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FINITE ELEMENT STRESS ANALYSIS OF ELASTIC BEAMS
UNDER NON-UNIFORM TORSION

Summary

This paper presents a two-dimensional finite element formulation for the stress analysis of
elastic beams subjected to non-uniform torsion. The element stiffness matrix and load vectors
are derived using the primary and secondary warping functions. The primary function corre-
sponds to that occurring with uniform torsion problems. The secondary function is introduced to
take into account effects caused by the restrained warping. Thus, shear stresses are divided into
the primary and secondary ones, keeping the same meaning as the warping functions. The
proposed finite element model enables the stress analysis to be carried out regardless of cross-
sectional shapes. The material is assumed to obey Hooke’s law. The effectiveness of the
presented finite element algorithm is validated through two benchmark examples.
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1. Introduction

Basic torsion theory, referred to as St. Venant’s or uniform torsion theory, is well
described in literature [1-4] and has been, for a long time, a fundamental theory applied by
many researchers in the field of torsion. If the warping effects are to be taken into account, the
non-uniform torsion theory has to be applied [5, 6]. The development of the computational
science and of numerical analysis resulted in numerous methods, e.g. finite element method,
finite difference method, finite volume method, etc. Merging torsion theories with numerical
analysis opens up new possibilities in predicting and modelling various types of structures
and machine elements submitted to a torsion type of load. Some numerical solutions to the
uniform torsion problem are presented in Refs. 1, 7 and 8, while those used in the non-
uniform torsion problem solving are given in Refs. 9-16.

In modern engineering practice, engineers seeking practical solutions often tend to
idealize their input parameters. Such a procedure often gives good approximate results
although it does not give a real insight into the behaviour of the structural member discussed.
When talking about torsion, these idealizations usually prefer to neglect the effects of
restrained warping, which always occur when beams have particular restraints. Although, the
fact is that in the long beams or in the beams having low torsional and high sectoral rigidities
such effects are usually negligible. Therefore, some authors, to simplify their analyses, refer
to three types of cross-sections: solid, closed thin-walled and open thin-walled sections and
they point out the open thin-walled sections when dealing with restrained warping [1].
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This paper presents a finite element formulation for the linear stress analysis of beams
subjected to non-uniform torsion. The applied torsion theory is a modified theory originally
presented by Sapountzakis [9]. The described numerical model uses an isoparametric
quadrilateral nine-node element presented by Pilkey [1]. The element stiffness matrix and
load vectors are derived using the primary and secondary warping functions. The primary
warping function corresponds to that occurring with uniform torsion problems. The secondary
warping function is introduced to account for the shear stress due to restrained warping
effects. Thus, the shear stress is divided into the primary and the secondary one, where the
former appears due to uniform torsion and the latter due to restrained warping. The proposed
finite element model enables the stress analysis to be carried out regardless of cross-sectional
shapes. The material is assumed to obey Hooke’s law. The computer program is written using
the Python programming language. The effectiveness of the algorithm discussed is validated
through two benchmark examples.

2. Basic considerations

A right-handed Cartesian coordinate system (x, y, z) is chosen in such a way that the z-
axis coincides with the beam axis passing through the centroid of each cross-section. The
shear centre of the cross-section is defined by the position coordinates xs and ys. The
displacement field is taken as

u(rz)==(r=x)o(z), v(xz)=(x-x)p(z)
w(x,y,z) = go’(z)a)I (x,y)—2(1+v)(p’”(z)a)II (x,y)
where u, v and w are the rigid-body translations of the cross-section in the x-, y- and z-
directions, respectively; ¢ is the angle of twist about the shear centre; v is Poisson's ratio; w;
and oy are the primary and secondary warping functions, respectively. The secondary
warping function is introduced to obtain the secondary shear stress due to restrained warping

[9]. The non-zero strain components are found from the first order strain-displacement
relations as

(1)

g, =ZZZU:¢”COI _2(14“’)(0””6011, (2)
and
yzx =%+@_ (%_)H'J’S )_2 (1 + V) @’”%
z  Ox ox o (3)
80 ow___,| 0wy ) 11, O
== | L x—x, |-2(1+Vv —

