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Introduction
Alzheimer’s disease (AD) is a neurological disorder 

and the most common cause of dementia. It is a slowly 
progressive and degenerative disease that leads to loss of 
memory, decline in thinking and language skills. The 
pathogenesis of AD has been so far explained by choliner-
gic and amyloid hypotheses, and it has been stated that 
only drugs acting on cholinergic system have moderate, 
but steady eff ects in clinical trials (1). The cholinergic hy-
pothesis is based on insuffi  ciency of the acetylcholine 
(ACh) level in the brains of AD patients, which is hydro-
lyzed by acetylcholinesterase (AChE, EC 3.1.1.7) (2). On 
the other hand, the evidence has shown that butyrylcho-
linesterase (BChE, EC 3.1.1.8), also known as pseudo-
cholinesterase, takes a slight part in hydrolyzing brain 

ACh levels in addition to its possible action in the etio-
logy and progression of the disease (3). Thus, inhibition 
of both AChE and BChE is an important target for the de-
velopment of new anti-Alzheimer drugs. Since AD is 
multi-faceted disease, it is also strongly associated with 
metal ion dyshomeostasis and oxidative stress (4). Dys-
regulation of some transition metals such as iron, alumi-
num or copper has been very important in formation of 
oxidative stress and cellular damage relevant to some 
neurodegenerative diseases including AD and Parkin-
son’s disease (5,6). Therefore, it is strategically advanta-
geous to have a drug candidate with both cholinesterase 
inhibition and metal-chelating properties for the treat-
ment of AD as the need for development of novel drugs 
remains.
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Summary

Inhibitory activity of thirty-one ethanol extracts obtained from albedo, fl avedo, seed and 
leaf parts of 17 cultivars of Citrus species from Turkey, the bark and leaves of Olea europaea 
L. from two locations (Turkey and Cyprus) as well as caff eic acid and hesperidin was tested 
against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), related to the patho-
genesis of Alzheimer’s disease, using ELISA microtiter assays at 500 μg/mL. Metal-chelat-
ing capacity of the extracts was also determined. BChE inhibitory eff ect of the Citrus sp. ex-
tracts was from (7.7±0.7) to (70.3±1.1) %, whereas they did not show any inhibition against 
AChE. Cholinesterase inhibitory activity of the leaf and bark ethanol extracts of O. europaea 
was very weak ((10.2±3.1) to (15.0±2.3) %). The extracts had either no or low metal-chelating 
capacity at 500 μg/mL. HPTLC fi ngerprinting of the extracts, which indicated a similar phy-
tochemical patt ern, was also done using the standards of caff eic acid and hesperidin with 
weak cholinesterase inhibition. Among the screened extracts, the albedo extract of C. limon 
‘Interdonato’, the fl avedo extracts of ‘Kara Limon’ and ‘Cyprus’ cultivars and the seed ex-
tract of C. maxima appear to be promising as natural BChE inhibitors.
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Citrus species (Rutaceae) bearing widely consumed 
fruits of nutritional and industrial importance are rich in 
fl avonoid derivatives, i.e. hesperidin, naringin and poly-
methoxylated fl avonoids, whose distributions diff er in 
Citrus tissues including albedo, fl avedo, pericarp (peel) 
and seed (7). Earlier studies have revealed that the pheno-
lic compounds exist in higher amounts in Citrus peel than 
in other parts of Citrus fruit, such as seeds, leaves or fl ow-
ers (8). Olea europaea L. (olive) from Oleaceae family is an 
evergreen tree particularly native to the Mediterranean 
region. In addition to being edible, olive tree is also con-
sidered as a medicinal plant. Due to nutritional and health 
aspects of Citrus sp. and O. europaea, their edible tissues 
have been extensively investigated for their various bio-
logical activities and phytochemical content. Neverthe-
less, there have been relatively few reports on health-pro-
moting values of non-edible tissues of Citrus fruits and O. 
europaea. Hence, in the present study, att empts have been 
made to investigate inhibitory eff ect of 31 ethanol extracts 
from 17 Citrus cultivars from Turkey as well as the bark 
and leaves of olive trees growing in Turkey and Cyprus 
against AChE and BChE using ELISA microtiter assays. 
Additionally, high-performance thin layer chromatogra-
phy (HPTLC) fi ngerprinting of the extracts was done us-
ing hesperidin and caff eic acid standards, two phenolic 
substances commonly found in Citrus species.

