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ABSTRACT 

The study deals with sorption and diffusion behaviour of strontium in Czech bentonite 

B75. The study is a part of a research on reactive transport of radioactive contaminants in 

barrier materials of a deep geological repository of radioactive waste in the Czech 

Republic. Series of sorption and diffusion experiments with Sr and non-activated Ca 

bentonite B75 produced in the Czech Republic were performed in two background 

solutions (CaCl2 and NaCl). On the basis of sorption batch experiments the kinetics of 

strontium sorption on bentonite was assessed and the sorption isotherms for various 

experimental conditions were obtained. As a result of performed diffusion experiments 

the parameters of diffusion (i.e. effective diffusion coefficient De and apparent diffusion 

coefficient Da) were determined. The observed discrepancies between sorption 

characteristics obtained from the sorption and diffusion experiments are discussed. 

KEYWORDS 

Bentonite, Strontium, Radionuclide migration, Reactive transport, Diffusion experiments, 

Batch method. 

INTRODUCTION 

The aim of the study is sorption and diffusion behaviour of strontium on Czech 

bentonite clay. Many studies were carried out worldwide to evaluate suitability of 

bentonite as a backfill and barrier material. Numerous studies performed in last 20 years 

with the natural Wyoming bentonite (MX-80) brought not only knowledge about the 

qualities of this type of bentonite but also established a set of laboratory procedures and 

methods of their evaluation that is being used for the study of clay materials. Batch 

experiments with Sr on MX-80 under various conditions accompanied by PHREEQC 

modelling were carried out by Garrido et al. [1]. Sorption behaviour of Sr and Cs on 

MX-80 was described by Liang et al. [2] with the use of two-stage Freundlich isotherm. 

Principles of ion diffusion in compacted bentonite were studied and summarized by 
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Eriksen [3] as early as 1982. Diffusion and mobilities of various radionuclides under 

various redox conditions were under scope of Torstenfelt et al. [4]. Later, Eriksen and 

Jansson [5] and Eriksen et al. [6] combined sorption batch experiments and diffusion 

experiments to shed some light on the phenomenon of surface diffusion. Another 

thorough study of sorption and diffusion properties of bentonite was done by Yu and 

Neretnieks [7] and this work was updated by Ochs [8]. Comparison of Kd’s obtained from 

sorption and diffusion experiments was provided by Brandberg and Skagius [9]. 

The standardized procedures of sorption and diffusion experiments were also 

performed for example on Spanish (FEBEX) [10], Slovakian [11], Pakistani [12] or 

Japanese (Kunipia and Kunigel) [13] bentonites. These studies provided information 

regarding physical characteristics and sorption behaviour of bentonite and clay minerals 

of the smectite group, mostly under repository conditions. However, materials from 

different localities may behave differently due to the variations in their composition. 

Therefore, each material requires specific studies. Data obtained by sorption and 

diffusion laboratory and in situ experiments contribute to the understanding of 

contaminant migration in the environment and also can serve as input data for the 

predictive models. In some cases [14], data from sorption batch experiments are used in 

the base documentation for predictive modelling and performance or safety assessment. 

This simplified approach certainly reduces the time required for the safety data 

acquisition; however, the accuracy of such data may be questionable. Physico-chemical 

properties of bentonite material may be altered in compacted state (as in the diffusion 

experiment) compared to loose state (as in the batch experiment). Therefore, this study 

shows and compares data obtained for these two types of experiments under various 

conditions. 

Sorption and diffusion properties of Sr 

Together with caesium isotopes, isotope 
90

Sr belongs to the most abundant fission 

products and its relatively long half-life (T1/2 = 28.8 years) ranks it to the group of 

radionuclides that occur in the spent nuclear fuel after its disposal [15]. Under repository 

conditions it exists mainly in the form of Sr
2+

. Owing to it’s relatively simple chemistry 

and chemical similarity with other elements from the group of alkali earth metals, Sr 

serves in various studies as an analogue of other critical radionuclides, particularly Ra. 

In one of SKB reports, Yu and Neretnieks [7] described basic principles of sorption 

and diffusion behaviour of various radionuclides in compacted bentonite (MX-80). 