If the fourth order derivative of the angle of twist is left out from Eq. (2), stress components
of a linear elastic material are calculated as

o,=F¢ =FE¢" o,

o a
=Gy, = G(ﬂ’(wl‘y +st e @
ox ox
=Gy G(p “Tix—x E(p”’%
i oy ° oy

The shear stress is decomposed into a primary and a secondary part due to the uniform and the
non-uniform torsion, respectively, i.e.
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_ _ sV [0}
T =Tt T,=T, +T,

0 0
T =G¢’(ﬁ—y+ys} Ty =G¢’(ﬁ+x—xsj (5)
Ox oy
0 0
T;)c =_E¢m Wy , ;__E¢m Wy
ox Oy

From Eq. (4), equilibrium equations form the following expressions:

or ow ow
zx:G 7 it U + _E mr_[[zo
oz 4 ( Ox 7 ysj ¢ Ox
o . (©)
G(p"( +x— XSJ E(p””ﬂ =0
az oy o
and
or, Ot oo o, o Do, o
= Z+ Z=Gl I+ I_E " II+ II +FE " 0 7
Ox oy 0z 4 ( ox’ o’ 4 o’ ay v ™
Furthermore, Eq. (7) is decomposed into two partial differential equations:
o, 0w
Vi, =— L=0, 8
1= 52 T 8)
2 2
Viay =2 20 ©)

ox’ Oy

It can be observed that both warping functions, w; and wy;, are modelled by Egs. (8) and (9).
Boundary conditions for partial differential equations (8) and (9) are, respectively,

oon, +ton, =0, (10)
on +ton, =0. (11)

The warping functions, defined in Egs. (8) and (9), are calculated with respect to the shear
centre. Stress resultants acting on each cross-section of the beam can be defined as follows:

B,=[ 0.0,dd=E¢"| w’dA=El,¢", I,=| o’d, (12)

Mz:J.A [sz(x_xS)_sz(y_yS)]dA :T;V+Tw7 (13)

where B, is the bimoment, while /, represents the warping moment of inertia. The torsional
moment M, consists of two parts: Ty, and T, representing St. Venant’s or the uniform torsion
moment and the warping or the non-uniform torsion moment, respectively. From Egs. (5) and
(13), the components of torsional moment can be expressed as

J-[ xxs zxy ys]dA Gl ¢

@ w (14)
g :L {(x_xS)z+(y_ys)2+(x—xs)%—(y—ys)&}d,4
i ox
and
Tm:J. [T ()C xS) sz(y—ys)]dA_ E]II¢/II
(15)
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In Eq. (14), I; denotes the St. Venant torsional constant, while /;; from Eq. (15) represents the
warping moment of inertia due to the secondary warping function analogous to /,. The
differential equation for the non-uniform torsion follows from the inclusion of Egs. (14) and
(15) into Eq. (13)

M.=-El, ¢"+GIl ¢', (16)
and if expressed in terms of the continuous torsional moment m,
am
m. = ELg"~Glg", m, === (17)
z

By solving the differential equation from Eq. (16) or (17), the expression for the angle of twist
is derived. The analytical solution to Eq. (17) is taken from Chen and Atsuta [3], as
? GI
=C, +C, z+C, cosh(az)+C,sinh(az)— == , o L,
(/’(Z) 1 22710, ( Z) 4 (az) 261, £l

(18)

3. Finite element formulation

In the stress analysis procedure, the first step is the calculation of the primary and
secondary warping functions, followed by the determination of the torsional constant and the
warping moment of inertia. Once obtained, these values are used for the calculation of the
angle of twist, from Eq. (18), and, lastly, of the stresses from Egs. (4) and (5).

To calculate the warping functions, the procedure continues with the discretization of
the cross-section with finite elements. Isoparametric quadrilateral nine-node elements are
used, where the Lagrangian shape functions are:

1
N(’/I’C):_[Nl N, Ny N, Ny N; N, N N9]

N 0)=nc=m(-¢), Ny(n.0)=-2n(-n)(1-¢7)
O)==nf(-n)+0), Nn&)=-220-77)1-¢) (19)
)=4(-n*)1-¢2). Ny(n.O)=240-7*)1+0)
()= —714“(1+77)(1 o), Ny(nO)=2n(+n)1-22)
9( n.¢ ):W§(1+”)(1+C)
The warping functions are calculated by solving the partial differential equations from Egs.