Materials and Methods

Plant materials and extraction
The samples of 17 Citrus cultivars were obtained from 

The West Mediterranean Agricultural Research Institute 
(BATEM, Antalya Province, Turkey) in 2011, where they 
are cultivated in the experimental fi elds. The bark and 
leaf samples of Olea europaea were collected from Denizli 
Province (western Turkey) and the leaf samples from Me-
hmetcik village at Famagusta town (northern Cyprus) in 
2012. The pericarps (peels) of the Citrus fruits were peeled 
and carefully separated into their albedo (whitish) and 
fl avedo (yellow or orange) parts. All plant samples were 
dried at room temperature in shadow and coarsely 
ground prior to the extraction. The dried and powdered 
samples were extracted at room temperature by percola-
tion with ethanol (80 %; Carlo Erba, Val de Reuil, France). 
All of the extracts were concentrated using a rotary evap-
orator (BÜCHI Labortechnik AG, Flawil, Switzerland) in 
vacuo until a solid extract of each sample was obtained.

Microtitre assays for anticholinesterase activity
AChE and BChE inhibitory potential of the extracts 

was determined by modifi ed spectrophotometric method 
of Ellman et al. (9) as described in our previous publica-
tion (10). Electric eel acetylcholinesterase (TypeVI-S, EC 
3.1.1.7) and horse serum butyrylcholinesterase (EC 3.1.1.8) 
were used as the enzyme sources purchased from Sigma- 
-Aldrich (St. Louis, MO, USA). Acetylthiocholine iodide 
and butyrylthiocholine chloride (Sigma–Aldrich) were 
employed as the substrates for the reaction, while 5,5’-di-
thio-bis(2-nitrobenzoic) acid (DTNB; Sigma–Aldrich) was 
the colouring agent. A volume of 140 μL of 0.1 mM sodi-
um phosphate buff er (pH=8.0), 20 μL of 0.2 M DTNB, 20 

μL of the sample solutions and 20 μL of 0.2 M AChE/
BChE solution were added with multichannel automatic 
pipett e (Gilson S.A.S., Villiers le Bel, France) to a 96-well 
microplate and incubated for 15 min at 25 °C. The reac-
tion was then initiated with the addition of 10 μL of 0.2 M 
acetylthiocholine iodide/butyrylthiocholine chloride. For-
mation of the yellow 5-thio-2-nitrobenzoate anion result-
ed from the reaction of DTNB with thiocholines aft er hy-
drolysis of acetylthiocholine iodide/butyrylthiocholine 
chloride, which was monitored at 412 nm utilizing a 96- 
-well microplate reader VersaMax™ (Molecular Devices, 
Sunnyvale, CA, USA). Galanthamine, purchased from 
Sigma–Aldrich, was employed as the reference.

Data processing for enzyme inhibition assays
The measurements and calculations were evaluated 

by using Soft max® PRO v. 4.3.2.LS soft ware (Molecular 
Devices). Percentage inhibition (I) of AChE/BChE was de-
termined by comparison of reaction rates of test samples 
with the blank sample (ethanol in phosphate buff er, 
pH=8), and calculated using the equation given below:

 I=((Ablank–Asample)/Ablank)·100  /1/

where Ablank is the absorbance of the control reaction (con-
taining all reagents except the test sample), and Asample is 
the absorbance of the extracts. Data was expressed as av-
erage inhibition±standard error of the mean (SEM), which 
were obtained from three independent experiments.

