization of biflatness of symmetric Segal alge-
bras. It is of interest to know whether we obtain anything new if we replace
biflatness with φ-biflatness.

The present paper is organized as follows. In section 2, we introduce a
new condition on Banach algebras, called condition (W ), which is a necessary
condition for φ-biflatness of Banach algebras. We obtain some relations be-
tween condition (W ), left φ-amenability and φ-biflatness. As a consequence,
we show that these notions are equivalent for some classes of Banach algebras,
such as commutative Banach algebras with a bounded approximate identity.
Furthermore, we obtain some hereditary properties of condition (W ) and as a
main result we show that the semigroup algebra ℓ1(N∧) is character amenable
(Theorem 2.10).

In the closing section, section 3, we examine the condition (W ) for some
Banach algebras related to the locally compact groups. Indeed, we are able to
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identify φ-biflatness of abstract symmetric Segal algebra S1(G), for a locally
compact group G, which we believe is interesting in its own right (Theorem
3.4). In the particular case, we conclude that for a unimodular locally compact
group G, the Lebesgue-Fourier algebra LA(G), equipped with the convolution
product, is φ-biflat if and only if G is amenable.

2. Condition (W) and φ-biflatness

Throughout the paper, A is a Banach algebra and φ ∈ ∆(A) is a character
on A, unless otherwise specified.

In this section, we introduce a new condition on Banach algebra A, which
is called condition (W ), and study its relation with φ-amenability and φ-
biflatness. We show that this property is a necessary condition for φ-biflatness
of Banach algebras. Also, we show that for some classes of Banach algebras
these notions are equivalent. Moreover, we obtain some hereditary properties
related to closed ideals of Banach algebras.

Definition 2.1. We say that (A, φ) satisfies condition (W ), if there exists
a bounded linear operator ρ : A −→ (A⊗̂A)′′ such that for each a, b ∈ A,

(1) ρ(ab) = φ(a)ρ(b) = ρ(a) · b,
(2) (π′′

A ◦ ρ(a))(φ) = φ(a).

In the following, we investigate the relation between left φ-amenability and
condition (W ) on Banach algebras. Moreover, we give an example that shows
these notions are not equivalent.

Proposition 2.2. With the above notations,

(i) if A is left φ-amenable, then (A, φ) satisfies condition (W ),
(ii) conversely, if A has a bounded approximate identity and (A, φ) satisfies

condition (W ), then A is left φ-amenable.

Proof. (i) Since A is left φ-amenable, by [8, Theorem 2.3] A has a left
φ-virtual diagonal, that is an element M ∈ (A⊗̂A)′′ such that

M · a = φ(a)M, (π′′
A(M))(φ) = 1 (a ∈ A).

Define the map ρ : A −→ (A⊗̂A)′′ by

ρ(a) = φ(a)M (a ∈ A),

and observe that for each a, b ∈ A, we have

ρ(a) · b = φ(a)M · b = φ(a)ρ(b) = φ(a)φ(b)M = φ(ab)M = ρ(ab).

On the other hand,

(π′′
A ◦ ρ(a))(φ) = φ(a)(π′′

A(M))(φ) = φ(a).

Hence (A, φ) satisfies condition (W ).
(ii) Suppose that the map ρ : A −→ (A⊗̂A)′′ is a bounded linear operator

satisfying conditions (1) and (2) in Definition 2.1. Let (eα) be a bounded
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approximate identity for A. By passing to a subnet, we may define M =
wk∗ lim ρ(eα). For each a ∈ A, we have

M · a = wk∗ lim ρ(eα) · a = wk∗ lim ρ(eαa)

= wk∗ lim ρ(aeα) = φ(a)wk∗ lim ρ(eα) = φ(a)M.

Moreover,

π′′
A(M)(φ) = limπ′′

A(ρ(eα))(φ) = limφ(eα) = 1.