Sorption experiments with Sr on other types of bentonite were carried out e.g. on Spanish 

FEBEX bentonite [10], Slovakian [11] or Pakistani bentonite [12]. All of these sources 

agree that the sorption kinetics of Sr on clay-type material is fast and equilibrium state is 

reached within few hours. The sorption of Sr is usually described as non-specific and 

reversible and the sorption mechanism is mostly considered to be ion exchange. This is 

supported by the fact that Sr sorption is dependent on the ionic strength and the 

composition of exchangeable complexes. Competitive strength of an ion depends on it’s 

charge and hydrated diameter. Most important competitive ion for Sr is reported to be Ca 

due to it’s similar hydrated diameter and the same charge. This may be also illustrated by 

the fact that the sorption behaviour of Sr and Ca was found to be very similar from both 

qualitative and quantitative points of view [10]. Decreasing trend of Sr sorption with the 

increasing ionic strength is described in studies of Missana et al. [10] or Ruminin et al. 

[16]. At higher pH values (>8) mechanism of surface complexation may be also of 

importance. Both Cole et al. [17] and Carrol et al. [18] studied thoroughly sorption 

process of Sr in loose or compacted clay materials with the use of EXAFS method and 

mathematical modelling and in their works they describe Sr pore water and surface 
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speciation in detail. The results of both authors indicate that adsorption of Sr to clay 

surfaces occurs as weak outer sphere bonding (single coordination shell of the ion 

interacts with the mineral surface). Cole et al. [17] also showed that minor occurrence of 

an aquo-carbonate species SrCO3(aq) significantly increases the total adsorption affinity 

of Sr for the clay surface above pH 8.5. In the study of Eriksen et al. [6] sorption of Sr on 

bentonite was also found to be pH dependent and the highest uptake was observed at pH 

8.5. According to Liang et al. [2], several reasons may be responsible for this behaviour, 

e.g. enhanced negative surface charge of bentonite clay minerals; enhanced dissolution of 

bentonite; precipitation of Sr as Sr(OH)2. It was also found that pH dependence increases 

with increasing initial concentration of Sr [1]. On the other hand, Spanish researchers 

[10] showed that sorption of Sr in concentration range from 10
-9

 to 10
-4

 mol/L is more 

dependent on ionic strength than on pH. Precipitation or co-precipitation of Sr with 

carbonates, sulphates or hydroxides may influence Sr removal from the liquid phase, 

especially at higher pH values (>8) or at higher concentrations of these compounds in the 

system. 

MATERIALS AND METHODS 

Two types of methodologies were performed within the frame of this work with the 

aim to determine diffusion parameters of Sr in the Czech bentonite B75 and to compare 

distribution coefficients obtained from sorption batch experiments and diffusion 

experiments with compacted bentonite. 

 Bentonite 

The material used was commercial non-activated bentonite 75 (B75) which originates 

from the Rokle deposit (Cenozoic neovolcanic area, NW Bohemia, Czech Republic). 

This material belongs to the natural bentonite product group and no additives or 

modifications applications were declared [19]. Detailed mineralogical and chemical 

characterization of bentonite B75 was performed in the Czech Republic [20]. According 

to the analyses, B75 contained 75.5% of montmorillonite and CEC was 56.8 meq/100 g. 

The analyses indicated that originally Ca/Mg bentonite was probably contaminated 

during the processing with the activation reagent which is being used to transform other 

types of bentonites into Na-form on the same production line, which is illustrated by 

distribution of major cations summarized in Table 1. 

 
Table 1. Cation Exchange Capacity (CEC) and distribution of major exchangeable cations in 

bentonite B75 [meq/100g] determined by Cu-trien method [20] 

 

 [meq/100g] 

CEC 56.8 ± 1 

Ca 2.0 ± 0.7 

Mg 26.4 ± 0.7 

Na 36.9 ± 0.4 

K 3.6 ± 0.1 

Description of reactive diffusive transport 

In materials with low hydraulic conductivity, such as in clay materials, the migration 

of radionuclides is mainly controlled by diffusion. Diffusive transport in saturated 

homogenous and isotropic system is described by Fick’s diffusion laws, solutions of 

which for simple initial and boundary conditions are used for the evaluation of diffusion 
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experiments. These approaches, which are based on the solution of the 1D diffusion eq. 

