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GLOBAL INTEGRABILITY FOR SOLUTIONS TO

BOUNDARY VALUE PROBLEMS OF ANISOTROPIC

FUNCTIONALS

Gao Hongya, Liang Shuang and Cui Yi

Hebei University, China

Abstract. This paper deals with solutions to boundary value prob-
lems of anisotropic integral functionals

I(u) =

∫

Ω
f(x,Du(x))dx,

with the energy f(x, z) has growth pi with respect to zi, like in

∫

Ω

((

1 +
n
∑

j=1

|Dju|
pj

)

p1−2
p1

|D1u|
2 + · · ·+

(

1 +
n
∑

j=1

|Dju|
pj

)
pn−2
pn

|Dnu|
2

)

dx.

We show that higher integrability of the boundary datum u∗ forces min-
imizers u to be more integrable. A similar result is obtained for obstacle
problems.

1. Introduction and Statement of Main Result.

Let Ω be a bounded open subset of Rn, n ≥ 2. We consider anisotropic
integral functionals

(1.1) I(u) =

∫

Ω

f(x,Du(x))dx,

where Du = (D1u, · · · , Dnu) =
(

∂u
∂x1

, · · · , ∂u
∂xn

)

is the gradient of u, and the

energy f(x, z) is supposed to be nonnegative.
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In a recent paper [7], Leonetti and Siepe considered functionals (1.1) with
the energy density f(x, z) that satisfies

(1.2)

n
∑

i=1

|zi|
pi ≤ f(x, z) ≤ c

(

1 +

n
∑

i=1

|zi|
pi

)

,

where the component zi of z = (z1, · · · , zn) has the exponent pi that might
be different from the exponent pj of the component zj , when j 6= i. This is
suggested by the integral functional

(1.3)

∫

Ω

(|D1u|
p1 + |D2u|

p2 + · · ·+ |Dnu|
pn) dx.

This anisotropic framework seems to be useful when dealing with some re-
inforced materials, see [10]. For some recent developments on anisotropic
functionals and anisotropic elliptic equations, see [7, 1–6].

Another example in the anisotropic setting is given by
(1.4)

∫

Ω









1 +

n
∑

j=1

|Dju|
pj





p1−2
p1

|D1u|
2 + · · ·+



1 +

n
∑

j=1

|Dju|
pj





pn−2
pn

|Dnu|
2






dx.

Such an example suggests us to consider energies f(x, z) where
(1.5)

n
∑

i=1



1 +

n
∑

j=1

|zj|
pj





pi−2

pi

|zi|
2 ≤ f(x, z) ≤ c

n
∑

i=1



1 +

n
∑

j=1

|zj |
pj





pi−2

pi

|zi|
2.

The aim of the present paper is to consider boundary value problems of the
integral functionals (1.1) with the energy f(x, z) that satisfies (1.5). We will
show that higher integrability of the boundary datum u∗ forces minimizers u
to have higher integrability as well. We should mention that the idea of the
proof of the main theorem in this paper comes from [7, 1].

We now introduce some symbols and notations used in this paper.
Let p1, · · · , pn ∈ (1,+∞), let p̄ be the harmonic mean of p1, · · · , pn, i.e.

1
p̄

= 1
n

n
∑

i=1

1
pi
, and pm = max

1≤i≤n
pi. In this paper we assume p̄ < n, and

introduce the Sobolev exponent p̄∗ = np̄
n−p̄ . The anisotropic Sobolev space

W 1,(pi)(Ω) is defined as usual by

W 1,(pi)(Ω) =
{

v ∈ W 1,1(Ω) : Div ∈ Lpi(Ω) for every i = 1, · · · , n
}

and W
1,(pi)
0 (Ω) is denoted to be the closure of C∞

0 (Ω) in the norm of

W 1,(pi)(Ω).
Let the boundary datum u∗ : Ω → R satisfying

(1.6) u∗ ∈W 1,(qi)(Ω), with qi > pi for every i = 1, · · · , n.
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The main result of this paper is the following theorem.

