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P -ADIC ROOT SEPARATION FOR QUADRATIC AND

CUBIC POLYNOMIALS

Tomislav Pejković

Abstract. We study p-adic root separation for quadratic and cubic
polynomials with integer coefficients. The quadratic and reducible cubic
polynomials are completely understood, while in the irreducible cubic case
and p 6= 2, we give a family of polynomials with the bound which is the
best currently known.

1. Introduction

For a polynomial with integer coefficients, we can look at how close two
of its roots can be. This can be done when we look at roots in the field of real
or complex numbers and also if we wish to study roots in the p-adic setting.
Since we can always find polynomials with roots as close as desired, we need
to introduce some measure of size for polynomials with which we can compare
this minimal separation of roots. This is done by bounding the degree and
most usually using the height, i.e. maximum of the absolute values of the
coefficients of a polynomial. The height of an integer polynomial P (X) is
denoted by H(P ).

For an integer polynomial P (X) of degree d ≥ 2, height H(P ) and with
distinct roots α1, . . . , αd ∈ C, we set

sep(P ) = min
1≤i<j≤d

|αi − αj |

and define e(P ) by

sep(P ) = H(P )−e(P ).

For an infinite set S of integer polynomials containing polynomials of arbitrary
large height, we define

e(S) = lim sup
P (X)∈S, H(P )→+∞

e(P ).

Mahler [11] proved in 1964 that if S contains only polynomials of degree
d, then e(S) ≤ d − 1. The lower bound on e(S) for this class of polynomials
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has been successively improved. The best bound in the real/complex case is
now standing at e(S) ≥ 2d−1

3 for general d (see [4]). However, for the set of
cubic polynomials it was shown [7, 15] that e(S) ≥ 2 which is, of course, best
possible. For other small d, better results than the general one we mentioned
have been found (see [6]). Another direction of research is to study particular
subsets of all polynomials of degree d, for example, we can distinguish between
irreducible and reducible polynomials or monic and nonmonic polynomials
(see [3–5] for details).

Separation of roots in the p-adic setting has been much less studied (see
[2, §9.3] and [13]). We fix our notation with respect to the p-adic analysis
we will be using. Let p be a rational prime number. We denote by Qp the
completion of the field of rational numbers Q with respect to p-adic absolute
value | · |p which is normalised in such a way that |p|p = p−1. Also, vp(x) =
− log(|x|p)/ log p is the usual p-adic valuation. By Zp we denote the ring of
p-adic integers. We use Cp for the (metric) completion of an algebraic closure
of Qp. The field Qp of p-adic numbers is usually considered as an analogue
of the field R of real numbers, while the field Cp is analogous to the field
C of complex numbers. Basic facts about p-adic theory will be tacitly used,
interested reader can consult e.g. [8, 9].

Just as in the real and complex setting, for a polynomial P (X) ∈ Z[X ] of
degree d ≥ 2 and with distinct p-adic roots α1, . . . , αd ∈ Cp, we set

sepp(P ) = min
1≤i<j≤d

|αi − αj |p

and we call this quantity minimal p-adic separation of roots of P (X). The
definition of ep(P ) and ep(S) is now completely analogous to what was done
above in the real case.

Following the lines of Mahler’s proof, it can be shown (see [14, Lemma
2.3]) that the next inequality holds for a separable, integer polynomial P (X)
of degree d ≥ 2:

(1.1) sepp(P ) ≥ d− 3
2 d H(P )−d+1.

In this paper we show that best possible lower bounds on ep(S) can be ob-
tained for quadratic and reducible cubic polynomials, while in the irreducible
cubic case and p 6= 2, we give a family with the bound ep(S) ≥ 25/14 which
is the best currently known.

Symbols ≫ and ≪ used in this paper are the Vinogradov symbols. For
example A ≪ B means A ≤ cB where c is some constant. We will usually
say what this constant depends upon in a particular case. When A ≪ B and
A ≫ B, we write A ≍ B.