Thus M ∈ (A⊗̂A)′′ is a left φ-virtual diagonal for A. By [8, Theorem 2.3], we
conclude that A is left φ-amenable.

Remark 2.3. We recall that the assumption of the existence of a bounded
approximate identity in Proposition 2.2 (ii) can not be removed nor be re-
placed by the existence of a left identity. For example, let S be a right zero
semigroup with |S| ≥ 2, that is,

st = t (s, t ∈ S).

Let φS : ℓ1(S) −→ C be the augmentation character on the semigroup algebra
ℓ1(S), defined by

φS(f) =
∑

s∈S

f(s) (f ∈ ℓ1(S)).

Fix t ∈ S and define the map ρ : ℓ1(S) −→ (ℓ1(S)⊗̂ℓ1(S))′′ by

ρ(f) = κℓ1(S)(δt ⊗ f) (f ∈ ℓ1(S)).

For each f, g ∈ ℓ1(S), we have

ρ(f ∗ g) = ρ(φS(f)g) = φS(f)ρ(g) = φS(f)δt ⊗ g

= δt ⊗ (f ∗ g) = (δt ⊗ f) · g = ρ(f) · g.

Moreover,

(π′′ ◦ ρ(f))(φS) = κℓ1(S)(δt ⊗ f)(π′(φS)) = φS(δt ∗ f) = φS(f).

It follows that (ℓ1(S), φS) satisfies condition (W ). On the other hand, since
the right zero semigroup S is not right amenable it follows from [8, Theorem
2.3] that ℓ1(S) is not left φS-amenable.

In the sequel, we prove that the property (W ) is a necessary condition for
φ-biflatness.

Theorem 2.4. Let A be a Banach algebra and φ ∈ ∆(A). Consider the
following statements:

(i) A is biflat.
(ii) A is φ-biflat
(iii) (A, φ) satisfies condition (W ).

Then we have (i) ⇒ (ii) ⇒ (iii).
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Proof. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii) Suppose that A is φ-biflat, so there exists ρ : A −→ (A⊗̂A)′′

such that for all a, b ∈ A,

ρ(ab) = a · ρ(b) = ρ(a) · b, (π′′
A ◦ ρ(a))(φ) = φ(a).

Choose a0 ∈ A such that φ(a0) = 1. Define the map Tφ,a0 : (A⊗̂A)′ −→
(A⊗̂A)′ by

Tφ,a0(f) = φ⊗ f(a0 ⊗ ·) (f ∈ (A⊗̂A)′).

Now, put ρ̃ = T ′
φ,a0

◦ ρ. Thus, we have

ρ̃(ab)(f) = ρ(ab)(Tφ,a0(f)) = (a · ρ(b))(Tφ,a0(f))

= ρ(b)(Tφ,a0(f) · a).
(2.1)

On the other hand, for all c, d ∈ A,

(Tφ,a0(f) · a)(c⊗ d) = Tφ,a0(f)(ac⊗ d) = φ(ac)f(a0 ⊗ d)

= φ(a)φ(c)f(a0 ⊗ d).

By (2.1), we conclude that

ρ̃(ab)(f) = ρ(b)(Tφ,a0(f) · a) = ρ(b)(φ(a)φ ⊗ f(a0 ⊗ ·))

= φ(a)ρ(b)(φ ⊗ f(a0 ⊗ ·)) = φ(a)ρ(b)(Tφ,a0(f))

= φ(a)ρ̃(b)(f).

(2.2)

It is easy to see that Tφ,a0(b · f) = b · Tφ,a0(f), thus

(ρ̃(a) · b)(f) = ρ̃(a)(b · f) = ρ(a)(Tφ,a0(b · f))

= ρ(a)(b · Tφ,a0(f)) = (ρ(a) · b)(Tφ,a0(f))

= ρ(ab)(Tφ,a0(f)) = ρ̃(ab)(f).