(1), are collected e.g. in the works of Yu and Neretnieks [7] or Shackelford and Moore 

[21]. Diffusion of radionuclides through the layer of compacted bentonite is influenced 

by both physical (porosity ε, geometric factor G) and chemical parameters of kinetic and 

equilibrium models describing the interaction of studied species with the solid phase. The 

dependences of diffusion parameters, namely effective diffusion coefficient De and 

apparent diffusion coefficient Da, on physical and chemical parameters were for the 

description of sorption by the linear equilibrium model expressed by eq. (2) and (3): 
 

  

  
    

   

   
  

  

 

  

  
 (1) 

 

                 (2) 

 

    
  

        
 (3) 

 

where: C is concentration in the liquid phase, q is concentration in the solid phase, Dw is 

reference diffusivity in water, Dp is pore diffusion coefficient, x is longitudinal 

coordinate, ρd is dry density, ε is porosity, G is geometric factor, Kd is distribution 

coefficient. 

Sorption experiments 

The standard batch method [22] was used for the study of Sr sorption kinetics and 

equilibrium characteristics. The range of solid-to-liquid ratio (m/V) varied from 0.005 to 

0.2 g/mL (Figure 1). With the aim to assess the difference between distribution 

coefficients Kd obtained from the sorption experiments with equilibrated and 

non-equilibrated bentonite samples, equilibrated (presaturated) bentonite was prepared. 

For that purpose, the bentonite samples (weighed with the correction on actual water 

content) were contacted with background electrolyte for 3 × 24 hours before the start of a 

batch experiment with Sr.  

The experiments were performed with two values of Sr concentration, 10
-3

 mol/L and 

10
-5

 mol/L of SrCl2 spiked with radioactive tracer 
85

Sr (T1/2 = 64.8 d, produced by 

LACOMED company). As background solutions were used either 0.033 mol/L CaCl2 or 

0.1 mol/L NaCl. The ionic strength of both solutions was 0.1 mol/L. The initial pH was in 

the neutral range. All experiments were carried out under laboratory temperature. Based 

on the kinetic experiments, which ranged from 15 minutes up to 19 days, contact time for 

equilibrium characteristics was set to 3 days.  

At the start of the experiment, the bentonite samples were contacted with 6 mL of 

solution containing background electrolyte and SrCl2 in desired concentration spiked 

with 
85

Sr. Vials were placed into the horizontal shaker (Yellowline RS10 basic, 120 rpm). 

After the desired contact time they were centrifuged (MPW-350R, 10 min, 966 g), 2 mL 

of supernatant were extracted into measuring vials and 
85

Sr activity was measured in the 

well-type NaI(Tl) detector (Tesla, η ≈ 24%) with single-channel analyser (Tema JKA300 

RS232). After the termination of experiments, pH was measured to assess the influence 

of the contact of solution with various amounts of bentonite. 

For calculations of Kd [L/kg] usual eq. (4) was used [23]: 

 

    
 

 
 (4) 
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where: q is concentration of Sr sorbed on the solid phase in equilibrium (   
        

 
), 

C0 is initial concentration in the liquid phase, C is concentration in the liquid phase in 

equilibrium, V is volume of the liquid phase, m is mass of the solid phase. 

Overall distribution coefficient Kd of each experiment was determined from the slope 

of the linear regression fitted to the data expressing the relation between q [mol/kg] and C 

[mol/L]. 

 

 
 

Figure 1. Distribution coefficient Kd (4) as a function of m/V [g/mL] 

Diffusion experiments 

Diffusion experiments were carried out in a diffusion cell (the set-up is described in 

[20]). The amount of bentonite, weighed according to the chosen dry density (1,300 or 

1,600 kg/m
3
)
 
and actual water content, was pressed into the steel sample holder  

(d = 30 mm) by a simple manual press. Diffusion cells with bentonite plugs of two 

lengths (15 mm and 5 mm) were prepared and reservoirs of the volume of 190 mL were 

used. Firstly, the compacted bentonite was saturated with the studied background 

solution, i.e. 0.033 mol/L CaCl2 or 0.1 mol/L NaCl, in the vacuum chamber for two 

weeks. The direction of saturation was changed at least once. This step may also partly 

remove the concentration excess of soluble carbonates, which are present in B75 as a 

contamination from the activation procedure. 