P -ADIC ROOT SEPARATION 11

2. Quadratic polynomials

Inequality (1.1) says that for a quadratic separable polynomial P (X) with
integer coefficients, we have sepp(P ) ≥ 1

8 H(P )−1. To show that the exponent
−1 over H(P ) really can be attained, we can take the family of reducible
polynomials

Pk(X) = X(X + pk) = X2 + pkX, k ≥ 1

which gives sepp(Pk) = p−k = H(P )−1. We can also look at the family of
irreducible polynomials

Pk(X) = (−p2k + pk + 1)X2 + (p2k + 2pk)X + p2k, k ≥ 1

for which

sepp(Pk) =

∣

∣

∣

∣

√

(p2k + 2pk)2 − 4(−p2k + pk + 1)p2k

−p2k + pk + 1

∣

∣

∣

∣

p

=

∣

∣

∣

∣

√

5p4k

−p2k + pk + 1

∣

∣

∣

∣

p

= p−2k

if p 6= 5. Thus, here we have sepp(Pk) ≍ H(Pk)−1, where the implied constants
are absolute. The last asymptotic relation obviously holds even if p = 5.

An example with a family of monic irreducible quadratic polynomials is
given in the next proposition.

Proposition 2.1. There exists a family of irreducible integer polynomials

Pm(X) = X2 + amX + bm, m ≥ 1

with roots in Qp such that am > bm > 0, am ≍ pm and

sepp(Pm) ≍ H(Pm)−1,

where the implicit constants depend only on p.

Proof. We first examine the case p 6= 2. Let g be the smallest prime
such that g ≡ 1 (mod 4p). Its existence is guaranteed by Dirichlet’s theorem
on primes in arithmetic progressions.

Let

lm =
⌊pm√

g

2
+

1

2

⌋

.

Then it is easy to see that

(2lm − 1)2 < p2mg < (2lm + 1)2

and we put am = 2lm + 1. Since (2lm + 1)2 − (2lm − 1)2 = 8lm, if we now set
bm = 1

4 (a2
m − p2mg), it must be 0 < bm ≤ 1

4 8lm = 2lm < am, while bm ∈ Z is

assured by a2
m ≡ (2lm + 1)2 ≡ 1 (mod 4) and p2mg ≡ (±1)2m1 ≡ 1 (mod 4).
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Hensel’s Lemma ensures that the polynomial Q(X) = X2 − g has roots
δ ∈ 1 + pZp and −δ ∈ −1 + pZp. Note that δ 6∈ Q. Thus the polynomial

Pm(X) = X2 + amX + bm =
1

4

(

(2X + am)2 − p2mg
)

=
p2m

4
Q
(2X + am

pm

)

has roots −am±pmδ
2 , which are in Qp \ Q and their distance is

sepp(Pm) = |pmδ|p = p−m ≍ a−1
m = H(Pm)−1.

If p = 2, we take lm = ⌊2m
√

17⌋, and put am = 2lm + 2. Taking bm =
a2

m

4 − 22m · 17, it can easily be checked that all the claims of this proposition
are fulfilled. In this case we need to use Hensel’s Lemma in its more general
form (see [10, Proposition 7.6, §XII.7, p. 493]).

Although the following proposition is quite easy, best possible constant
appearing on the right-hand side of the inequality as well as conditions for
equality seem to be new.

Proposition 2.2. Let P (X) be a quadratic separable polynomial with
integer coefficients. For every prime p, we have

sepp(P ) ≥ 1

H(P )
√

5
.

Equality is achieved if and only if p = 5 and P (X) ∈ {X2 ± X − 1, −X2 ±
X + 1}.

Proof. For a separable quadratic polynomial P (X) = aX2 +bX +c with
integer coefficients, the following sequence of inequalities holds
(2.1)

sepp(P ) =

∣

∣

∣

∣

√
b2 − 4ac

a

∣

∣

∣

∣

p

=
|b2 − 4ac|

1
2
p

|a|p
(i)
≥ 1

|b2 − 4ac| 1
2

(ii)
≥ 1
(

|b|2 + 4|a||c|
)

1
2

(iii)
≥ 1

H(P )
√

5
.

