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FINITE ELEMENT STRESS ANALYSIS OF ELASTIC BEAMS  
UNDER NON-UNIFORM TORSION 

Summary 

This paper presents a two-dimensional finite element formulation for the stress analysis of 
elastic beams subjected to non-uniform torsion. The element stiffness matrix and load vectors 
are derived using the primary and secondary warping functions. The primary function corre-
sponds to that occurring with uniform torsion problems. The secondary function is introduced to 
take into account effects caused by the restrained warping. Thus, shear stresses are divided into 
the primary and secondary ones, keeping the same meaning as the warping functions. The 
proposed finite element model enables the stress analysis to be carried out regardless of cross-
sectional shapes. The material is assumed to obey Hooke’s law. The effectiveness of the 
presented finite element algorithm is validated through two benchmark examples. 
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1. Introduction 

Basic torsion theory, referred to as St. Venant’s or uniform torsion theory, is well 
described in literature [1-4] and has been, for a long time, a fundamental theory applied by 
many researchers in the field of torsion. If the warping effects are to be taken into account, the 
non-uniform torsion theory has to be applied [5, 6]. The development of the computational 
science and of numerical analysis resulted in numerous methods, e.g. finite element method, 
finite difference method, finite volume method, etc. Merging torsion theories with numerical 
analysis opens up new possibilities in predicting and modelling various types of structures 
and machine elements submitted to a torsion type of load. Some numerical solutions to the 
uniform torsion problem are presented in Refs. 1, 7 and 8, while those used in the non-
uniform torsion problem solving are given in Refs. 9-16. 

In modern engineering practice, engineers seeking practical solutions often tend to 
idealize their input parameters. Such a procedure often gives good approximate results 
although it does not give a real insight into the behaviour of the structural member discussed. 
When talking about torsion, these idealizations usually prefer to neglect the effects of 
restrained warping, which always occur when beams have particular restraints. Although, the 
fact is that in the long beams or in the beams having low torsional and high sectoral rigidities 
such effects are usually negligible. Therefore, some authors, to simplify their analyses, refer 
to three types of cross-sections: solid, closed thin-walled and open thin-walled sections and 
they point out the open thin-walled sections when dealing with restrained warping [1].  
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This paper presents a finite element formulation for the linear stress analysis of beams 
subjected to non-uniform torsion. The applied torsion theory is a modified theory originally 
presented by Sapountzakis [9]. The described numerical model uses an isoparametric 
quadrilateral nine-node element presented by Pilkey [1]. The element stiffness matrix and 
load vectors are derived using the primary and secondary warping functions. The primary 
warping function corresponds to that occurring with uniform torsion problems. The secondary 
warping function is introduced to account for the shear stress due to restrained warping 
effects. Thus, the shear stress is divided into the primary and the secondary one, where the 
former appears due to uniform torsion and the latter due to restrained warping. The proposed 
finite element model enables the stress analysis to be carried out regardless of cross-sectional 
shapes. The material is assumed to obey Hooke’s law. The computer program is written using 
the Python programming language. The effectiveness of the algorithm discussed is validated 
through two benchmark examples. 

2. Basic considerations 

A right-handed Cartesian coordinate system (x, y, z) is chosen in such a way that the z-
axis coincides with the beam axis passing through the centroid of each cross-section. The 
shear centre of the cross-section is defined by the position coordinates xS and yS. The 
displacement field is taken as 
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where u, v and w are the rigid-body translations of the cross-section in the x-, y- and z-
directions, respectively; φ is the angle of twist about the shear centre; ν is Poisson's ratio; ωI 
and ωII are the primary and secondary warping functions, respectively. The secondary 
warping function is introduced to obtain the secondary shear stress due to restrained warping 
[9]. The non-zero strain components are found from the first order strain-displacement 
relations as 
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If the fourth order derivative of the angle of twist is left out from Eq. (2), stress components 
of a linear elastic material are calculated as 
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 (4) 

The shear stress is decomposed into a primary and a secondary part due to the uniform and the 
non-uniform torsion, respectively, i.e.  
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From Eq. (4), equilibrium equations form the following expressions: 
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Furthermore, Eq. (7) is decomposed into two partial differential equations:  
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It can be observed that both warping functions, ωI and ωII, are modelled by Eqs. (8) and (9). 
Boundary conditions for partial differential equations (8) and (9) are, respectively, 