(8) and (9) with the boundary conditions from Eqs. (10) and (11). After applying the weighted
residual method to Eq. (8), it follows that

L Vi, dA+£7(n'g—n'le)dS=O

Ny,
Ny(n.¢
N

(20)

o .0 . . .
V=i—+j—, n=ni+nj, g=(-y)i-(x-x)j
ox oy

where the second integral in Eq. (20) implies the boundary condition in vector notation. The
integral form in Eq. (20) is referred to as a “weak formulation”. If the test functions » and 7
are chosen to be identical and if Green’s first identity and the divergence theorem are used,
the weak formulation takes the final form

L Vr-ledA—IAg-VrdA:O. 1)
Now, if the finite element form is applied by the inclusion of

o,(1,$)=Nm.¢)of, r=N(,¢)r =r"N", (22)
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the following expression is obtained:

[ r'[("NT - VN)o: ~VN" g |da=0. 23)
And for each element, there is a form

re (ke(:)e - pe): 0, kK°'o°=p°. (24)

The solution to the primary warping function is obtained by solving Eq. (23) for each
element. The weak formulation for the second partial differential equation, Eq. (9), is taken as

L r[Vsz - a)I]dA —i rn-Vo, ds=0
o .0 (25)

V=i—+j—, n=n_i+n j
Ox Oy g

Once again, if the test functions » and » are chosen to be identical and Green’s first identity
and the divergence theorem are used, the weak formulation takes the final form

[ Fvr-vo,—relda=o. (26)
The finite element form is applied by the inclusion of

0)11(77’4/): N(ﬂ»()ﬁ)ﬁ , 0)1(7794/): N(Uaé/)(’)? s> F= N(U,C)l’e = reTNT > (27)
and it is obtained that

[ r<"[(vNT-IN)o, + (N -N)ot Jaa =0. (28)

The solution to the second warping function is obtained by solving Eq. (28) for each element.
The stiffness matrix is of the same form for both partial differential equations, and it is
calculated as

T T
= ] o b 5 N, >

To make the transformation from the real domain (x, y) to the reference domain (y, {), first,
the Jacobian matrix has to be calculated

a o] [ N ] [

_|on oOn|_|On on | _|on
J_ﬁ o |7|ox on —a_N[x y). (30)

g og og  og Y g
If transforming the integral, one has to add the determinant of the Jacobian matrix, or the

“Jacobian” under the integral. For example, if transforming the expression for the surface of
the element from the real domain Q to the reference domain Q,, it is calculated as

A, = jg dxdy = jQ J |dndc¢ . (31)

The gradient of the shape function matrix VN is calculated as

ON ON on . ON 8¢ on oc || ON ON
| ox | _|Onox O ox | _|ox ox ||oOn|_ ya|on|_ _
VN = = = =J =B. =B 32
|| oNon Nog|T|en o || o |7 o | 7B o
oy on dy 0¢ Oy dy oyl of og

And, if transposed, then
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on On
T T T T - T T
UNTo| N N | _|ONT N flar oy |_|ON_ N J:T:BT‘ (33)
ox oy on  o¢ J|9 9| |an &g
ox Oy

If Egs. (31), (32) and (33) are included into Eq. (29), the final expression for the stiffness
matrix is derived as

ON
11 T T - 11
e ON ON aT .4 87] T
k®= J.J, J.|dndS = |B B|J, |dndS . (34)
[ S| o <[]
¢
The load vector which corresponds to Eq. (8) is
oNT oNT || ¥y (o] NY—
“=| VN".g"dd= —_— * ldAa=||B" >\, |dndS . 35
P L & J‘A{ ox Oy M—x+xs '['[ —Nx+x, | ° nds 33)
The load vector which corresponds to Eq. (9) is
11
pi=— (N"-Nodd= [ [(N"-N)w;|J |drd¢ . (36)

-1-1
On the basis of Eq. (36), to solve Eq. (9), first, one has to solve Eq. (8) to obtain the
primary warping function. When the stiffness matrices and the load vectors of each element
are combined into a global stiffness matrix and a global load vector, general solutions are
obtained by solving linear systems of equations

Ko, =P, Ko,=P,. 37)

After calculating the warping functions, the torsional constant and the warping moment
of inertia are calculated from Eqgs. (14) and (12) or (15), respectively. The angle of twist is
calculated analytically from Eq. (18), in which, by setting the boundary conditions depending
on the type of the beam supports, unknown constants (C;...Cy) are determined. From there, it
is easy to calculate the stresses by using Egs. (4) and (5).

