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 A three V-groove (Maxwell-type) kinematic mount 

design configuration constrains all degrees of 

freedom of the apparatus mounted onto it, thus 

allowing its high-precision positioning and re-

positioning. The analysis of this mechanical 

assembly comprises force and moment balances, as 

well as expressions for stress-strain and error 

motion calculations. For determined loading 

conditions and the geometry of the mount, the 

resulting loads across each groove-ball interface 

imply, however, the necessity to consider the 

complex nonlinear Hertz theory of point contacts 

between elastically deforming solids. The available 

analytical approaches to the calculation of the 

conditions at the ball-V groove contacts are hence 

recalled in this work with the aim of establishing 

the respective limits of applicability. The obtained 

results are validated experimentally. A structured 

calculation procedure is then used to assess the 

stability of a kinematic mount employed to support 

a large mechanical component at a particle 

accelerator facility, depending on the value and 

orientation of the external loads acting on the 

studied assembly. Stability conditions for different 

design configurations are consecutively 

established. 
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1 Introduction 
 

In the design of machine elements (e.g. gear teeth 

contacts, ball bearings’ contacts, ball screws, … – 

cf. e.g. [1-2]), the designers are often confronted 

with the need to consider point contacts, which, if 

calculated strictly canonically, are difficult to 

compute since the calculation implies the necessity 

to consider the nonlinear Hertz theory of point 

contacts between elastically deforming solids [3]. In 

precision engineering, this problem is especially 

evident in the case of the so-called kinematic 

mounts that are used in high-precision applications 

since they are self-locating and free from backlash, 
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allowing thus the sub-micrometric positioning and 

re-positioning of the coupled mechanical elements 

in both static and dynamic applications. What is 

more, kinematic mounts allow for accommodating 

differential thermal expansions, whereas their 

behaviour in terms of the force and moment 

equilibria, thus comprising the calculation of the 

stress-strain conditions at the contact points, can be 

represented in a closed form solution [4]. 

The most common kinematic mount design 

configuration is the Maxwell-type mount 

constituted by three V-grooves on the support and 

three balls on the supported piece, so as to achieve 

an exact constraint of all six spatial degrees of 

freedom (DOFs – Fig. 1). 

 

 
 

Figure 1. Maxwell kinematic mount. 

 

The aim of this work is to analyse the influence of 

the mechanical design parameters on the stress-

strain behaviour (related to the resulting positioning 

precision) and the stability of the considered class 

of kinematic mounts. A factual example of a mount 

used to support a large structure at a particle 

accelerator facility is then considered. Stability 

conditions for different design configurations are 

established. 

 

2 Analytical model of the contacts in the 

Maxwell-type kinematic couplings 
 

Based on the pioneering work of James Clerk 

Maxwell in 1876, the analysis of a Maxwell-type 

kinematic mount comprises force and moment 

balance equations, expressions for the calculation of 

stresses and deflections at the contact points and 

error motion calculation. Knowing the external 

loads (including the preload) and the geometry of 

the coupling, the reactions at each groove-ball 

interface can be computed from the overall force 

and moment balances [4]. Obviously, across each 

interface between the ball and V-groove, there are 

two contact points (Fig. 2) so that the whole mount 

results in six contact points, thus constraining all 

the DOFs of the elements joined by the coupling. 

 

  
 

Figure 2. Ball – V-groove interface. 

 

 

 
 

Figure 3. Information required to define a three V-

groove kinematic coupling. 

 

The input to the calculation is hence [4] (cf. Figs. 3 

and 4): 

 the balls’ and grooves' radii RB and RG, 

 the coordinates xKi, yKi and zKi of the contact 

points of the balls in the grooves with the 

respective direction cosines αKi, βKi and γKi of 

the contact forces, 
 the preload force FPj (the weight resting on the 

support) with the respective coordinates xPj, yPj 

and zPj and direction cosines αPj, βPj and γPj, 

 the externally applied load FL with the respective 

coordinates xL, yL and zL and direction cosines 

αL, βL and γL (the effect of more loads can be 

evaluated using superposition), 
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 the modules of elasticity and Poisson ratios of 

the ball and groove materials. 

On the other hand, the output from the analysis is 

obtained in terms of [4]: 

 the contact forces FKi and contact stresses qi at 

each of the six contact points, 

 the deflections δi at each of the contact points, 

 the translational errors δX, δY and δZ of any point 

G (x, y, z) in space around the coupling. 