,0svsv  yzyxzx nτnτ  (10) 
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The warping functions, defined in Eqs. (8) and (9), are calculated with respect to the shear 
centre. Stress resultants acting on each cross-section of the beam can be defined as follows: 
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where Bω is the bimoment, while Iω represents the warping moment of inertia. The torsional 
moment Mz consists of two parts: Tsv and Tω, representing St. Venant’s or the uniform torsion 
moment and the warping or the non-uniform torsion moment, respectively. From Eqs. (5) and 
(13), the components of torsional moment can be expressed as  
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In Eq. (14), It denotes the St. Venant torsional constant, while III from Eq. (15) represents the 
warping moment of inertia due to the secondary warping function analogous to Iω. The 
differential equation for the non-uniform torsion follows from the inclusion of Eqs. (14) and 
(15) into Eq. (13) 

'IG'''IEM z  tII  , (16) 
and if expressed in terms of the continuous torsional moment mz 

dz

dM z
zz m''IG''''IEm  ,tII  . (17) 

By solving the differential equation from Eq. (16) or (17), the expression for the angle of twist 
is derived. The analytical solution to Eq. (17) is taken from Chen and Atsuta [3], as 
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3. Finite element formulation 

In the stress analysis procedure, the first step is the calculation of the primary and 
secondary warping functions, followed by the determination of the torsional constant and the 
warping moment of inertia. Once obtained, these values are used for the calculation of the 
angle of twist, from Eq. (18), and, lastly, of the stresses from Eqs. (4) and (5). 

To calculate the warping functions, the procedure continues with the discretization of 
the cross-section with finite elements. Isoparametric quadrilateral nine-node elements are 
used, where the Lagrangian shape functions are: 
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The warping functions are calculated by solving the partial differential equations from Eqs. 
(8) and (9) with the boundary conditions from Eqs. (10) and (11). After applying the weighted 
residual method to Eq. (8), it follows that 
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where the second integral in Eq. (20) implies the boundary condition in vector notation. The 
integral form in Eq. (20) is referred to as a “weak formulation”. If the test functions r and r  
are chosen to be identical and if Green’s first identity and the divergence theorem are used, 
the weak formulation takes the final form  

.0I   AA
dArdAωr g  (21) 

Now, if the finite element form is applied by the inclusion of 

      ,,,,, TTeee
II NrrNωN   r  (22) 
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the following expression is obtained:  
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The solution to the primary warping function is obtained by solving Eq. (23) for each 
element. The weak formulation for the second partial differential equation, Eq. (9), is taken as 
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Once again, if the test functions r and r  are chosen to be identical and Green’s first identity 
and the divergence theorem are used, the weak formulation takes the final form 
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The finite element form is applied by the inclusion of 
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and it is obtained that 

     .0e
I

Te
II

TTe A dAωNNωNNr  (28) 

The solution to the second warping function is obtained by solving Eq. (28) for each element. 
The stiffness matrix is of the same form for both partial differential equations, and it is 
calculated as 
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To make the transformation from the real domain (x, y) to the reference domain (η, ζ), first, 
the Jacobian matrix has to be calculated 
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If transforming the integral, one has to add the determinant of the Jacobian matrix, or the 
“Jacobian” under the integral. For example, if transforming the expression for the surface of 
the element from the real domain Ω to the reference domain Ωr, it is calculated as 
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The gradient of the shape function matrix N  is calculated as 
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And, if transposed, then  
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If Eqs. (31), (32) and (33) are included into Eq. (29), the final expression for the stiffness 
matrix is derived as 
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The load vector which corresponds to Eq. (8) is  

.
1

1

1

1
e

s

sT

s

s
TT

TTe
I  

 






































 dd
x

y
dA

xx
yy

dA
AA yx

J
Nx

Ny
BgNp NN  (35) 

The load vector which corresponds to Eq. (9) is 
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On the basis of Eq. (36), to solve Eq. (9), first,   one has to solve Eq. (8) to obtain the 
primary warping function. When  the stiffness matrices and  the load vectors of each element 
are combined into a global stiffness matrix and a global load vector, general solutions are 
obtained by solving linear systems of equations 

., IIIIII PωKPωK   (37) 

After calculating the warping functions, the torsional constant and the warping moment 
of inertia are calculated from Eqs. (14) and (12) or (15), respectively. The angle of twist is 
calculated analytically from Eq. (18), in which, by setting the boundary conditions depending 
on the type of the beam supports, unknown constants (C1…C4) are determined. From there, it 
is easy to calculate the stresses by using Eqs. (4) and (5). 