Theorem 1.1. Under the previous assumptions (1.5) and (1.6), let u ∈

u∗ +W
1,(pi)
0 (Ω) minimize (1.1), that is,

(1.7)

∫

Ω

f(x,Du(x))dx ≤

∫

Ω

f(x,Dw(x))dx, ∀w ∈ u∗ +W
1,(pi)
0 (Ω).

Then we have
u ∈ u∗ + Ltweak(Ω),

where

(1.8) t =
p̄p̄∗

p̄− bp̄∗
> p̄∗,

and b is any number such that

(1.9)

0 < b ≤ min
1≤i≤n

(

1−
pi

qi

)

,

b < min
1≤i≤n






1−

pi − 2

pi min
1≤j≤n

(

qj
pj

) −
2

qj






and b <

p̄

p̄∗
.

Remark 1.2. We should compare (1.5) with (1.2) and Theorem 1.1 in
this paper with [7, Theorem 2.1]. Note that

|zi|
2 = (|zi|

pi)
2
pi ≤



1 +
n
∑

j=1

|zj |
pj





2
pi

,

thus

n
∑

i=1



1 +

n
∑

j=1

|zj |
pj





pi−2

pi

|zi|
2 ≤ n



1 +

n
∑

j=1

|zj|
pj



 .

This means, up to a constant n, the right hand side of (1.5) is smaller than
or equals to the right hand side of (1.2).

Consider a special case, when

(1.10) pi ≥ 2, for all i = 1, 2, · · · , n,

we get

|zi|
pi−2 = (|zi|

pi)
pi−2

pi ≤





n
∑

j=1

|zj |
pj





pi−2

pi

,

thus

n
∑

i=1

|zi|
pi ≤

n
∑

i=1





n
∑

j=1

|zj |
pj





pi−2

pi

|zi|
2.
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This means that (1.5) implies (1.2) in the case (1.10) holds true. So we are,
in this special case, in the framework of [7]. Unfortunately, we are not able
to improve the degree of integrability that is proved in [7].

Remark 1.3. The main feature of this paper lies in the case when

(1.11) 1 < pi < 2, for all i = 1, 2, · · · , n.

In this case,

|zi|
pi−2 = (|zi|

pi)
pi−2

pi ≥





n
∑

j=1

|zj |
pj





pi−2

pi

≥



1 +

n
∑

j=1

|zj |
pj





pi−2

pi

,

thus

n
∑

i=1

|zi|
pi ≥

n
∑

i=1



1 +
n
∑

j=1

|zj|
pj





pi−2

pi

|zi|
2.

This means that the condition in the left hand side of (1.5) is weaker than
the one in the left hand side of (1.2). Since

1

Qi
=

pi − 2

pi min
1≤j≤n

(

qj
pj

) +
2

qi
≥
pi − 2

qi
+

2

qi
=
pi

qi
,

then the conditions (1.9) on b become [7,(2.7)]. That is, in this case, the result
of this paper is the same as [7, Theorem 2.1].

Remark 1.4. If the density function f(x, z) satisfies (1.2) and if it is
convex, then the existence of minimizer of functional (1.1) can be guaranteed
by the direct methods of calculus of variations. In case we assume (1.5)
in place of (1.2), dropping the coercivity assumption, the existence of such
minimizer remains unclear. The result of Theorem 1.1 remains valid under
the condition that the minimizer of (1.1) under (1.5) is a priori existent.

2. Preliminary Lemmas.

In order to prove Theorem 1.1, we need two preliminary lemmas. The first
one is the anisotropic embedding theorem, which can be found, for example,
in [7, Theorem 3.1].

Lemma 2.1. Let Ω be a bounded open subset of Rn; let p1, · · · , pn be in

[1,+∞); let v : Ω → R be in W
1,(pi)
0 (Ω); if p̄ < n, then v ∈ Lp̄

∗

(Ω) with

‖v‖Lp̄∗(Ω) ≤ c∗

(

n
∏

i=1

‖Div‖Lpi(Ω)

)
1
n

,

where

c∗ = max
i=1,··· ,n

{

1 + p̄∗
pi − 1

pi

}

.
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The next lemma comes from [9].