At the start of each experiment, the outlet reservoir was filled with 160 mL of the 

fresh solution of background electrolyte and in the inlet reservoir was in addition injected 

solution of SrCl2 in the concentration of 10
-3

 mol/L spiked with 
85

Sr. The samples of inlet 

and outlet solutions were withdrawn in regular intervals until the experiment was 

terminated and measured in the same way as in sorption experiments. After the 

determination of 
85

Sr activity the samples were returned into the reservoirs. At the 

experiment termination, the bentonite plug was cut into the thin slices of 0.5 or 1 mm. 

Each slice was placed into the measuring vial, weighed, dried in the air dryer and then 

weighed again to determine the water content. Before 
85

Sr activity measurement, 3 mL of 

distilled water were added to each sample to maintain homogeneous geometry. As a 

result, concentration profile of Sr in the bentonite plug was obtained.  

Diffusion experiments lasted from 21 to 42 days. With the aim to reduce the duration 

of the diffusion experiments, they were not led to stationary state. Therefore, no standard 
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evaluation method (e.g. “time-lag” method published e.g. by Shackelford [24]) could be 

used for the determination of both effective diffusion coefficient De and apparent 

diffusion coefficient Da. An original method was used, in which diffusion coefficients 

were obtained by simultaneous fitting of the concentration profile curves and the time 

development of concentrations in both reservoirs with an extension of the code prepared 

in our laboratory [25], which enables to take into account common conditions of 

through-diffusion experiments (non-constant concentration in working reservoirs during 

the experiment and the presence of filters). The code was prepared in the GoldSim 

environment [26] and uses an implementation of Box’s method [27] for the optimization 

of selected parameters of the model. The values of Kd and geometric factor G were 

optimized, with fixed values of filter parameters (length lf = 0.8 mm, bulk density  

ρf = 3,000 kg/m
3
, porosity εf = 0.33 and geometric factor Gf = 0.045) and with the value of 

reference diffusivity Dw = 1.58 × 10
-9

 m
2
/s [28]. Bentonite B75 specific density ρs was 

2,772 kg/m
3
 [20] and porosity ε was calculated for each sample from the value of 

weighted dry mass of bentonite. 

RESULTS AND DISCUSSION 

Sorption experiments 

It was confirmed that Sr
2+

 sorption kinetic on this type of material is very fast, over 

90% of the total sorptives was adsorbed within one hour. On the scale of several days 

some trend in the change of sorption was observed, although the change was below 5% 

level during 24 hours, which is recommended as a borderline of equilibrium state [22]. 

Based on this result, contact time for equilibrium sorption experiments was set to 3 days. 

The sorption kinetics of Sr was faster in the NaCl environment compared to the CaCl2 

environment. In this study, initial pH was naturally buffered from the value of about 6.8 

up to 7.5 in the case of CaCl2 solution and up to 8.4 in the case of NaCl solution 

respectively, depending also on m/V ratio. We assume that ion exchange was the 

dominant sorption mechanism, even though precipitation with carbonates, especially in 

NaCl background solution, may have contributed to Sr removal from the liquid phase. 

Figure 1 shows the difference between distribution coefficients Kd obtained from 

experiments with equilibrated and non-equilibrated bentonite samples. In the case of 

CaCl2 solution the decrease in Kd value was of 11.7% and of 18.7% in the case of NaCl 

solution. Furthermore, after equilibration the dependence of Kd on the m/V ratio 

decreased, especially in the CaCl2 solution. It supports the hypothesis that bentonite B75 

had been contaminated with activation reagent and soluble carbonates contribute to Sr 

removal from the liquid phase. Many authors report that precipitation or co-precipitation 

of Sr with carbonates, sulphates or hydroxides may influence Sr removal from the liquid 

phase, especially at higher pH values (>8) or at higher concentrations of these 

compounds in the system. Cole et al. [17] stated that Kd of SrCO3 for clay material is 60 × 

higher than Kd for Sr
2+

 and that its sorption is reversible. 

As showed in Figure 2, for sorption of Sr in the NaCl environment the linear isotherm 

(4) is applicable. The slope of the linear regression represents the overall Kd of the 

experiment. Values of Kd were generally higher for the experiment where NaCl 

background solution was used (see Figure 1). This could be accounted to the effect of 

weaker competitive strength of Na relative to Ca [1]. Some data, especially from CaCl2 

solution, show a rather non-linear trend. This may be caused by relatively high 

concentration of Sr combined with competition with Ca ion. According to Liang et al. 