4. Numerical Examples 

On the basis of the proposed finite element procedure, a computer program for stress 
analysis is developed. The accuracy of the presented model is illustrated by two examples. 
Stresses calculated by the computer program are the axial stress σz and the resultant shear 
stress τ, which is given as  

2 2 .zx zy     (38) 

From Eq. (38), one should note that the resultant shear stress τ will always be positive since it 
only represents the intensity of the stress and not the direction.  

Example 4.1 Figure 1 shows a symmetric I-beam fixed at both ends. The rotation about the z-
axis is fully restrained while the warping is completely free. The beam is loaded by uniformly 
distributed torque mz = 1 kNm/m. The elastic moduli are E = 210 GPa and G = 80.77 GPa. 
Since the cross-section is symmetric, the shear centre coincides with the centroid of the cross-
section.  
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Fig. 1  Symmetric I-beam fixed  at both ends 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2  Distribution of  (a) the angle of twist φ,  (b) of the bimoment Bω ,  (c) of the torsional moment Mz , 
(d) St. Venant’s moment Tsv ,  (e)  the restrained warping moment Tω over the length of the I-beam 

Distributions of the angle of twist φ, bimoment Bω, torsional moment Mz and its 
components over the length of the beam are shown in Figure 2. Since the intensity of the 
resultant shear stress τ is only calculated and since there is symmetry, it is enough to observe 
the beam from z = 0 to z = l/2.  

The highest level of the axial stress in the cross-section occurs at z = l/2 since the 
bimoment value is highest there. Shear stress has its minimum/maximum at z = 0 and z = l. 
Distributions of the highest axial and shear stresses, by its components, are shown in Figure 3. 

The cross-section is discretized by 1756 elements.  The graphs above the flanges in 
Figure 3 (a) and (b) show the distribution of the described stress over the centre line of the 
flange. In Figure 3 (c), the graph above the flange and the graph on the right show the 
distribution of primary shear stress over the upper contour of the flange and over the right 
contour of the web, respectively. Since the corners of the cross-section are sharp, one can 
notice the appearance of very high stress concentrations on the graph on the right in Figure 3 
(c). By filleting or chamfering the corners, such stress concentrations can be significantly 
reduced. 
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(a)

 
(b) 

 
(c) 

Fig. 3  Distribution of  (a) the axial stress σz at z = l/2 ,  (b) the secondary shear stress τω at z = 0 ,   
(c) the primary shear stress τsv at z = 0  over the surface of the I-beam cross-section 

This example was solved analytically by Šimić [17]. The numerical solution is 
compared with the analytical solution at three different cross-sectional cuts, for three different 
cross-section positions (marked in Figure 1). The compared values are shown in Tables 1, 2, 
and 3, where the values of the axial stress and of the secondary shear stress (σz, τω) are shown 
for the centre line of the cross-sectional cut, while the values of the primary shear stress (τsv) 
are shown for one of the contours of the cross-sectional cut. 
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Table 1 Comparison between the numerical and 
analytical values of the axial stress σz on 
various cuts of the I-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

A – A  z = 0 0.00 0.00 
A – A z = l/4 – 50.93 – 50.12 
A – A z = l/2 – 63.14 – 62.00 

Table 2 Comparison between the numerical and 
analytical values of the secondary shear 
stress τω on various cuts of the I-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

B – B  z = 0 1.99 1.97 
B – B z = l/4 0.63 0.61 
B – B z = l/2 0.00 0.00 

Table 3 Comparison between the numerical and 
analytical values of the primary shear 
stress τsv on various cuts of the I-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

B – B  
z = 0 

50.96 49.60 
C – C 32.78 31.89 
B – B 

z = l/4 
33.75 32.81 

C – C 21.71 21.10 
B – B 

z = l/2 
0.00 0.00 

C – C 0.00 0.00 

 
 
 
 

 
Example 4.2 Figure 4 shows a cantilevered U-beam loaded with the torsional moment  
Mz = 20 Nm at the free end. The elastic moduli are E = 210 GPa and G = 80.77 GPa. 