4. Numerical Examples

On the basis of the proposed finite element procedure, a computer program for stress
analysis is developed. The accuracy of the presented model is illustrated by two examples.
Stresses calculated by the computer program are the axial stress o, and the resultant shear
stress 7, which is given as

2 2

i, (38)

From Eq. (38), one should note that the resultant shear stress 7 will always be positive since it
only represents the intensity of the stress and not the direction.

Example 4.1 Figure 1 shows a symmetric I-beam fixed at both ends. The rotation about the z-
axis is fully restrained while the warping is completely free. The beam is loaded by uniformly
distributed torque m, = 1 kNm/m. The elastic moduli are £ = 210 GPa and G = 80.77 GPa.
Since the cross-section is symmetric, the shear centre coincides with the centroid of the cross-
section.
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Fig. 2 Distribution of (a) the angle of twist ¢, (b) of the bimoment B,,, (c) of the torsional moment M, ,
(d) St. Venant’s moment Ty, , (e) the restrained warping moment T,, over the length of the I-beam

Distributions of the angle of twist ¢, bimoment B, torsional moment M, and its
components over the length of the beam are shown in Figure 2. Since the intensity of the
resultant shear stress 7 is only calculated and since there is symmetry, it is enough to observe
the beam fromz = 0toz = //2.

The highest level of the axial stress in the cross-section occurs at z = [/2 since the
bimoment value is highest there. Shear stress has its minimum/maximum at z = 0 and z = /.
Distributions of the highest axial and shear stresses, by its components, are shown in Figure 3.

The cross-section is discretized by 1756 elements. The graphs above the flanges in
Figure 3 (a) and (b) show the distribution of the described stress over the centre line of the
flange. In Figure 3 (c), the graph above the flange and the graph on the right show the
distribution of primary shear stress over the upper contour of the flange and over the right
contour of the web, respectively. Since the corners of the cross-section are sharp, one can
notice the appearance of very high stress concentrations on the graph on the right in Figure 3
(c). By filleting or chamfering the corners, such stress concentrations can be significantly
reduced.
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Fig. 3 Distribution of (a) the axial stress o, at z = I/2 , (b) the secondary shear stress t* atz =0,
(c) the primary shear stress 7" at z = 0 over the surface of the I-beam cross-section

This example was solved analytically by Simi¢ [17]. The numerical solution is
compared with the analytical solution at three different cross-sectional cuts, for three different

cross-section positions (marked in Figure 1).

The compared values are shown in Tables 1, 2,

and 3, where the values of the axial stress and of the secondary shear stress (o,, 7°) are shown
for the centre line of the cross-sectional cut, while the values of the primary shear stress (z°)
are shown for one of the contours of the cross-sectional cut.
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Table 1 Comparison between the numerical and Table 3 Comparison between the numerical and
analytical values of the axial stress o, on analytical values of the primary shear
various cuts of the I-beam stress 7° on various cuts of the I-beam

Numerical | Analytical Numerical | Analytical
(MPa) (MPa) (MPa) (MPa)
A-A z=10 0.00 0.00 B-B 0 50.96 49.60
A-A z=1/4 —50.93 —50.12 Cc-C : 32.78 31.89
A-A z=1/2 —63.14 -62.00 B-B 14 33.75 32.81
7=

Table 2 Comparison between the numerical and €-¢ 2171 21.10
analytical values of the secondary shear B-B J— 0.00 0.00
stress 7 on various cuts of the [-beam Cc-C 0.00 0.00

Numerical | Analytical
(MPa) (MPa)
B-B z=0 1.99 1.97
B-B z=1/A4 0.63 0.61
B-B z=12 0.00 0.00

Example 4.2 Figure 4 shows a cantilevered U-beam loaded with the torsional moment
M, =20 Nm at the free end. The elastic moduli are £ =210 GPa and G = 80.77 GPa.