(2.3)

Using (2.2) and (2.3), we conclude that ρ̃(ab) = φ(a)ρ̃(b) = ρ̃(a) · b. Moreover,

φ̃ ◦ πA(c⊗ d) = φ(c)(φ ◦ πA(a0 ⊗ d)) = φ(c)φ(a0d)

= φ(c)φ(d) = (φ ◦ πA)(c⊗ d).
(2.4)

Hence, for each a ∈ A,

(π′′
A ◦ ρ̃(a))(φ) = ρ̃(π′

A(φ)) = ρ̃(a)(φ ◦ πA) = ρ(a)(φ̃ ◦ πA).(2.5)

Now, using (2.4) and (2.5) we have

(π′′
A ◦ ρ̃(a))(φ) = ρ(a)(φ ◦ πA) = (π′′

A ◦ ρ(a))(φ) = φ(a).

It follows that (A, φ) satisfies condition (W ).

Remark 2.5. We note that in the above theorem the implication (iii)⇒(i)
does not hold in general. For example, any C∗-algebra A is left φ-amenable
for each φ ∈ ∆(A) [10, Proposition 2.1] and so it satisfies condition (W ),
by Proposition 2.2. However, it is well known that A is not biflat, if it is
not nuclear. A concrete example is the algebra of bounded operators on any
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infinite dimensional Hilbert space. As another example, It showed in [9] that
A(SO(3)) is unital non-amenable and so is not biflat. However, A(SO(3)) is
φ-amenable, for each φ ∈ ∆(A(SO(3))), see [10, Example 2.6].

In [17], the authors introduced the notion of φ-Johnson amenability of Ba-
nach algebras. A Banach algebra A is φ-Johnson amenable if there exists
an element m ∈ (A⊗̂A)′′ such that a · m = m · a and (π′′

A(m))(φ) = 1, for
each a ∈ A. It is shown in [17, Proposition 2.2] that φ-Johnson amenability is
equivalent to left and right φ-amenability. They also proved that φ-Johnson
amenability is a sufficient condition for φ-biflatness [17, Lemma 3.1]. There-
fore, we have the following implications:

amenability φ-Johnson amenability left φ-amenability

biflatness φ-biflatness condition (W )

✲ ✲

✻

✲

✻

❄❄
✲

❄

b.a.i b.a.i

As a consequence of Theorem 2.4 and Proposition 2.2, we conclude that φ-
amenability, φ-biflatness and condition (W ) are equivalent for a certain class
of Banach algebras.

Corollary 2.6. Let A be a commutative Banach algebra with a bounded
approximate identity and φ ∈ ∆(A). Then the following are equivalent:

(i) A is φ-biflat.
(ii) (A, φ) satisfies condition (W ).
(iii) A is φ-amenable.

Proof. The implications (i)⇒(ii) and (ii)⇒(iii) follow from Theorem 2.4
and Proposition 2.2 (ii), respectively.

For (iii)⇒(i), we note that φ-amenability of A is equivalent to φ-Johnson
amenability of A [17, Proposition 2.2 ]. Now, by [17, Lemma 3.1] we conclude
that A is φ-biflat and the proof is complete.

Example 2.7. Let ℓ1(N∨) be the semigroup algebra on semigroup S =
(N,∨) with the following product:

N× N −→ N, (m,n) −→ m ∨ n = max{m,n}.

In [17, Example 5.5], it is shown that the semigroup algebra ℓ1(N∨) is φ-biflat
for each φ ∈ ∆(ℓ1(N∨)). As an immediate consequence of Corollary 2.6, since
the semigroup algebra ℓ1(N∨) is commutative, unital and by [2, Corollary 2.2]
is character amenable, we obtain the similar result.

In the sequel, we study some hereditary properties of condition (W ) related
to closed ideals. For this aim, we need the following Lemma. For φ ∈ ∆(A),



A CHARACTERIZATION OF BIFLATNESS OF SEGAL ALGEBRAS 51

we recall that the map φ⊗ φ : A⊗̂A −→ C is defined by,

(φ ⊗ φ)(a⊗ b) = φ(a)φ(b) (a, b ∈ A).