Determination of metal-chelating capacity by 
Fe2+-ferrozine test system

The metal-chelating capacity of the extracts was esti-
mated with the method of Chua et al. (11) using Fe2+-ferro-
zine test system followed by ELISA method. In brief, the 
samples (200 μL each) dissolved in ethanol (75 %) were 
incubated with 2 mM FeCl2 solution (Sigma Chemical Co., 
Steinheim, Germany). The reaction was started aft er the 
addition of 40 μL of 5 mM ferrozine (Sigma Chemical Co.) 
solution, which was shaken gently and left  to rest for 10 
min at ambient temperature. The absorbance of the reac-
tion mixture as well as ethylenediaminetetraacetic acid 
(EDTA; Sigma Chemical Co.) as the reference was meas-
ured at 562 nm using a Unico 4802 UV/Vis spectropho-
tometer (Dayton, NJ, USA). Metal chelation capacity was 
measured as a percentage inhibition of Fe2+-ferrozine 
complex calculated using Eq. 1. The experiments were 
run in triplicate and the results were expressed as average 
values with SEM.

HPTLC analysis
HPTLC analysis was performed on a CAMAG (Mut-

tenz, Switzerland) apparatus equipped with automatic 
TLC sampler 4, twin trough chamber (20 cm×10 cm), chro-
matogram immersion device III, TLC plate heater III, au-
tomatic development chamber ADC2 and visualizer. The 
extracts and standards, i.e. caff eic acid (Carl Roth GmbH, 
Zurich, Switzerland) and hesperidin (Acros Organics, Ba-
sel, Switzerland) at the concentrations of 5 and 0.2 mg/mL, 
respectively, were dissolved in methanol of ultra gradient 
HPLC grade (Carl Roth GmbH). The volume of each sam-
ple was 10 or 15 μL. Development conditions were as fol-
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lows: relative humidity RH=33 %, solution saturation 20 
min, developing distance from application position/lower 
edge of the plate of 62/70 mm, developing solvent ethyl 
acetate (Acros Organics, Basel, Switzerland)/formic acid 
(Acros Organics)/water (CAMAG) in a ratio of 75:15:10, 
developing time 20 min, and plate drying time 5 min. The 
plates used were HPTLC glass Si 60 F254 (20 cm×10 cm, 
model HX308464; Merck Co., Darmstadt, Germany), while 
visualization of the spots was achieved with AlCl3 and 
natural product polyethylene glycol (PEG) 400 (Merck 
Co.).

Results and Discussion

Cholinesterase inhibitory and metal chelation activities 
of extracts

The results of enzyme inhibition tests show that Cit-
rus extracts at the concentration of 500 μg/mL did not af-
fect AChE activity, while Olea europaea leaf extracts slight-
ly inhibited (below 16 %) both enzymes (Table 1). On the 
other hand, quite variable inhibition rates of Citrus ex-
tracts (between (7.72±0.71) and (70.28±1.12) %) were ob-
served against BChE. Caff eic acid and hesperidin, tested 
in the same manner but at the concentration of 100 μg/mL, 
had (6.0±2.5) and (27.3±1.2) % of AChE inhibition as well 
as (24.1±0.9) and (17.7±4.2) % of BChE inhibition, respec-
tively. The extracts had either no or very low (below 13 %) 
metal-chelating capacity (Table 1), while caff eic acid and 
hesperidin were not tested in this assay.