In (2.1.i) equality holds if and only if p does not divide a and b2 − 4ac = pk

for some nonnegative integer k. In (2.1.ii) equality is achieved if and only
if ac ≤ 0 while equality in (2.1.iii) is equivalent to |a| = |b| = |c| = H(P ).
Combining these conditions we arrive at the statement of the proposition.

3. Reducible cubic case

In order to find p-adic root separation for some cubic polynomials, we will
be using properties of Newton polygons. For all terminology consult [8,9]. We
copy this lemma from [8, Theorem 6.4.7] for the benefit of our reader.
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Lemma 3.1. Let P (X) = 1 + a1X + a2X2 + · · · + anXn ∈ Cp[X ] be
a polynomial, and let m1, m2, . . . , mr be the slopes of its Newton polygon in
increasing order. Let i1, i2, . . . , ir be the corresponding lengths. Then, for
each k, 1 ≤ k ≤ r, P (X) has exactly ik roots in Cp (counting multiplicities)
of p-adic absolute value pmk .

We will exhibit a family of reducible cubic polynomials whose separation
of roots is (up to an absolute constant) best possible.

We look at the polynomial P (X) = (aX − b)(X2 + rX + s) ∈ Z[X ]. The
roots of this polynomial are

b

a
and

−r ±
√

r2 − 4s

2
,

so in order to get the smallest separation of roots we only have to look at the
distance of the root of the linear and of the quadratic factor of P (X). Let

0 = P
( b

a
+ ε
)

= ε
(

ε2 +
(2b

a
+ r
)

ε +
( b2

a2 +
rb

a
+ s
)

)

.

Therefore, ε 6= 0 is a root of the polynomial

(3.1) Q(X) = 1 +
2ba + ra2

b2 + rba + sa2 X +
a2

b2 + rba + sa2 X2.

It is obvious that

∣

∣

∣

2ba + ra2

b2 + rba + sa2

∣

∣

∣

p
≤ |b2 + rba + sa2| ≪ H(P )2,

where the implied constant in second inequality is absolute and follows from
Gelfond’s Lemma (see e.g. [2, Lemma A.3, p. 221] or [1, Lemma 1.6.11, p.
27]). The same bound holds for the leading coefficient of Q(X) as well. We
will construct a sequence of polynomials

(

Pk(X)
)

k
such that the above bound

becomes asymptotic equality. Then, using the Newton polygons it will follow
that asymptotically sep(Pk) ≍ H(Pk)−2 which is, of course, the best possible
exponent.

To this end we will use the sequence
(

Ak(n)
)

k≥0
of polynomials in n

defined recursively

A0(n) = 1, A1(n) = 1, Ak+1(n) = Ak(n) − n2Ak−1(n) for n ≥ 2.

First few terms of the sequence Ak(n) are

1, 1, −n2 + 1, −2n2 + 1, n4 − 3n2 + 1, 3n4 − 4n2 + 1, . . .
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so we see that the constant term is always 1 and the degree is degn Ak = 2
⌊

k
2

⌋

.
We also have

(3.2)

A2
k+1 − Ak+1Ak + n2A2

k

= A2
k − 2n2AkAk−1 + n4A2

k−1 − (Ak − n2Ak−1)Ak + n2A2
k

= n2(A2
k − AkAk−1 + n2A2

k−1)

= · · · = (n2)k(A2
1 − A1A0 + n2A2

0)

= (n2)k+1 = n2(k+1).

Fixing any integer k ≥ 2, we set

ak,l = Ak(pl), bk,l = Ak+1(pl), rk,l = −1, sk,l = p2l, for l ≥ 1.