[2], Sr concentration of 10
-3

 mol/L may be high enough to result in the curved shape of 

the isotherm. 
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Figure 2. Sorption isotherms of Sr on bentonite B75 for four types of initial solution 

 

Regarding the linearity of Sr sorption, sources are not absolutely unambiguous. Some 

authors, e.g. [10], consider the use of Kd for Sr sorption on bentonite and similar materials 

to be sufficient. Freundlich isotherm for Sr sorption on bentonite was used by Liang et al. 

[2] and Tsai et al. [29]. Galambos et al. [11] used Langmuir isotherm for the evaluation of 

Sr sorption on Slovak bentonite. The main advantage of the use of Kd is that it may be 

relatively easily determined and compared. On the other hand, the disadvantage is it’s 

exclusive relevance for given conditions, resulting in problematic transfer to real 

conditions. Kd dependence on experimental conditions causes relatively wide variability 

of values found in literature. For example, sorption and diffusion behaviour of various 

radionuclides including Sr in the granitic environment is summarized in the SKB report 

[30] and the authors recommend Kd value to be 10 L/kg with the uncertainty interval from 

5 to 50 L/kg. 

Diffusion experiments 

The graphs in Figure 3 show the relative change of concentration in the inlet 

reservoirs in time of the experiment duration and concentration profiles in the bentonite 

plugs after the experiment termination. From the qualitative evaluation of these 

experiments it is possible to draw following conclusions.  

The linear course of concentration profiles in the bentonite layer suggests that the 

experiments performed in diffusion cells of 5 mm in length approached stationary state. 

However, the comparison of in-flow to and out-flow from the bentonite layer showed that 

these are not equivalent and therefore the assumption that the stationary state is reached is 

not true. In the cells with length of 15 mm reaching stationary state would last several 

more weeks or months [31]. 

It is showed that the course of the diffusion experiments (especially of those which 

lasted 21 days) differs significantly for different background solutions but it does not 

differ much in dependence of dry density. This can be noted even for the diffusion 

parameters summarized in Table 2, even though diffusion parameters exhibit relatively 

large variance. De and Da values should, according to Yu and Neretnieks [7], decrease 

with increasing dry density. Others [3], however, did not observe significant influence of 

dry density and homogeneity of material on diffusion parameters. Here, the difference is 

expressed mainly in the amount of Sr sorbed in the solid phase. When the compaction is 

higher, the more sorbent is available to take up higher amount of Sr which is in agreement 
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with theoretical assumption. The ratio of the sorbed amount in the two environments is, 

however, in contrast to the results of sorption experiments, where higher sorption of Sr 

was observed in the NaCl environment (compare Table 2 and Table 3). Explanation of 

differences between values of Kd determined from diffusion and sorption experiments as 

well as explanation of differences in migration behaviour of Ca and Na bentonite are 

discussed by many authors. In studies of Eriksen et al. [6] and Eriksen and Jansson [5], 

distribution coefficients Kd found in sorption and diffusion experiments were similar and 

the assumption that Kd would be lower for diffusion experiment was not proved. The 

difference between Kd obtained from sorption and diffusion experiments was reported by 

Missana et al. [10] and Van Loon et al. [32] but, according to these authors, the 

uncertainty was within the range and was accounted to the difference in methodology of 

experiments. Another authors, e.g. Yu and Neretnieks [7] and Brandberg and Skagius [9], 

observed the differences between Kd values obtained from sorption and diffusion 

experiments. These differences may be accounted to different preference of ion exchange 

in loose and compacted bentonite. While in the case of loose bentonite, divalent ions and 

ions with larger diameter are competitively stronger, it is just opposite in the case of 

compacted bentonite. It may be due to two reasons: 

 The interlayer spaces are not completely opened in compacted bentonite and 

therefore not all of the sorption places are available; 

 Ions in the compacted bentonite move without (or partly without) their hydration 

shell.  