HPTLC profi le of the extracts
According to the HPTLC profi les of the extracts 

screened in the current study, the fl avedo extracts had 
more intense zones at 366 nm than the albedo extracts. 
Looking at the results of white light refl ectance transmit-
tance, it can be observed that the yellow zones of the al-
bedo samples are more intense than the corresponding 
yellow zones of the fl avedo samples. Our fi ndings indi-
cate that it is possible to discriminate Citrus aurantium, C. 
deliciosa, C. limon, C. maxima/C. paradisi and C. sinensis/C. 
reti culata. The fi ngerprints of C. maxima and C. paradisi 
look very similar, thus, these two species cannot be dis-
criminated. This is also the case for C. sinensis and C. re-
ticulata. As seen in Fig. 1, the fi ngerprints of the albedo 
and fl avedo extracts of C. aurantium look very similar to 
each other under white light, with a strong red zone at 
retention factor (RF) of approx. 0.36 and several yellow 
zones above it. All extracts belonging to C. limon species 
had a similar fi ngerprint with a characteristic red zone at 
RF of approx. 0.39 under white light. The fi ngerprints of 
the fl avedo and albedo samples of C. maxima each had a 
yellow zone with a higher RF value than hesperidin. A 
parallel fi ngerprint was observed for all extracts of C. par-
adisi cultivars that contained hesperidin, while the ex-
tracts obtained from C. reticulata and C. sinensis ‘Navelina’ 
resemble each other (Fig. 2). Among the analyzed extracts 
in Fig. 3, all the C. sinensis cultivars had two yellow zones, 
one of them with the same RF value as hesperidin. The 
leaf extracts of O. europaea collected from the two loca-
tions exhibited quite analogous phytochemical profi les, 
whereas the bark extract of this plant had a diff erent fi n-
gerprint than those of the leaf extracts.

A number of studies have demonstrated a potent 
cholinesterase inhibitory eff ect of various Citrus species, 
particularly against AChE, such as C. unshiu (12), C. para-
disi (13), C. junos (14), C. medica ‘Diamante’ (15), C. hystrix 
(16), C. depressa (17), C. aurantifolia, C. aurantium and C. 
ber gamia (18–20), C. maxima, C. paradisi, C. limon, C. sinen-
sis and C. reticulata (21–23). The health eff ects of Citrus 
fruits have been principally att ributed to the existence of 
phenolic compounds including fl avonoids and phenolic 
acids. Some of the studies led to the isolation of fl avo-
noids as the active components such as naringenin, the 
fl avanone isolated from the peel extract of C. junos, which 
inhibited AChE at low level (IC50=(621±7.8) μg/mL) as com-
pared to that of the reference physostigmine (IC50=(0.07± 
0.0) μg/mL) (15). Naringenin also exerted antiamnesic ef-
fect in vivo. Similarly, nobiletin, 8-demethoxynobiletin 
and 6-demethoxynobiletin (60–76 % of control at 100 μM 
of each compound) isolated from the peel extract of C. de-
pressa were concluded to be the active components for the 
marked anti-AChE eff ect of this plant (17).

However, in another study (16), furanocoumarins 
identifi ed as (R)-(+)-6′-hydroxy-7′-methoxybergamott in, 
(R)-(+)-6’,7’-dihydroxybergamott in and (+)-isoimperato-
rin (IC50=(11.2± 0.1), (15.4±0.3) and (23.0±0.2) μM, respec-
tively) were suggested to be the compounds responsible 
for the peel hexane and dichloromethane extracts of the 
C. hystrix fruits. Other coumarin derivatives, nootkatone 
and auraptene isolated from the essential oil of C. paradisi, 
were revealed to inhibit only 17–24 % of AChE activity, at 
the concentration of 1.62 μg/mL (13). Fruit juices of sever-
al Citrus cultivars, i.e. C. maxima (shaddock), C. paradisi 
(grapefruit), C. limon (lemon), C. sinensis (orange) and C. 
reticulata (tangerine) and the aqueous extracts from C. si-
nensis, C. paradisi and C. maxima as well as the essential oil 
isolated from the peels of C. aurantifolia, C. aurantium and 
C. bergamia were reported to exert selective AChE inhibit-
ory activity varying from moderate to remarkable levels 
(18,21,22), which seems contrary to our fi ndings on selec-
tive BChE inhibition of the Citrus cultivars screened here-
in (Table 1). Nevertheless, C. limon was reported to have a 
weak cholinesterase inhibitory activity, dissimilar to most 
of our data on C. limon cultivars (23).

On the other hand, the leaves of Citrus cultivars have 
been examined in a very few studies, one of which was 
performed with the leaf essential oil of C. aurantifolia. The 
leaf oil was revealed to have IC50 values of (139±35) and 
(42±5) μg/mL on AChE and BChE, respectively (19), while 
Loizzo et al. (20) investigated the leaf hexane extract of C. 
aurantifolia with a marked AChE inhibitory eff ect. In the 
present study, the leaf ethanol extract of C. aurantium in-
hibited (46.37±0.54) % of BChE.