Lemma 2.2. Let C̃, α, β, L0 be positive constants. Let φ : [L0,+∞) →
[0,+∞) be non-increasing and

L0 ≤ L < L̃⇒ φ(L̃) ≤
C̃

(L̃− L)α
[φ(L)]β .

If β < 1, then

φ(L) ≤
[

C̃
1

1−β + L
α

1−β

0 φ(L0)
]

2
α(2−β)

(1−β)2

(

1

L

)
α

1−β

for every L ∈ [L0,+∞).

3. Proof of Theorem 1.1.

For L ∈ (0,+∞) and a function w, we let TL(w) to be the truncation of
w at level L; that is,

TL(w) =

{

w, |w| ≤ L,

sign(w)L, |w| > L.

Let us consider

(3.1) v = u− u∗ − TL(u− u∗) =







u− u∗ + L, if u− u∗ < −L,
0, if − L ≤ u− u∗ ≤ L,

u− u∗ − L, if u− u∗ > L.

It is obvious, by the assumptions on u and u∗, that v ∈ W
1,(pi)
0 (Ω), and

(3.2) Dv = (Du−Du∗)1{|u−u∗|>L},

where 1E(x) is the characteristic function for the set E, that is, 1E(x) = 1 for
x ∈ E and 1E(x) = 0 otherwise.

The elementary inequality

(a+ b)t ≤ 2t−1(at + bt), a, b > 0, t ≥ 1

implies

(3.3)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ 2pm−1

(

∫

{|u−u∗|>L}

n
∑

i=1

|Diu|
pidx+

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

)

.
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We fix i ∈ {1, · · · , n}. In the case pi ≥ 2, one has

(3.4)

∫

{|u−u∗|>L}

|Diu|
pidx ≤

∫

{|u−u∗|>L}





n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx

≤

∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx.

In the case 1 < pi < 2, one can use Hölder and Young inequalities to derive

∫

{|u−u∗|>L}

|Diu|
pidx

=

∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj





pi−2

2

|Diu|
pi



1 +

n
∑

j=1

|Dju|
pj





2−pi
2

dx

≤







∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx







pi
2





∫

{|u−u∗|>L}



1 +
n
∑

j=1

|Dju|
pj



 dx





2−pi
2

(3.5)

≤ C(ε)

∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx

+ ε

∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj



 dx

≤ C(ε)

∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx+ ε|{|u− u∗| > L}|

+ 2pm−1ε

[

∫

{|u−u∗|>L}

n
∑

j=1

|Dju−Dju∗|
pjdx

+

∫

{|u−u∗|>L}

n
∑

j=1

|Dju∗|
pjdx

]

,
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where 0 < ε < 1 is a constant to be determined later. In (3.5) and in the
sequel, we use the notation C(∗, · · · , ∗) to denote a constant that depends
only on the quantities involved, and it may change at each appearance.

Taking into account C(ε) > 1, we derive that, in both cases pi ≥ 2 and
1 < pi < 2, (3.5) holds true, which together with (3.3) implies

(3.6)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ 2pm−1C(ε)

∫

{|u−u∗|>L}

n
∑

i=1



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx

+ 2pm−1nε |{|u− u∗| > L}|

+ 4pm−1nε

∫

{|u−u∗|>L}

n
∑

j=1

|Dju−Dju∗|
pjdx

+ 2pm−1(2pm−1nε+ 1)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx.

Take ε = 1

n4pm−
1
2
, then 4pm−1nε = 1

2 . Thus the third term in the right hand

side of (3.6) is absorbed by the left hand side one. Therefore,

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n)







∫

{|u−u∗|>L}

n
∑

i=1



1 +

n
∑

j=1

|Dju|
pj





pi−2

pi

|Diu|
2dx

+ |{|u− u∗| > L}|+

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

]

.