 

  
○ CaCl2                   □ NaCl 

  
 

Figure 3. Data obtained from diffusion experiments with Sr and bentonite B75 compacted to 

1,300 kg/m
3
 (left) and 1,600 kg/m

3
 (right) for two types of background solution (CaCl2 and NaCl) 
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Some studies [14], where the use of data from sorption experiments is applied, are 

defended, e.g. in previous study [33] or by Ochs et al. [34], who claim that distribution 

coefficients are applicable for the conditions of compacted material, when appropriate 

m/V ratio and pore water chemistry is considered and the data are extrapolated for these 

conditions. 

 
Table 2. Summary of diffusion parameters of Sr on bentonite B75 

 

Background 

solution 

Length of 

cell [mm] 

Contact 

time 

[days] 

ρd 

[kg/m
3
] 

ε [-] 
Kd  

[L/kg] 
G [-] 

Da 

× 10
11

 

[m
2
/s] 

De  

× 10
10

 

[m
2
/s] 

0.033 M CaCl2  

15 29 1,604 0.422 8.3 0.410 2.25 2.74 

5 29 1,637 0.410 7.3 0.840 4.15 5.45 

15 30 1,604 0.421 6.9 0.466 3.04 3.11 

15 30 1,314 0.526 7.5 0.679 5.77 5.65 

15 21 1,296 0.523 6.7 0.501 4.97 4.14 

15 21 1,596 0.414 8.2 0.542 3.74 3.55 

0.1 M NaCl 

15 42 1,300 0.531 5.8 0.362 3.63 3.04 

5 42 1,596 0.424 9.3 0.800 8.82 5.37 

15 21 1,300 0.531 4.1 0.104 1.44 0.877 

15 21 1,600 0.423 4.6 0.126 1.27 0.845 

 
Table 3. Summary of experimental conditions and distribution coefficients of Sr  

on bentonite B75 

 

Sr initial concentration [mol/L] Background solution Kd [L/kg] 

1.0E-03 0.033 M CaCl2 11.6 ± 0.8 

1.0E-03 0.033 M CaCl2 with equilibration 10.3 ± 0.6 

1.0E-05 0.033 M CaCl2 12.5 ± 1.0 

1.0E-03 0.1 M NaCl 72.8 ± 2.8 

1.0E-03 0.1 M NaCl with equilibration 59.2 ± 2.0 

1.0E-05 0.1 M NaCl 80.3 ± 2.4 

 

Contact time was 21 days (top) and 30 or 42 days (bottom). Solid points represent Sr 

concentration decrease in inlet reservoirs during the experiment duration. Open points 

represent Sr concentration profile in the bentonite plug after the experiment termination. 

From the different speed of concentration decrease in the inlet reservoirs of the 

experiments it can be seen that for both values of compaction the diffusive transport was 

slower in the NaCl environment compared to CaCl2 environment (see Figure 3). It may 

be caused by higher sorption in the CaCl2 environment under the conditions of 

compacted bentonite and/or higher diffusive resistance of the bentonite in the NaCl 

environment. The first conclusion is supported by the higher Sr concentration in the 

bentonite layer in the CaCl2 environment. Sorption generally enhances diffusive 

transport because it lowers the concentration in the liquid phase and thus enhances 

concentration gradient. The second conclusion is also in agreement with the recent state 

of knowledge. Different behaviour of Ca and Na bentonite lies above all in their different 
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physical behaviour, which is quite well described in literature, e.g. by Katsumi et al. [35] 

or Montes-H. et al. [36]. In Na bentonites are observed higher swelling pressures, which 

is accompanied by the decrease in the volume of wider (intergranular) pores in ratio to 

smaller (intragranular/interlayer) pores. The first effect should lead to decrease in the 

value of Kd in Na compared to Ca environment, which may be confirmed by the data 

presented here. The second effect should lead to decrease in the value of De in Na 

bentonite. This is confirmed by Choi and Oscarsson [37] who observed 2-6× lower De in 

Na bentonite compared to Ca bentonite. They also compared porosities of these two types 

of bentonite by Hg porosimetry measurement. Although the values of diffusion 

coefficients presented here show rather large variance, the observed breakthrough times 

of Sr through bentonite plug were generally longer in NaCl environment compared to 

CaCl2 environment.  