The computational studies described stronger AChE 
inhibitory eff ect of naringin than hesperidin (24), which 
inhibited (27.33±1.16) % of AChE in the current study. 
Without any doubt, hesperidin, present in most of the Cit-
rus extracts screened in the HPTLC analysis, could be one 
of the compounds contributing somewhat to BChE inhib-
itory eff ects of the extracts. Caff eic acid, a dominant phe-
nolic compound available in many Citrus cultivars (25,26), 
was reported earlier to exhibit either low inhibitory activ-
ity ((11.05±1.03) % at 100 μg/mL) against AChE (27) and 
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IC50≥200 μM (28) or no inhibition (29), which is consistent 
with our result ((6.01±2.50) % at 100 μg/mL).

According to our literature survey, AChE inhibitory 
eff ects of the leaf extracts of the stored and fresh samples 
of O. europaea were (69.2±6.0) and (85.4±3.4) % at 1 μg/mL, 
respectively (30). Nevertheless, the leaf and bark extracts 

from O. europaea used in this study had insignifi cant eff ect 
on both AChE and BChE as compared to that of the refer-
ence (galanthamine).

Although a few studies demonstrated metal-chelat-
ing capacity of Citrus cultivars at various levels (31,32), 
the Citrus extracts studied herein exerted either very low 

Table 1. Cholinesterase inhibitory and metal-chelating activities of ethanol extracts of Citrus sp. and Olea europaea at mass concentra-
tion of 500 μg/mL (unless otherwise stated)

Species Plant part
Y
%

Inhibition against 
AChEa

%

Inhibition against 
BChEa

%

Metal-chelating 
capacity

%

Citrus aurantium 
albedo 5.87 –   7.7±0.7**** –
fl avedo 8.48 – 54.0±0.8**** –
leaf 22.02  –b 46.4±0.5**** 10.9±0.2****

Citrus deliciosa pericarp 10.81 – 34.2±0.8**** –

Citrus limon ‘Interdonato’ 
albedo 11.74 – 51.6±1.9**** –
fl avedo 13.83 – – –

Citrus limon ‘Kara Limon’ 
albedo 14.17 – 19.6±0.3**** –
fl avedo 20.86 – 47.0±1.4**** –

Citrus limon ‘Cyprus’
albedo 7.23 – 27.8±5.8**** –
fl avedo 14.56 – 70.3±1.1** –

Citrus maxima
albedo 14.48 – 23.7±2.6**** –
fl avedo 15.89 – 39.5±3.0**** –
seed 11.42 – 69.9±1.9*** –

Citrus paradisi ‘Henderson’ 
albedo 12.25 – 28.6±2.4**** –
fl avedo 26.82 – 46.1±2.6**** –

Citrus paradisi ‘Red Blush’ 
albedo 12.47 – 24.5±3.1**** –
fl avedo 24.61 – 42.7±1.4**** –

Citrus paradisi ‘Star Ruby’ 
albedo 15.86 – 28.7±0.1**** –
fl avedo 33.79 – 39.9±2.4**** –

Citrus reticulata ‘Lee’ pericarp 7.86 – 42.5±0.1**** –
Citrus reticulata ‘Nova’ pericarp 9.37 – 40.4±1.4**** –
Citrus reticulata ‘Blanco’ × Citrus paradisi pericarp 11.39 – 19.5±0.4**** –

Citrus sinensis ‘Navelina’ 
albedo 9.49 – 12.3±3.3**** –
fl avedo 18.00 – 19.5±0.3**** –

Citrus sinensis ‘Shamouti’
albedo 13.49 – 12.7±0.5**** –
fl avedo 16.45 –   7.5±0.6**** 12.6±0.3****

Citrus sinensis ‘Valencia Late’
albedo 7.56 – 25.2±2.8**** –
fl avedo 15.36 – 25.6±0.4**** –