Hertz theory describes the nonlinear behaviour of 

point contacts between elastic isotropic solids 

loaded perpendicular to the surface where the 

contact area is small compared to the radii of 

curvature and the dimensions of the involved 

bodies. The respective analytical model entails a 

lengthy iterative evaluation of transcendental 

equations involving elliptic integrals [5]. In fact, by 

indicating the Young’s moduli and the Poisson’s 

ratios of the bodies in contact with E1, ν1, E2, and ν2, 

the ball radius with RB, and the groove radii (Fig. 4), 

with RG1 (RG1 = – RB (1+)) and RG2 (RG2 = ∞) the 

following notation can be introduced [5]: 

- equivalent Young’s modulus of the system: 
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- equivalent radius of curvature: 
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γ is here the ball-groove radius ratio which affects 

the contact stresses and the resulting deflections. To 

avoid problems with contamination of the contact 

zone, γ should be as large as possible. On the other 

hand, to minimize the effect of contact stresses and 

deflections, it should be as small as possible. A 

practical optimal value suggested in literature is 

hence γ = 0,2 [4]. 

In the general case, the geometry of the contact has 

an elliptic shape (Fig. 5) with a ratio of the 

respective major and minor semi-axes lengths: 
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whereas the values of the semi-axes lengths, the 

resulting interpenetration distance δ of the bodies in 

contact (i.e. the deflection of the contact points) and 

the maximum contact stress qmax can be defined as: 
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Figure 4. Contact interface geometry. 

 

 
 

Figure 5. Contact zone.  

 

In exact expressions for calculating these values, 

i.e., the ones of the characteristic parameters ,  

and , there is the evidenced problem of the need to 

resort to a cumbersome and computationally 

intensive repetitive calculation of the values of the 

complete elliptic integrals of the first and second 

kind [6-7]. . The relations for the calculation of the 

geometry, the deflections and the stresses in the 

contact region, obtained by employing the 

approximated methods suggested in literature, in 
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which the need to calculate the elliptic integrals is 

obviated by introducing polynomial [4], tabular [8-

9] or graphical [10-11] representations of the 

characteristic parameters are, in turn, summarized in 

Table 1. Here a represents the radius of the 

equivalent circular contact area (obtained by 

reduction of the exact elliptic area), cosθ is 

dependent on the radii of curvature and  – the 

angle between the planes of principal curvature 

(Fig. 5), while other parameters are analogous to 

those given above. 

 

Table 1. Approximated analytical methods 
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The results of the calculation of the behaviour in the 

contact region obtained for the considered ball-V 

groove case by using the approximated analytical 

methods of Table 1 are hence compared in Fig. 6. 

For clarity reasons, the results are given as 

differences of each of the considered method with 

respect to the exact solution. It can thus be observed 

that, with exception of the gap-bending hypothesis 

[4], which introduces considerable errors, the errors 

introduced by the approximated methods based on 

polynomial, tabular and graphical representations 

are always smaller than ± 2% (or even, for the 

methods given in [8-9], smaller than ± 0,2% – Fig. 

6). Given the small entity of the stresses and strains 

involved in most high-precision applications, these 

errors can hence be considered negligible in all but 

those cases where true nanometric accuracies are 

sought. Only in the case when the mentioned 

characteristic parameters approach their limit values 

(respectively 0 and ∞), which physically 

corresponds to the curvature of the groove 

approaching that of the ball, become the errors 

involved in the approximated methods appreciable. 

In this case, however, Hertz theory itself starts to 

break down [6]. 

To validate these results, an experimental set-up 

was built (Fig. 7). Stainless steel and ceramic 

(tungsten carbide (WC) and silicon nitride (Si3N4)) 

polished balls and gothic-arch grooves are hence 

employed. It is thus proven that in the whole elastic 

deformations range, the correspondence of the 

theoretical values of the interpenetration distances δ 

with the experimental ones is within the intervals of 

uncertainty of the latter, regardless of the used 

materials and lubrication conditions. Moreover, the 

precision of the Maxwell-type kinematic mounts is 

shown to be comparable to the surface finish of the 
coupling interface (100 nm range), i.e., it is in the 

nanometric domain – Fig. 8 [6]. 
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                   (a)                   (b)                     (c) 

Figure 6. Ratio of the semi-axes lengths of the elliptical contact area (a), normalized contact stresses (b)  

 and normalized interpenetration distances (c) versus the ratio of the radii of curvature γ. 