Values of De for Sr on compacted bentonite usually range in the order of 10
-10

 m
2
/s 

and Da in the order of 10
-11

 m
2
/s, as reviewed in many reports and articles. All of the 

values summarized in the Table 3 are within this range. In general, it can be concluded 

that diffusion parameters (Kd, G, Da, De) are higher in the CaCl2 environment compared 

to NaCl environment. This is related to the above described differences between Ca and 

Na bentonite. This is also supported by the difference in the relative change in 

concentration decrease in inlet reservoirs. The values of diffusion coefficients, however, 

exhibit relatively large variance and their uncertainty may be relatively large (>10%). It 

is given by heterogeneity of bentonite material, uncertainties of experimental character 

and uncertainties related to newly established optimization program. Experimental set up 

may also influence values of diffusion parameters and their associated uncertainties. 

Aldaba et al. [38] for example compared diffusion coefficients obtained from evaluation 

of various types of diffusion experiments of Sr and Spanish soil samples, e.g. using 

half-cell or planar source method, and it was found out that the planar source method 

underestimates the resulting values of diffusion coefficients. 

CONCLUSION 

Sorption and diffusion experiments were performed to investigate sorption and 

diffusion of Sr on Czech bentonite B75 under various conditions. Sorption kinetics, 

sorption isotherms and diffusion parameters were assessed and compared for two types 

of background solutions. It was confirmed that the sorption of Sr on bentonite is fast 

which indicates that the main mechanism of sorption is ion exchange. Diffusion of 

cationic species through the porous material is influenced by their interaction with the 

charged surface of the material and by the physical properties of the material. Kd values 

obtained from sorption and diffusion experiments were compared and it was shown that 

there may occur significant discrepancies between Kd values obtained from these two 

types of experiments. Whereas Kd values of Sr obtained from sorption experiments in 

NaCl environment were approximately 7 times higher compared to CaCl2 environment, 

this ratio was opposite in diffusion experiments. This was accounted to different physical 

conditions of bentonite during these two types of experiments. Moreover, the diffusion of 

Sr was slower in NaCl environment than in CaCl2 environment, which may be explained 

by higher tortuosity of bentonite with dominating Na ion. Prepared original method of 

evaluation of diffusion experiments which are not led to the stationary state does not 

require long duration of experiments, which is very valuable in terms of minimization of 

time necessary for migration data acquisition. Development of experimental and 

modelling methodologies is an important part of scientific support for the future 

repository. This work contributes to the understanding of transport processes in bentonite 

barrier of geological repository with respect to the conditions of Czech concept and helps 
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to evaluate local materials. Development of experimental and modelling methodologies 

is also an important part of scientific support for future geological repository. Further 

work is needed to investigate the influence of other factors, such as bentonite and related 

pore water composition and their alterations and combinations under real conditions, on 

the sorption and diffusion processes.   
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NOMENCLATURE 

B75  Czech bentonite 75 produced by Keramost company 

C  solute concentration in the liquid phase        [mol/L] 

C0  solute initial concentration in the liquid phase       [mol/L] 

Ctot 

solute concentration in the layer of bentonite plug  

(in both liquid and solid phase) after the experiment 

termination 

     [mol/L] 

CEC  cation exchange capacity       [meq/100 g] 

Da  apparent diffusion coefficient           [m
2
/s] 

De  effective diffusion coefficient           [m
2
/s] 

Dp  pore diffusion coefficient            [m
2
/s] 

Dw  reference diffusivity in water            [m
2
/s] 

G  geometric factor               [-] 
Gf  filter geometric factor               [-] 
Kd  distribution coefficient           [L/kg] 

l  length of bentonite plug            [mm] 

lf  length of filter              [mm] 

m  mass              [g, kg] 

m/V  solid-to-liquid ratio       [g/mL, kg/L] 

MX-80  natural Wyoming bentonite 

q  solute concentration in the solid phase        [mol/kg] 

t  contact time              [days] 

T1/2  half-life of radioactive decay       [days, years] 

V  volume             [mL, L] 

x  longitudinal coordinate              [m] 

Greek letters 

ε  bentonite porosity                [-] 

εf  filter porosity                 [-] 

η  efficiency of gama activity measurement            [%] 

ρd  bentonite bulk density           [kg/m
3
] 

ρf  filter bulk density            [kg/m
3
] 

ρs  bentonite specific density           [kg/m
3
] 
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