The left hand side of assumption (1.5) implies

(3.7)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n)

[

∫

{|u−u∗|>L}

f(x,Du(x))dx + |{|u− u∗| > L}|

+

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

]

.
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Our next goal is to prove

(3.8)

∫

{|u−u∗|>L}

f(x,Du(x))dx ≤

∫

{|u−u∗|>L}

f(x,Du∗(x))dx.

To this aim, we consider

w = u− v = u∗ + TL(u− u∗) =







u∗ − L, if u− u∗ < −L,
u, if − L ≤ u− u∗ ≤ L,

u∗ + L, if u− u∗ > L,

with v be as in (3.1). Then w ∈ u∗ +W
1,(pi)
0 (Ω) and

Dw = (Du)1{|u−u∗|≤L} + (Du∗)1{|u−u∗|>L}.

Then, minimality inequality (1.7) can be written as follows

(3.9)

∫

{|u−u∗|≤L}

f(x,Du(x))dx +

∫

{|u−u∗|>L}

f(x,Du(x))dx

≤

∫

{|u−u∗|≤L}

f(x,Dw(x))dx +

∫

{|u−u∗|>L}

f(x,Dw(x))dx

=

∫

{|u−u∗|≤L}

f(x,Du(x))dx +

∫

{|u−u∗|>L}

f(x,Du∗(x))dx.

Since we assumed the anisotropic growth (1.5) and Diu,Diu∗ ∈ Lpi(Ω), then
all the integrals above are finite and we can drop the integrals over {|u−u∗| ≤
L} from both sides in (3.9): this ends the proof of (3.8). Then (3.7) and (3.8)
merge into

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n)

[

∫

{|u−u∗|>L}

f(x,Du∗(x))dx + |{|u− u∗| > L}|

+

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

]

.

Now we use the right hand side of (1.5), and we get

(3.10)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n, c)







∫

{|u−u∗|>L}

n
∑

i=1



1 +

n
∑

j=1

|Dju∗|
pj





pi−2

pi

|Diu∗|
2dx

+ |{|u− u∗| > L}|+

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

]

.
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By (1.6), one has

(3.11)



1 +

n
∑

j=1

|Dju∗|
pj





pi−2

pi

|Diu∗|
2 ∈ LQi(Ω), i = 1, · · · , n,

where

(3.12) Qi :
1

Qi
=

pi − 2

pi min
1≤j≤n

(

qj
pj

) +
2

qi
, i = 1, · · · , n.

Let ti be such that

(3.13) pi < ti ≤ qi and
ti

pi
< Qi, i = 1, · · · , n.

Then by applying Hölder inequality with p′ = ti
pi

and q′ = ti
ti−pi

on the first

and third integrals in the right hand side of (3.10) we obtain

(3.14)

∫

{|u−u∗|>L}

n
∑

i=1



1 +

n
∑

j=1

|Dju∗|
pj





pi−2

pi

|Diu∗|
2dx

≤

n
∑

i=1



















∫

{|u−u∗|>L}









1 +

n
∑

j=1

|Dju∗|
pj





pi−2

pi

|Diu∗|
2







ti
pi

dx



















pi
ti

|{|u− u∗| > L}|
ti−pi

ti

=

n
∑

i=1







∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju∗|
pj





(pi−2)ti
p2
i

|Diu∗|
2ti
pi dx







pi
ti

|{|u− u∗| > L}|
ti−pi

ti

and

(3.15)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu∗|
pidx

≤

n
∑

i=1

(

∫

|u−u∗|>L

|Diu∗|
tidx

)

pi
ti

|{|u− u∗| > L}|
ti−pi

ti .
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Combining (3.14) and (3.15) with (3.10) we arrive at
(3.16)
∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n, c)











n
∑

i=1







∫

{|u−u∗|>L}



1 +

n
∑

j=1

|Dju∗|
pj





(pi−2)ti
p2
i

|Diu∗|
2ti
pi dx







pi
ti

|{|u− u∗| > L}|
ti−pi

ti

+ |{|u− u∗| > L}|

+
n
∑

i=1

(

∫

|u−u∗|>L

|Diu∗|
tidx

)

pi
ti

|{|u− u∗| > L}|
ti−pi

ti



 .