 

 

 
 

Figure 7. Experimental set up. 

 

In the calculations used in the following treatise, the 

behaviour of the considered kinematic coupling 

design configurations will therefore be performed 

based on the polynomial approximation method 

suggested in [4] where the characteristic parameters 

for the evaluation of the contact region are defined 

as: 
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One of the most relevant boundary conditions in the 

resulting calculations is certainly that of the 

maximal allowable stresses. In fact, to prevent 
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surface damage, the contact pressure induced by the 

maximal calculated contact forces must be lower 

than the allowable Hertzian contact stress. 

Depending on the material used for the production 

of the balls and the V-grooves, the contact stress for 

metal and ceramic elements of the coupling can be 

calculated as [4]: 
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In this work, an additional safety margin of 30% 

with respect to the thus calculated Hertzian contact 

stress is assumed. 

 

    
 

Figure 8. Theoretical and experimental values of 

interpenetration distances δ. 

 

3 Analysis of the stability of the Maxwell-

type kinematic mounts 
 

Considering in the next step the equilibrium of the 

overall Maxwell-type kinematic mount, the products 

of the absolute deflection of the balls with the 

direction cosines of the contact forces are used to 

calculate the components of ball deflections. It is 

here implicitly assumed that, due to a finite 

coefficient of friction at the contact interface, there 

is no relative motion between the ball and the 

groove. Moreover, it is also assumed that the 

change of the distance between the balls induced by 

their deflections is much smaller than the deflection 

at the contact points. The displacement of the 

coupling triangle’s centroid (Fig. 9) is hence 

assumed to be equal to the weighted average of the 

deflections of the balls [4]. 

Therefore, the errors induced by the rotation of the 

whole coupling, assuming that they are small, can 

be assembled in a homogenous transformation 

matrix. The resulting translational errors of any 

point in space around the coupling can finally be 

determined [4]. 

 

 
 

Figure 9. Top view of the geometry of the mount. 

 

In the case of symmetric design configurations of 

the Maxwell-type kinematic mount where its 

contacts, i.e., the vertices of the coupling triangle, 

are so positioned as to create an equilateral triangle, 

and consequently a good stability of the coupling 

will be guaranteed, as shown in Fig. 10, when the 

normals to the planes containing the contact force 

vector pairs bisect the angles between the balls. 

Also, for balanced stiffness in all directions, the 

contact force vectors should intersect the plane of 

coupling action at an angle of 45º (cf. Fig. 2 right) 

[4]. 

When the apparatus supported by the coupling is 

subject to the action of an external load (possibly of 

varying directions), the stability of the coupling 

must, in turn, be checked by controlling if all the 

values of the contact forces are positive, i.e. that 

there is no tendency of lifting the supported 

structure from the coupling. In this case, a general 

requirement of trying to balance the stiffness in all 

directions is set, while maintaining the stresses in 

the allowable region. These requirements may 

imply the need to modify the aspect ratio of the 

coupling triangle. Two cases are generally 
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considered in this instance: 

 the case when the normals to the planes 

containing the contact force vectors always point 

towards the coupling centroid (indicated here as 

the Maxwell mount of type A – Fig. 11), and  

 the case when the normals to the planes 

containing the contact force vectors bisect the 

angles of the coupling triangle (indicated here as 

the Maxwell mount of type B – Fig. 12). 

 

 
 

Figure 10. Isometric view of the geometry of the 

mount. 

 

 
 

Figure 11. Coupling design configuration type A. 

 

It is to be noted here that the geometry of these two 

design configurations of the mount are linked to the 

definition of an auxiliary angle  and the length-to-

width ratio of the mount itself.  corresponds to the 

angle between the segment connecting the centroid 

of the mount with the centre of ball number 1 and 

that of ball number 2, respectively. 

 

 
 

Figure 12. Coupling design configuration type B. 

 

For a known angle , it stands: 
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3.1 Coupling design configuration of type A 
 

Based on the design configuration of the Maxwell 

mount of type A, the coordinates of its contact 

points and the respective direction cosines of the 

contact forces are those defined in Table 2. 