 

 
Fig. 4  Cantilevered U-beam 

Distributions of the angle of twist φ, bimoment Bω, torsional moment Mz and its 
components over the length of the beam are shown in Figure 5.  

The highest level of axial stress occurs in the cross-section with the highest value of the 
applied bimoment, and that is in the cross-section at z = 0. The secondary shear stress has its 
maximum in the same cross-section, i.e. at z = 0. The highest level of primary shear stress 
occurs in the cross-section at z = l. Distributions of the highest axial and the highest shear 
stress, by its components, are shown in Figure 6.  

The cross-section is discretized by 1884 elements. The graphs in Figure 6 (a) and (b) 
show the distributions of the described stress over the centre line of the U profile while those 
in Figure 6 (c) show the distributions of the primary shear stress over the outer contour of the 
U profile. 

A similar example is solved analytically by Chen and Atsuta [2]. The numerical 
solution is compared to the analytical one at six different cross-sectional cuts, for three 
different cross-section positions (marked in Figure 4). The compared values are shown in 
Tables 4, 5, and 6, where the values of the axial stress and of the secondary shear stress (σz, 
τω) are shown for the centre line of the cross-sectional cut, while the values of the primary 
shear stress (τsv) are shown for one of the contours of the cross-sectional cut. 
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(a) 

 
(b)  

 
(c) (d) (e) 

Fig. 5  Distribution of  (a) the angle of twist φ ,  (b) the bimoment Bω  (c) the torsional moment Mz ,   
(d) St. Venant’s moment Tsv ,  (e) the restrained warping moment Tω over the length of the U-beam 

Table 4  Comparison between the numerical and 
analytical values of the axial stress σz on 
various cuts of the U-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

A – A  

z = 0 

19.27 18.07 
C – C – 12.71 – 12.82 
E – E 17.94 18.87 
F – F – 57.96 – 59.58 
A – A 

z = l/10 

10.72 9.92 
C – C – 7.07 – 7.03 
E – E 9.98 10.36 
F – F – 32.23 – 32.70 
A – A 

z = l 0.00 0.00 
C – C 
E – E 
F – F 

 

 

 

Table 5  Comparison between the numerical and 
analytical values of the primary shear 
stress τsv on various cuts of the U-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

B – B  
z = 0 0.00 0.00 

D – D
B – B 

z = l/10 
6.70 6.79 

D – D 6.70 6.79 
B – B 

z = l 
15.00 14.97 

D – D 15.00 14.97 

Table 6  Comparison between the numerical and 
analytical values of the secondary shear 
stress τω on various cuts of the U-beam 

  Numerical 
(MPa) 

Analytical 
(MPa) 

B – B  
z = 0 

1.36 1.27 
D – D – 0.80 – 0.92 
B – B 

z = l/10 
0.75 0.70 

D – D – 0.44 – 0.51 
B – B 

z = l 
0.01 0.01 

D – D – 0.01 – 0.01 
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(a)

 
(b)

 
(c)

Fig. 6  Distribution of (a) the axial stress σz at z = 0  (b) the secondary shear stress τω at z = 0 
(c) Distribution of the primary shear stress τsv at z = l over the surface of the U-beam cross-section 

5. Conclusions 

This paper has presented a model for the elastic stress analysis of beams under non-
uniform torsion. A genuine solution has been reached using the finite element method. The 
reliability of the proposed numerical model has been verified by studying two examples which 
showed a certain degree of accuracy. Due to stress concentrations, the solution proposed in this 
paper slightly differs from the analytical solution, but the difference can be reduced by 
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applying fillets or chamfers on the corners of the cross-section. This solution is able to display 
stress distributions over the surface of the cross-section. Future research will extend the 
proposed algorithm to a model with the material and geometric nonlinearity. For that purpose, 
the angle of twist will be solved numerically. Since the model is able to show stress 
distribution, the idea is to display gradual plastification over the surface of the cross-section. 
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