We need that, for a suitable choice of ti ∈ (pi, qi], i = 1, · · · , n, the
exponent

(3.17) b =
ti − pi

ti

does not depend on i. So, if we solve (3.17) with respect to ti we get

(3.18) ti =
pi

1− b
.

We keep in mind that all the ti’s should satisfy (3.13). The condition ti > pi
leads to b > 0, while for ti ≤ qi we obtain that

(3.19) b ≤ min
1≤i≤n

(

1−
pi

qi

)

,

and for ti
pi
< Qi we can get

(3.20) b < min
1≤i≤n

(

1−
1

Qi

)

.

Thus, for every b satisfying

0 < b ≤ min
1≤i≤n

(

1−
pi

qi

)

and b < min
1≤i≤n

(

1−
1

Qi

)

,

it is enough to define ti as in (3.18) to obtain that pi < ti ≤ qi and (3.17)
holds true. Under these assumptions, by setting

M =

n
∑

i=1







∫

Ω



1 +

n
∑

j=1

|Dju∗|
pj





(pi−2)ti
p2
i

|Diu∗|
2ti
pi dx







pi
ti

+

n
∑

i=1

(
∫

Ω

|Diu∗|
tidx

)

pi
ti

,
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we obtain from (3.16) that

(3.21)

∫

{|u−u∗|>L}

n
∑

i=1

|Diu−Diu∗|
pidx

≤ C(pm, n, c,M)
(

|{|u− u∗| > L}|b + |{|u− u∗| > L}|
)

= C(pm, n, c,M)
(

|{|u− u∗| > L}|b

+ |{|u− u∗| > L}|1−b|{|u− u∗| > L}|b
)

≤ C(pm, n, c,M)
(

|{|u− u∗| > L}|b + |Ω|1−b|{|u− u∗| > L}|b
)

= C(pm, n, c,M, |Ω|)|{|u− u∗| > L}|b.

Now we estimate the left hand side of (3.21) from below by considering just
one summand. Then we take both sides to the power 1

pi
and take the product

with respect to i to obtain that

(3.22)

n
∏

i=1

(

∫

{|u−u∗|>L}

|Diu−Diu∗|
pidx

)
1
pi

≤
(

C(pm, n, c,M, |Ω|)|{|u− u∗| > L}|b
)

n∑

i=1

1
pi .

Let us consider the test function (3.1). By Lemma 2.1, (3.2) and (3.22), we
have

(3.23)

(∫

Ω

|v|p̄
∗

dx

)
1
p̄∗

≤ c∗

[

n
∏

i=1

(∫

Ω

|Div|
pidx

)
1
pi

]
1
n

= c∗





n
∏

i=1

(

∫

{|u−u∗|>L}

|Diu−Diu∗|
pidx

)
1
pi





1
n

≤ c∗ (C(pm, n, c,M, |Ω|))
1
p̄ |{|u− u∗| > L}|

b
p̄ .

Now, since |v| = (|u− u∗| − L)1{|u−u∗|>L}, for L̃ > L we have

(3.24)

(L̃ − L)p̄
∗

|{|u− u∗| > L̃}|

=

∫

{|u−u∗|>L̃}

(L̃− L)p̄
∗

dx ≤

∫

{|u−u∗|>L̃}

(|u− u∗| − L)p̄
∗

dx

≤

∫

{|u−u∗|>L}

(|u− u∗| − L)p̄
∗

dx =

∫

Ω

|v|p̄
∗

dx.

Finally, by (3.23) and (3.24), we obtain

(3.25) |{|u− u∗| > L̃}| ≤
c
p̄∗

∗ (C(pm, n, c,M, |Ω|))
p̄∗

p̄

(L̃− L)p̄∗
|{|u− u∗| > L}|

bp̄∗

p̄ ,
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which holds for every L̃, L such that L̃ > L > 0.