The resulting force and moment equilibria can be 

hence defined as: 
 

 
PZ1 PZ2 PZ3 PZ

0F F F F     (14) 

 

 
PZ1 C PZ2 C PZ3 C

cos 2 cos 2 0F R F R F R     (15) 

 

 
PZ2 C PZ3 C

sin 2 sin 2 0  F R F R  (16) 

 

These equilibrium equations define also, as reported 

in Table 3, the share of the preload (obviously, only 

in the z direction) that each ball will bear. 
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Table 2. Coordinates of contact points and contact forces’ direction cosines – type A Maxwell mount 

 

 Ball 1 Ball 2 Ball 3 

1 2 3 4 5 6 

xKi RBcosα -RBcosα 
-RCsin2φ- 

-RBcosα.cos2φ 

-RCsin2φ+ 

+RBcosα.cos2φ 

RCsin2φ- 

-RBcosα.cos2φ 

RCsin2φ+ 

+RBcosα.cos2φ 

yKi RC RC 
-RCcos2φ+ 

+RBcosα.sin2φ 

-RCcos2φ- 

-RBcosα.sin2φ 

-RCcos2φ- 

-RBcosα.sin2φ 

-RCcos2φ- 

+RBcosα.sin2φ 

zKi -RBsinα -RBsinα -RBsinα -RBsinα -RBsinα -RBsinα 

cosαKi -cosα cosα cosα.cos2φ -cosα.cos2φ cosα.cos2φ -cosα.cos2φ 

cosβKi 0 0 -cosα.sin2φ cosα.sin2φ cosα.sin2φ -cosα.sin2φ 

cosγKi cosα cosα cosα cosα cosα cosα 

 

Table 3. Preload force values on balls – type A Maxwell mount 

 

 Ball 1 Ball 2 Ball 3 

FPzi PZ
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1 cos 2
F
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2(1 cos 2 )
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3.2 Coupling design configuration of type B 
 

In this case it is also necessary to define the 

coordinates of the coupling centroid C (xC, yC, zC) 

(cf. Fig. 12) as: 

 

C(0,
1

C
 cos 2 sin 2 tan 45

2
R


 


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  
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, 0) (17) 

Using again the same approach as in the case of the 

mount configuration of type A, the coordinates of 

the contact points and the respective direction 

cosines of the contact forces can be calculated 

based on the relations given in Table 4, whereas the 

shares of the preload that each ball will bear are 

defined in Table 5. 

 

 

Table 4. Coordinates of contact points and contact forces’ direction cosines – type B Maxwell mount 

 

 Ball 1 Ball 2 Ball 3 

1 2 3 4 5 6 

xKi RBcosα -RBcosα 
-RCsin2φ- 

-RBcos.αsinξ 

-RCsin2φ+ 

+RBcosα.sinξ 

RCsin2φ- 

-RBcosα.sinξ 

RCsin2φ+ 

+RBcosα.sinξ 

yKi 
RC(1+cos2φ- 

-sin2φ/tanζ) 

RC(1+cos2φ- 

-sin2φ/tanζ) 

-RCsin2φ.sin-1ζ· 

sinξ+RBcosαcosξ 

-RCsin2φ.sin-1ζ· 

·sinξ+RBcosα.cosξ 

-RCsin2φ.sin-1ζ· 

sinξ-RBcosα.cosξ 

-RCsin2φ.sin-1ζ· 

·sinξ+RBcosα.cosξ 

zKi -RBsinα -RBsinα -RBsinα -RBsinα -RBsinα -RBsinα 

cosαKi -cosα cosα cosα.sinξ -cosα.sinξ cosα.sinξ -cosα.sinξ 

cosβKi 0 0 -cosα.cosξ cosα.cosξ cosα.cosξ -cosα.cosξ 

cosγKi cosα cosα cosα cosα cosα cosα 
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Table 5. Preload force values on balls – type B Maxwell mount 

 

 Ball 1 Ball 2 Ball 3 
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Taking into account Equation (14), in this case, the 

force and moment equilibria will be given 

accordingly as: 
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In the above relations, the geometrical parameters  

and  are defined as: 

 

  (20) 

 

  (21) 

 

4 Application of stability analysis and 

discussion 
 

The outlined Maxwell design configurations of type 

A and B with their corresponding geometric 

parameters are used next to assess the stability and 

behaviour of a factual kinematic mount used to 

support a large vacuum chamber at a particle 

accelerator facility. In fact, as extensively 

elaborated in [12], these types of devices are 

characterized by extremely stringent design 

requirements in terms of their positioning and 

repositioning accuracies and precisions, while being 

subjected to several sources of external loads such 

as, for example, those resulting from vacuum loads 

on the bellows connecting the chamber to the 

remaining structure of the accelerator. 