Lemma 2.8. Let A be a Banach algebra. The following conditions are
equivalent:

(i) (A, φ) satisfies condition (W ).
(ii) There exists a bounded linear map σ : (A⊗̂A)′ −→ A′ such that for

each a ∈ A and f ∈ (A⊗̂A)′,

σ(a · f) = a · σ(f), φ(a)σ(f) = σ(f) · a

and (π′
A ◦ σ)(φ ⊗ φ) = φ⊗ φ.

Proof. (i)⇒(ii) By assumption, there is a bounded linear map ρ : A −→
(A⊗̂A)′′ such that

ρ(ab) = φ(a)ρ(b) = ρ(a) · b, (π′′
A ◦ ρ(a))(φ) = φ(a),

for all a, b ∈ A. Define the map σ : (A⊗̂A)′ −→ A′ by σ = ρ′|(A⊗̂A)′
. It is easy

to see that σ satisfies (ii).
For (ii)⇒(i), it suffices to put ρ = σ′

|A
.

Theorem 2.9. Let I be a closed right ideal of A and φ ∈ ∆(A) such that
φ|I 6= 0.

(i) If (A, φ) satisfies condition (W ), then so does (I, φ|I ).
(ii) Conversely, if I has a right approximate identity and (I, φ|I ) satisfies

condition (W ), then so is (A, φ).

Proof. (i) Let ρ : (A⊗̂A)′ −→ A′ be the bounded linear map satisfying
in Lemma 2.8. Take b0 ∈ I such that φ(b0) = 1 and define the map σ :
(I⊗̂I)′ −→ I ′ by

σ(f)(b) = ρ(f̃)(b) (f ∈ (I⊗̂I)′, b ∈ I),

where f̃ : A⊗̂A −→ C is defined by

f̃(a1 ⊗ a2) = f(b0a1 ⊗ b0a2) (a1, a2 ∈ A).

For each a, b ∈ I we have,

σ(a · f)(b) = ρ(ã · f)(b) = ρ(a · f̃)(b) = (a · ρ(f̃))(b),

and

(σ(f) ·a)(b) = σ(f)(ab) = ρ(f̃)(ab) = ρ(f̃ ·a)(b) = φ(a)ρ(f̃)(b) = φ(a)σ(f)(b).

Moreover,

(π′
I ◦ σ(φI ⊗ φI))(a ⊗ b) = σ(φI ⊗ φI)(ab) = ρ(φ̃I ⊗ φI)(ab) = ρ(φ ⊗ φ)(ab)

= (π′
A ◦ ρ(φ⊗ φ))(a ⊗ b) = (φ⊗ φ)(a ⊗ b).
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So, we conclude that σ satisfies conditions of Lemma 2.8 and the proof is
complete.

(ii) Since (I, φ|I ) satisfies condition (W ), by Lemma 2.8 there exists a

bounded linear map σ : (I⊗̂I)′ −→ I ′ such that

σ(b · f) = b · σ(f), σ(f) · b = φ(b)σ(f) (f ∈ (I⊗̂I)′, b ∈ I),

and π′
I ◦ σ(φI ⊗ φI) = φI ⊗ φI . Take b0 ∈ I such that φ(b0) = 1 and define

ρ : (A⊗̂A)′ −→ A′ by

ρ(f)(a) = σ(f̃)(b0a) (f ∈ (A⊗̂A)′, a ∈ A),

where f̃ = f|
I⊗̂I

. Let (eα) be a right approximate identity for I, then for each

a1, a2 ∈ A we have,

ρ(a1 · f)(a2) = σ(ã1 · f)(b0a2) = lim
α

σ(ã1 · f)(b0a2eα)

= lim
α

σ(eαa1 · f̃)(b0a2) = lim
α
(eαa1 · σ(f̃))(b0a2)