Citrus sinensis ‘Washington Navel’ 
albedo 13.27 – 22.6±1.4**** –
fl avedo 22.80 – 25.6±0.1**** –

Citrus japonica pericarp 13.42 – 14.3±0.0**** –
Olea europaea (Turkey) bark 12.53       5.7±1.5**** 15.0±2.3**** 7.0±0.0****

Olea europaea (Turkey) leaf 26.77     12.0±1.4**** 10.2±3.1**** 4.8±2.7****

Olea europaea (Cyprus) leaf 32.61     11.1±1.6**** 11.9±2.0**** –
Caff eic acidc       6.0±2.5**** 24.1±0.9****  –d

Hesperidinc     27.3±1.2**** 17.7±4.2**** –
Galanthaminee 94.5±3.8 92.3±0.8
EDTAf 96.5±0.9

aResults are expressed as mean value±standard error of the mean (N=3), bno inhibition/activity, ctested at 100 μg/mL, dnot tested, 
ereference for AChE and BChE inhibition assays at 100 μg/mL, freference for metal-chelating capacity assay at 100 μg/mL. *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001
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Fig. 1. HPTLC profi les of the Citrus extracts: a) image of the derivatized plate with AlCl3 under UV light at 366 nm, and b) image of 
the derivatized plate under white light (AlCl3, then natural product PEG 400). Lane 1=caff eic acid, lane 2=hesperidin, lanes 3 and 4= 
C. aurantium (albedo and fl avedo), lane 5=C. deliciosa (pericarp), lanes 6 and 7=C. limon ‘Interdonato’  (fl avedo and albedo), lanes 8 
and 9=C. limon ‘Kara Limon’ (fl avedo and albedo), lanes 10 and 11=C. limon ‘Cyprus’ (fl avedo and albedo), lanes 12 and 13=C. maxima 
(fl avedo and albedo), lanes 14 and 15=C. maxima. Volume of each sample was 10 μL, except in lane 15 (15 μL)

Fig. 2. HPTLC profi les of the Citrus extracts: a) image of the derivatized plate with AlCl3 under UV light at 366 nm, and b) image of 
the derivatized plate under white light (AlCl3, then natural product PEG 400). Lane 1=caff eic acid, lane 2=hesperidin, lanes 3 and 
4=C. paradisi ‘Handerson’ (fl avedo and albedo), lanes 5 and 6=C. paradisi ‘Red Blush’ (fl avedo and albedo), lanes 7 and 8=C. paradisi 
‘Star Ruby’ (fl avedo and albedo), lane 9=C. reticulata ‘Lee’ (pericarp), lane 10=C. reticulata ‘Nova’ (pericarp), lane 11=C. reticulata 
‘Blanco’ × C. paradisi (pericarp), lanes 12 and 13=C. sinensis ‘Navelina’ (fl avedo and albedo), lanes 14 and 15=C. sinensis ‘Navelina’ 
(fl avedo and albedo). Volume of each sample was 10 μL, except in lanes 14 and 15 (15 μL)
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or no chelating capacity, which might be related to their 
phytochemical content.

Conclusions
The present study demonstrated that, among the sev-

enteen cultivars of Citrus and the leaf and bark samples of 
Olea europaea, the maximum BChE inhibition was caused 
by the fl avedo extract of C. limon ‘Cyprus’, followed close-
ly by the seed extract of C. maxima. Our results indicated 
that the albedo and fl avedo extracts showed diverse lev-
els of BChE inhibition, which might mainly depend on the 
diff erence in their phytochemical content. The screened 
Citrus extracts had a selective BChE inhibitory and no 
AChE inhibitory activity at all. The extracts had either no 
or low metal-chelating capacity. To the best of our knowl-
edge, this is the fi rst study disclosing cholinesterase inhi-
bitory and metal-chelating activities of the Citrus species 
cultivated in Turkey as well as of O. europaea growing in 
Turkey and Cyprus, and also the fi rst HPTLC fi ngerprint-
ing of these plants. Overall, the aforementioned Citrus ex-
tracts could be considered as BChE inhibitors rather than 
AChE inhibitors.
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