Setting φ(s) = |{|u − u∗| > s}|, α = p̄∗, C̃ = c
p̄∗

∗ (C(pm, n, c,M, |Ω|))
p̄∗

p̄ ,

L0 = 1 and β = bp̄∗

p̄
. (3.25) becomes

(3.26) φ(L̃) ≤
C̃

(L̃− L)α
φ(L)β ,

for L̃ > L ≥ 1.
Since we assume b < p

p̄∗
in (1.9), then β < 1. We get from Lemma 2.2

that
(3.27)

|{|u− u∗| > L}| ≤

{

[

c∗C(pm, n, c,M, |Ω|)
1
p̄

]
p̄p̄∗

p̄−bp̄∗

+ |Ω|

}

2
p̄p̄∗(2p̄−bp̄∗)

(p̄−bp̄∗)2

(

1

L

)t

,

where t = α
1−β = p̄p̄∗

p̄−bp̄∗ > p̄∗ be as in (1.8). (3.27) means

u ∈ u∗ + Ltweak(Ω), t =
p̄p̄∗

p̄− bp̄∗
.

This ends the proof of Theorem 1.1.

4. Obstacle Problems.

In this section, we consider obstacle problem for the functional (1.1). Let

K
(pi)
ψ,u∗

(Ω) =
{

v ∈W 1,(pi)(Ω) : v ≥ ψ, a.e. Ω, and v − u∗ ∈ W
1,(pi)
0 (Ω)

}

,

where for the boundary datum u∗ and the obstacle function ψ, we assume
that

(4.1) u∗, ψ ∈W 1,(qi)(Ω), with qi > pi, for every i = 1, · · · , n.

For a recent development related to anisotropic obstacle problem, we refer
the reader to [2].

The next theorem shows that higher integrability of θ = max{ψ, u∗} forces

solutions u ∈ K
(pi)
ψ,u∗

(Ω) to be more integrable.

Theorem 4.1. Under the assumptions (1.5) and (4.1), let u ∈ K
(pi)
ψ,u∗

(Ω)

be a solution to the obstacle problem for the functional (1.1), that is,

(4.2)

∫

Ω

f(x,Du(x))dx ≤

∫

Ω

f(x,Dw(x))dx, ∀w ∈ K
(pi)
ψ,u∗

(Ω).

Then

u ∈ θ + Ltweak(Ω),

where t satisfies (1.8), and b is any number such that (1.9) holds true.
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Proof. Let u ∈ K
(pi)
ψ,u∗

(Ω) be a solution to the obstacle problem for the

functional (1.1). For L ∈ (0,+∞) we define

(4.3) v = u− θ − TL(u− θ) =







u− θ + L, if u− θ < −L,
0, if − L ≤ u− θ ≤ L,

u− θ − L, if u− θ > L.

We now show that w = u − v ∈ K
(pi)
ψ,u∗

(Ω). Indeed, it is obvious that w ∈

W 1,(pi)(Ω); for the first case u − θ < −L, we obviously have w = u − v =
θ − L > u ≥ ψ; for the second case −L ≤ u− θ ≤ L, one has w = u ≥ ψ; for

the third case u−θ > L, we have w = θ+L ≥ θ ≥ ψ; since u ∈ u∗+W
1,(pi)
0 (Ω)

and u ≥ ψ a.e. Ω, then θ = max{ψ, u∗} = u∗ = u on ∂Ω, thus v = 0 on ∂Ω.

This implies w = u on ∂Ω, and therefore w ∈ u∗ +W
1,(pi)
0 (Ω).

Since Dw = Dθ1{|u−θ|>L} +Du1{|u−θ|≤L}, then inequality (4.2) implies

(4.4)

∫

{|u−θ|>L}

f(x,Du(x))dx ≤

∫

{|u−θ|>L}

f(x,Dθ(x))dx.

The next proof is similar to the proof of Theorem 1.1 with θ in place of
u∗ and (4.4) in place of (3.8). We omit the details.
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