= lim
α

σ(f̃ )(b0a2eαa1) = σ(f̃)(b0a2a1) = ρ(f)(a2a1) = a1 · ρ(f)(a2),

(2.6)

and

(ρ(f) · a1)(a2) = σ(f̃ )(b0a1a2) = lim
α

σ(f̃ )(b0a1eαa2)

= lim
α

φ(a1)σ(f̃ )(eαa2) = lim
α

φ(a1)(σ(f̃ ) · b0)(eαa2)

= φ(a1) lim σ(f̃)(b0eαa2) = φ(a1)σ(f̃ )(b0a2) = φ(a1)ρ(f)(a2).

(2.7)

Moreover,

(π′
A ◦ ρ(φ⊗ φ))(a1 ⊗ a2) = ρ(φ⊗ φ)(a1a2) = σ(φ̃⊗ φ)(b0a1a2)

= lim
α

σ(φ̃⊗ φ)(b0a1eαa2) = lim
α

πA ◦ σ(φ̃⊗ φ)(b0a1 ⊗ eαa2)

= lim
α
(φ|I ⊗ φ|I )(b0a1 ⊗ eαa2) = lim

α
φ(b0a1)φ(eαa2)

= lim
α

φ(b0a1eαa2) = φ(b0a1a2) = (φ ⊗ φ)(a1 ⊗ a2).

(2.8)

Now, using the equations (2.6), (2.7), (2.8) and Lemma 2.8, we conclude that
(A, φ) satisfies condition (W ).

In the following theorem, we show that the semigroup algebra ℓ1(N∧) is
character amenable and satisfies condition (W ).

Theorem 2.10. Suppose that ℓ1(N∧) is the semigroup algebra on semi-
group S = (N,∧) with the product defined by m ∧ n = min{m,n}. Then, we
have all following assertions:

(i) (ℓ1(N∧), φ) satisfies condition (W ), for each φ ∈ ∆(ℓ1(N∧)).
(ii) ℓ1(N∧) is character amenable.
(iii) ℓ1(N∧) is φ-biflat, for each φ ∈ ∆(ℓ1(N∧)).
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Proof. Since ℓ1(N∧) is a commutative Banach algebra with the bounded
approximate identity (δn)n∈N, by Corollary 2.6 it suffices to show that the
statement (i) holds. It is easy to verify that ∆(ℓ1(N∧)) = {φn : n ∈ N}, where
for each n ∈ N the map φn : ℓ1(N∧) −→ C is defined by

φn(f) =

∞∑

i=n

f(i), (f ∈ ℓ1(N∧)).

For each n ∈ N, we also suppose that In is the ideal of ℓ1(N∧) generated by
the set {δ1, δ2, δ3, . . . , δn}. In [17, Example 5.2], it is shown that ℓ1(N∧) is
φ1-biflat and so (ℓ1(N∧), φ1) satisfies condition (W ).

In the case where n ≥ 2, it follows from [2, Theorem 2.1] that In is φ|In
-

amenable and so (In, φ|In
) satisfies condition (W ). Thus by Theorem 2.9

(ii), we conclude that (ℓ1(N∧), φn) satisfies condition (W ) and the proof is
complete.

3. Some results in harmonic analysis

Let G be a locally compact group with a fixed left Haar measure λG and
consider the group algebra L1(G) and the measure algebra M(G). It well
known that L1(G) is a two-sided ideal with a bounded approximate identity

in M(G); see [7] for more details. Let Ĝ be the set of all continuous homo-

morphism from G into the circle group T. For ρ ∈ Ĝ, define φρ to be the
character induced by ρ on L1(G),

φρ(f) =

∫
f(x)ρ(x)dλG(x) (f ∈ L1(G)).