In the considered case, the input design data are: 

 the preload force (mass of the apparatus laying 

on the mount): FP = 5 kN, 

 externally applied load: FL = 300 N – acting 

parallel and vertically shifted by zL = 1500 mm 

with respect to the plane of the mount itself, 

whereas the coordinates xL and yL (cf. Fig. 3) can 

vary depending on the use of the chamber, 

 balls’ material: silicon nitride (Si3N4), 

 material of the grooves: tungsten carbide (WC), 

 maximum coupling radius: RCmax = 500 mm. 

The unknowns are: 

 the radii of the balls RB, and 

 the actual coupling radius RC. 

Considering these unknowns, there are several 

solutions that comply with the given requirements 

of system stability and allowable stresses. 

In a first instance, the dimensions of the elements of 

the coupling pair (i.e. the balls and the grooves) are 

determined on a symmetric configuration of the 

Maxwell-type kinematic mount. As stated above, 

this is done based on the polynomial approximation 

method suggested in [4]. 

Therefore, Fig. 13 depicts the maximum values of 

the contact stress qmax depending on the radius of 

the coupling RC (that is varied in the range from 50 

to 450 mm) and the dimension of the balls RB 

(varied in the range from 17 to 20 mm). Bearing in 

mind that the maximal allowable stresses qall should 

be smaller than 70% of the smallest of the allowable 

Hertzian contact stresses as defined in the 

catalogues of the manufactures of the used balls 

(Hmax_Si3N4 = 3333 MPa [13]) and grooves (Hmax_WC 

= 4808 MPa [14]), the obtained results imply that 

the radius of the used balls should be at least RB = 

18 mm. Taking into account Equation (2) and the 

condition γ = 0,2, the respective V-groove arch 

radius is hence necessarily RG = - 21,6 mm. These 

conditions are thus satisfied for all kinematic mount 

design configurations for which the overall coupling 

radius is larger than RC = 250 mm. 

A check is made also to verify whether the position 

of the external load FL along the y axis of the mount 

(i.e. a change of its yL coordinate) influences the 

stability of the mount. It could be hence established 

that this is not the case, i.e., that for all kinematic 

mount design configurations satisfying the 

conditions of Fig. 13 the mounts will be stable. 
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Figure 13. Dimensioning of the elements of the 

considered kinematic mount. 

 

Ultimately, considering the influence of the 

kinematic mount design configurations of type A 

and type B on the stability of the mount, depending 

on the orientation and the point of application of the 

external load FL, typical illustrative results are 

depicted in Figs. 14-17. The stability regions are 

here obtained for both considered design 

configurations in the case when the lateral load 

passes through the centroid of the kinematic mount 

but: 

 FL points in the direction of the positive x axis 

(Fig. 14 – this case is, obviously, mirrored in its 

effects if FL points in the direction of the 

negative x axis), 

 FL points in the direction of the positive y axis 

(Fig. 15), 

 FL points in the direction of the negative y axis 

(Fig. 16). 

Depending on the aspect ratio of the mount itself, 

defined by the angle  for a fixed coupling radius 

RC = 300 mm, these figures therefore show the 

critical contact forces which tend to become 

negative, thus hindering the stability of the mount. 

Obviously, the contact force(s) significant for the 

loss of the stability of the mount will, as shown in 

the figures, be different for the different considered 

loading cases, whereas the stability region shown in 

the figures could be increased within the defined 

allowable range, in the coupling radius RC. The 

forces FKi indicated in the figures are those shown 

in Fig. 3, i.e., the index “K” indicates contact forces 

across the ball-to-groove interface, whereas index 

“i” relates to the contact position. For instance, i = 1 

or i = 2 indicate thus the contacts of ball number 1 

(cf. Fig. 9) with the respective groove, i = 3 and i = 

4 relate to the contact forces of ball no. 2 and so on.  