20 mm
F ¢
+ rl 7]
Vi ¢!
’ | X 4 5. mm -
7/ ]
1 % vyt
’ M:z=20Nm g I
s = i !
S z2=0 /) z, g o=ci || _x
L A S| Y€ TN
X 0 [ J 33.7?r 51l =338
= v = i
z=1/10 z= = =
- Il ! .
[=1m & N B"l» Ol S a281,-26.32)

N
AlB <
40 mm

Distributions of the angle of twist ¢, bimoment B, torsional moment M, and its
components over the length of the beam are shown in Figure 5.

Fig. 4 Cantilevered U-beam

The highest level of axial stress occurs in the cross-section with the highest value of the
applied bimoment, and that is in the cross-section at z = (). The secondary shear stress has its
maximum in the same cross-section, i.e. at z = 0. The highest level of primary shear stress
occurs in the cross-section at z = /. Distributions of the highest axial and the highest shear
stress, by its components, are shown in Figure 6.

The cross-section is discretized by 1884 elements. The graphs in Figure 6 (a) and (b)
show the distributions of the described stress over the centre line of the U profile while those
in Figure 6 (c) show the distributions of the primary shear stress over the outer contour of the
U profile.

A similar example is solved analytically by Chen and Atsuta [2]. The numerical
solution is compared to the analytical one at six different cross-sectional cuts, for three
different cross-section positions (marked in Figure 4). The compared values are shown in
Tables 4, 5, and 6, where the values of the axial stress and of the secondary shear stress (o,
7”) are shown for the centre line of the cross-sectional cut, while the values of the primary
shear stress (z°") are shown for one of the contours of the cross-sectional cut.
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Fig. 5 Distribution of (a) the angle of twist ¢ , (b) the bimoment B,, (c) the torsional moment M, ,
(d) St. Venant’s moment Ty, , (e) the restrained warping moment T, over the length of the U-beam

Table 4 Comparison between the numerical and
analytical values of the axial stress g, on
various cuts of the U-beam

Numerical | Analytical
(MPa) (MPa)
A-—A 19.27 18.07
C-C i -12.71 —12.82
E-E | ~ 17.94 18.87
F-F —57.96 —59.58
A-A 10.72 9.92
C-C —-7.07 —7.03
z=1l10
E-E 9.98 10.36
F-F —32.23 —32.70
A-A
C-C
z=1 0.00 0.00
E-E
F-F

80

Table 5 Comparison between the numerical and
analytical values of the primary shear
stress 7° on various cuts of the U-beam

Numerical | Analytical
(MPa) (MPa)
B-B
z=0 0.00 0.00
D-D
B-B 6.70 6.79
z=1/10
D-D 6.70 6.79
B-B ; 15.00 14.97
pp| ° 15.00 14.97

Table 6 Comparison between the numerical and
analytical values of the secondary shear
stress 7° on various cuts of the U-beam

Numerical | Analytical

(MPa) (MPa)

B-B 1.36 1.27
z=10
D-D —0.80 -0.92
B-B 0.75 0.70
z=1U/10

D-D -0.44 -0.51
B-B ; 0.01 0.01
pp| ° 001 | 001
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Fig. 6 Distribution of (a) the axial stress o, at z = 0 (b) the secondary shear stress 7 at z = 0
(c) Distribution of the primary shear stress 7 at z = [ over the surface of the U-beam cross-section

5. Conclusions

This paper has presented a model for the elastic stress analysis of beams under non-
uniform torsion. A genuine solution has been reached using the finite element method. The
reliability of the proposed numerical model has been verified by studying two examples which
showed a certain degree of accuracy. Due to stress concentrations, the solution proposed in this
paper slightly differs from the analytical solution, but the difference can be reduced by

TRANSACTIONS OF FAMENA XL-2 (2016)

81



D. Bani¢, G. Turkalj, J. Brni¢ Finite Element Stress Analysis of Elastic Beams
under Non-Uniform Torsion

applying fillets or chamfers on the corners of the cross-section. This solution is able to display
stress distributions over the surface of the cross-section. Future research will extend the
proposed algorithm to a model with the material and geometric nonlinearity. For that purpose,
the angle of twist will be solved numerically. Since the model is able to show stress
distribution, the idea is to display gradual plastification over the surface of the cross-section.
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