It is well-known that

∆(L1(G)) = {φρ : ρ ∈ Ĝ},

see for example [7, Theorem 23.7]. We denote the unique extension of φρ to
a character on M(G) with the same notation. As a consequence of Theorem
2.9, we have the following result.

Corollary 3.1. Let G be a locally compact group and φρ ∈ ∆(L1(G)).
Then the following statements are equivalent:

(i) L1(G) is φρ-biflat.
(ii) (L1(G), φρ) satisfies condition (W ).
(iii) (M(G), φρ) satisfies condition (W ).
(iv) G is an amenable group.

Proof. The implications (i)⇒(ii) and (iv)⇒(i) are trivial. The equiv-
alence of (ii) and (iii) follows from Theorem 2.9. Moreover, the implication
(ii)⇒(iv) follows by applying Proposition 2.2 (ii) and [1, Corollary 3.4].
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In the sequel, we consider condition (W ) for abstract Segal algebras. We
also apply these results to Segal algebras and Lebesgue-Fourier algebras of a
locally compact group G.

Definition 3.2. Suppose that (B, ‖ · ‖B) and (A, ‖ · ‖A) are two Banach
algebras such that B ⊆ A and

(i) B is a two-sided dense ideal,
(ii) there exists M > 0 such that for each a ∈ B, ‖a‖A ≤ M‖a‖B,
(iii) there exists C > 0 such that for each a ∈ A and b ∈ B,

‖ab‖B, ‖ba‖B ≤ C‖a‖A‖b‖B.

Then we say that B is a symmetric abstract Segal algebra in A.

Suppose that B is a symmetric abstract Segal algebra in A. By [1, Lemma
2.2],

∆(B) = {φ|B : φ ∈ ∆(A)}.

Theorem 3.3. Let B be a symmetric abstract Segal algebra in A and
φ ∈ ∆(A). Then the following are equivalent:

(i) (B, φ|B) satisfies condition (W ).
(ii) (A, φ) satisfies condition (W ).

Proof. (i)⇒(ii). By Lemma 2.8, there exists a bounded linear map
σ : (B⊗̂B)′ −→ B′ such that for each b ∈ B,

σ(b · f) = b · σ(f), φ(b)σ(f) = σ(f) · b,

and (π′
B ◦ σ)(φ|B ⊗ φ|B) = φ|B ⊗ φ|B . For f ∈ (A⊗̂A)′ put f̃ = f|(B⊗̂B)

. For

each b1, b2 ∈ B,

|f̃(b1 ⊗ b2)| = |f(b1 ⊗ b2)| ≤ ‖f‖‖b1 ⊗ b2‖πA

≤ ‖f‖‖b1‖B‖b2‖BM
2 = M2‖f‖‖b1 ⊗ b2‖πB

.

Take b0 ∈ B such that φ(b0) = 1 and define ρ : (A⊗̂A)′ −→ A′ by

ρ(f)(a) = σ(f̃)(b0a) (f ∈ (A⊗̂A)′, a ∈ A).

For each a1, a2 ∈ A,

(π′ ◦ ρ(φ⊗ φ))(a1 ⊗ a2) = ρ(φ ⊗ φ)(a1a2) = σ(φ̃ ⊗ φ)(b0a1a2)

= σ(φ|B ⊗ φ|B )(b0a1a2) = σ(b0 · (φ|B ⊗ φ|B))(b0a1a2)

= (b0 · σ(φ|B ⊗ φ|B))(b0a1a2) = σ(φ|B ⊗ φ|B )(b0a1a2b0)

= (φ|B ⊗ φ|B)(b0a1 ⊗ a2b0) = φ(a1)φ(a2) = (φ ⊗ φ)(a1 ⊗ a2).