In the case of Fig. 14, it is clear that the mounts in 

both considered design configurations will be stable 

in the range of geometries of the mounts for which 

95° ≤  ≤ 145°, whereas outside of this region the 

mount will have the tendency to lose contact in 

either ball 1 or ball 2. On the other hand, when the 

bounds of the stability region are approached, the 

forces on ball 3 can approach the values which 

would result in stresses higher than the determined 

allowable limit for the used balls qall = 2333 MPa. 

In these cases, the material of the balls should be 

changed (the tungsten carbide used for the grooves 

could already be a satisfactory ball material). 

 

 
 

Figure 14. Stability regions when FL points in the 

direction of the positive x axis. 

 

When FL points in the direction of the positive y 

axis (Fig. 15), the mounts in both considered design 

configurations will, in turn, be stable in the range of 

geometries of the mounts for which 73° ≤  ≤ 171°, 

although, obviously, cases with  < 90° physically 

do not make much sense since they would imply 

that already the weight of the supported apparatus 

(i.e. the preload FP) induces a tendency to lift the 

mount from ball no. 1. Additionally, in this case 

when  < 135°, the stresses in ball no. 1 will be 

higher than allowable, making thus either the 

modification of the ball material necessary or, as a 

viable alternative, an increase in the ball radii. In 

any case, given the resulting rather limited stability 

range (90° ≤  ≤ 135°), this configuration might 

therefore, be avoided. 

Lastly, when FL points in the direction of the 

negative y axis (Fig. 16), the mounts in both 

considered design configurations will be stable in 

the range of geometries of the mounts for which 
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107° ≤  ≤ 174° (tending, as expected, to loose 

contact at the balls 2 and 3). In this case the 

condition of maximal balls’ stresses does not 

impose any bounds on the usable configurations. 

Most importantly, it is clear here (as visible also in 

Fig. 15) that in the case of the Maxwell kinematic 

mount of type B, the stability range tends to 

increase at its upper bound. This proves, as 

postulated in [4] that, in the case of couplings with 

base triangles of larger aspect ratios, the design 

configuration where the normals to the planes 

containing the contact force’ vectors bisect the 

angles of the coupling triangle, i.e., indeed, the 

configuration of type B tends to be a preferable 

solution. 

 

 
 

Figure 15. Stability regions when FL points in the 

direction of the positive y axis. 

 

 
 

Figure 16. Stability regions when FL points in the 

direction of the negative y axis. 

 

As a further interesting variant, Fig. 17 shows how 

variations of the angle  and of the direction of the 

lateral load FL with respect to the y axis of the 

mount (i.e., of the angle βL shown in Fig. 3), in the 

case of the Maxwell kinematic mount of type B 

affect the value of the contact force FK2, i.e., the 

respective stability region of the considered design 

configuration. 

 

 
 

Figure 17. Variation of the contact force FK2 for the 

design configuration of type B 

depending on the angles  and βL. 

 

Considering the outcomes of the stability analysis, it 

was thus possible to substantiate further the 

hypothesis that when the length of the mount is 

extended with respect to its width, the Maxwell 

kinematic mount design configuration of type B is 

generally better. 

 

5 Conclusions 

 
Thorough analyses of the precision and the stability 

of Maxwell-type kinematic mounts is performed in 

this work. 

In terms of the stress-strain behaviour in the ball – 

V-groove contact region, which is closely related to 

the precision of the considered type of machine 

elements, it is shown that, except for the gap–

bending hypothesis method, the approximated 

analytical approaches available in literature are 

giving accurate results in the micrometric and sub-

micrometric domain. Experimental measurements of 

the whole range of elastic deformations allow, in 

turn, for establishing that the correspondence of 

theoretical values with the experimental ones is 

within the intervals of uncertainty of the 
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measurements, regardless of used materials and 

lubrication conditions. The repeatability of the 

kinematic mounts is thus shown to be comparable to 

the surface finish of the used elements, i.e., in the 

nanometric domain. 

In terms of the stability of the Maxwell-type 

kinematic mounts, various design configurations 

and lateral load conditions are considered. Suitable 

algorithms are implemented and hence applied to a 

factual design example. It is thus shown that, when 

the aspect ratio of mount’s layout is increased, the 

Maxwell-type design configuration where the 

normals to the planes containing the contact forces 

bisect the angles between the balls is generally 

better than design configurations where the normals 

are directed towards the centroid of the coupling. 
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