(3.1)
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On the other hand, Since B is a dense ideal of A, there is a sequence (bn) in
B such that bn −→ a2, thus

(ρ(f)·a1)(a2) = ρ(f)(a1a2) = σ(f̃)(b0a1a2) = lim
n

σ(f̃)(b0a1bn)

= lim
n
(σ(f̃ ) · b0a1)(bn) = φ(b0a1) lim

n
σ(f̃)(bn)

= φ(a1) lim
n
(σ(f̃ ) · b0)(bn) = φ(a1)σ(f̃)(b0a2) = φ(a1)σ(f̃)(a2).

(3.2)

Moreover, bn · f −→ a · f and so

ρ(a1 · f)(a2) = σ(ã · f)(b0a2) = σ(a · f̃)(b0a2) = lim
n

σ(bn · f̃)(b0a2)

= lim
n
(bn · σ(f̃ ))(b0a2) = lim

n
σ(f̃)(b0a2bn) = σ(f̃)(b0a2a1)

= ρ(f)(a2a1) = (a1 · ρ(f))(a2).

(3.3)

By equations (3.1), (3.2) and (3.3), we conclude that (A, φ) satisfies condition
(W ).

(ii)⇒(i) By Lemma 2.8, there exists a bounded linear map σ : (A⊗̂A)′ −→
A′ such that for each a ∈ A,

σ(a · f) = a · σ(f), φ(a)σ(f) = σ(f) · a,

and (π′
A◦σ)(φ⊗φ) = φ⊗φ. For f ∈ (B⊗̂B)′ define f̃ ∈ (A⊗̂A)′ by f̃(a1⊗a2) =

f(a1b0 ⊗ b0a2), where b0 ∈ B such that φ(b0) = 1. For each a1, a2 ∈ A,

|f̃(a1 ⊗ a2)| = |f(a1b0 ⊗ b0a2)| ≤ ‖f‖‖a1b0 ⊗ b0a2‖πB

≤ ‖f‖‖a1b0‖B‖a2b0‖BC
2 ≤ C2‖f‖‖b0‖

2‖a1 ⊗ a2‖πA
.

Now define ρ : (B⊗̂B)′ −→ B′ by

ρ(f)(b) = σ(f̃)(b) (f ∈ (B⊗̂B)′, b ∈ B).

For each b1, b2 ∈ B,

π′ ◦ ρ(φ|B ⊗ φ|B))(b1 ⊗ b2) = ρ(φ⊗ φ)(b1b2)

= σ(φ̃⊗ φ)(b1b2 = π′
A ◦ σ(φ ⊗ φ)(b1 ⊗ b2) = (φ⊗ φ)(b1 ⊗ b2).

(3.4)

Moreover, for each b1, b2 ∈ B and f ∈ (B⊗̂B)′ we have

ρ(b1 · f)(b2) = σ(b̃1 · f)(b2) = σ(b1 · f̃)(b2)

= b1 · σ(f̃ )(b2) = (b1 · ρ(f))(b2),
(3.5)

and

(ρ(f) · b1)(b2) = ρ(f)(b1b2) = σ(f̃)(b1b2)

= σ(f̃) · b1(b2) = φ(b1)ρ(f)(b2).
(3.6)

By equations (3.4), (3.5) and (3.6), we conclude that (B, φ|B) satisfies condi-
tion (W ).
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Recently, E. Samei, N. Spronk and R. Stokke in [18] gave a detailed study
of some homological properties of modules over the group algebra of a locally
compact group G. In their work they focused on flatness of the Segal algebra
S1(G) as a L1(G)-bimodule. They were able to show, for example, that
when viewed as a L1(G)-bimodule, the symmetric Segal algebra S1(G) is flat
precisely when the group G is amenable. In the following, we characterize φ-
biflatness of symmetric Segal algebras on a locally compact group. But first,
we need to recall the following terminologies:

Let G be a locally compact group. A Banach space (S1(G), ‖ · ‖S) is a
Segal algebra on G if it satisfies the following conditions:

(i) S1(G) is dense in L1(G),
(ii) there exist M > 0 such that ‖f‖1 ≤ M‖f‖S for all f ∈ S1(G),
(iii) S1(G) is left translation invariant and the map x 7→ δx∗f, G → S1(G),

is continuous for all f ∈ S1(G),
(iv) ‖δx ∗ f‖S = ‖f‖S, for all f ∈ S1(G) and x ∈ G.

A Segal algebra is symmetric if it is right translation invariant and for all
f ∈ S1(G), ‖f ∗ δx‖S = ‖f‖S (x ∈ G), and the map x 7→ f ∗ δx, G → S1(G),
is continuous.

Note that every symmetric Segal algebra on G is a symmetric abstract
Segal algebra in L1(G); see [16, p. 19, Proposition 1]. We refer to [16, Sect. 5]
for various examples of symmetric and nonsymmetric Segal algebras. Interest-
ingly, Theorem 3.3 provides a characterization for φ-biflatness of symmetric
Segal algebras.

Theorem 3.4. Suppose that S1(G) is a symmetric Segal algebra on a lo-
cally compact group G. For each φρ ∈ ∆(L1(G)), the following are equivalent:

(i) S1(G) is φρ-biflat.
(ii) (S1(G), φρ) satisfies condition (W ).
(iii) (L1(G), φρ) satisfies condition (W ).
(iv) G is an amenable group.

Proof. The implications (i)⇒(ii), (ii)⇒(iii) and (iii)⇒(iv) follow from
Theorem 2.4, Theorem 3.3 and Corollary 3.1, respectively. For (iv)⇒(i), we
note that if G is amenable, then it follows from [1, Corollary 3.4] that S1(G)
is φρ-amenable. Hence, by [17, Proposition 2.2] we conclude that S1(G) is
φρ-Johnson amenable and so is φρ-biflat.

Now, we will discuss on φ-biflatness of some specific types of Segal algebras
in the group algebra L1(G).

Let A(G) denote the Fourier algebra of G as defined by Eymard in [3].
Put LA(G) = L1(G) ∩A(G) and for f ∈ LA(G) define

|||f ||| = ‖f‖1 + ‖f‖A(G).
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Then LA(G) with the above norm is a Banach space. Ghahramani and Lau
in [6] showed that LA(G) is a Banach algebra under convolution product and
it has a bounded left approximate identity in ‖ · ‖1. This is a Segal algebra in
L1(G), called the Lebesgue-Fourier algebra of G. We note that if G is unimod-
ular, then LA(G) is a symmetric abstract Segal algebra in L1(G). Moreover,
it is worthwhile to mention that the Weiner’s algebra M1, see [13] and the
Feichtinger’s Segal algebra S0(G), see [4] and [19] are important examples of
symmetric Segal algebras. As a consequence, we have the following.

Corollary 3.5. Let G be a unimodular locally compact group and sup-
pose that B is either LA(G), M1 or S0(G). Then for each φρ ∈ ∆(L1(G)) the
following are equivalent:

(i) B is φρ-biflat.
(ii) (B, φρ) satisfies condition (W ).
(iii) G is an amenable group.

We finish this section with the following remark, which provides when the
generalized Fourier algebra Ap(G) and the Lebesgue-Fourier algebra LA(G)
with pointwise product satisfy condition (W ).

Remark 3.6. The Figà-Talamanca-Herz algebras Ap(G) (1 < p < ∞),
introduced in [5], coincides with the Fourier algebra A(G) when p = 2. The
character space ∆(Ap(G)) consists of all evaluation functionals φx at x ∈ G;
that is, φx(f) = f(x) for all f ∈ Ap(G). For every x ∈ G, Ap(G) with
pointwise product is φx-amenable [15, Lemma 3.1], and hence (Ap(G), φx)
satisfies condition (W ). Moreover, Ghahramani and Lau in [6] showed that
LA(G) with pointwise product is a Banach algebra and also is a dense ideal
of A(G). Therefore by Theorem 3.3, (LA(G), φx) satisfies condition (W ), for
every x ∈ G.
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