Denoting

Pk,l(X) = (ak,lX − bk,l)(X
2 + rk,lX + sk,l)

=
(

Ak(pl)X − Ak+1(pl)
)

(X2 − X + p2l), l ≥ 1,

we see that the quadratic factor is irreducible over Q and (dropping indices k
and l)

vp

( 2ba + ra2

b2 + rba + sa2

)

= −2(k + 1)l

since a ≡ b ≡ 1 (mod p) and b2 + rba + sa2 = p2(k+1)l because of (3.2).
Therefore, Lemma on Newton polygons and (3.1) imply that

sepp(Pk,l) = |ε|p = p−2(k+1)l.

Since |a| ≍k p2⌊k/2⌋l and |b| ≍k p2⌊(k+1)/2⌋l, we have

H(Pk,l) ≍k p2(⌊(k+1)/2⌋+1)l,

and thus

p(k+2)l ≪k H(Pk,l) ≪k p(k+3)l,

where we alluded by ≍k and ≪k that the implied constants depend on k as
well as on p which is not mentioned so as not to encumber notation needlessly.
This leads to

sepp(Pk,l) = H(Pk,l)
−2+εk,l , l → ∞.

Here, we have εk,l ∈ [ 1
k+2 , 5

k+3 ] when l is large enough with respect to k.

Obviously, εk,l → 0 when k → ∞. Hence, we can choose Pk(X) = Pk,lk
(X)

for some sequence (lk)k which increases sufficiently fast so that

sepp(Pk) = H(Pk)−2+εk ,

while H(Pk) → ∞ and εk → 0 when k → ∞.
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4. Irreducible cubic case

Let P (X) = aX3 + bX2 + cX + d ∈ Z[X ] be an integer polynomial with
distinct roots α1, α2, α3 ∈ Cp. In order to analyze sepp(P ), we first construct
a polynomial whose roots are closely related to the distances between the
roots of P (X). Denote by Q(X) = ResY

(

P (Y ), P (X + Y )), the resultant
of polynomials P (Y ) and P (X + Y ) with respect to variable Y . Standard
properties of resultants (consult for example [10, 12]) tell us that Q(X) has
integer coefficients and for x0 ∈ Cp, we have

Q(x0) = 0 ⇔ P (Y ) and P (x0 + Y ) have a common root in Cp

⇔ ∃y0 ∈ Cp such that P (y0) = P (x0 + y0) = 0

⇔ ∃α, β ∈ Cp such that P (α) = P (β) = 0, x0 = α − β

This shows that if we denote δ1 = α1 − α2, δ2 = α2 − α3, δ3 = α3 − α1, then

Q(X) = ã
∏

1≤i≤3
1≤j≤3

(

X − (αi − αj)
)

= ã(X2 − δ2
1)(X2 − δ2

2)(X2 − δ2
3)X3.

Taking R(X) = Q(X)/X3 ∈ Z[X ] and then S(X) = R(
√

X)/R(0), we get
that

S(X) =
−1

δ2
1δ2

2δ2
3

(X − δ2
1)(X − δ2

2)(X − δ2
3)

is a polynomial in Q[X ] such that

(4.1) S(0) = 1 and sepp(P ) = min
{

|δ|
1
2
p : δ ∈ Cp, S(δ) = 0

}

.

After some computation, we obtain

(4.2) S(X) = 1 −
(

b2 − 3ac
)2

X

b2c2 − 4ac3 − 4b3d + 18abcd − 27a2d2

+
2a2

(

b2 − 3ac
)

X2

b2c2 − 4ac3 − 4b3d + 18abcd − 27a2d2

− a4X3

b2c2 − 4ac3 − 4b3d + 18abcd − 27a2d2 .

Note that b2c2 − 4ac3 − 4b3d + 18abcd − 27a2d2 is exactly the discriminant of
polynomial P (X).

Let us describe the process by which we arrive at the family of polynomials
with the best currently known bound for separation of roots. We search for
cubic polynomials in X with coefficients that are polynomials in n. We want
the discriminant with respect to X to be a polynomial of small degree in n.
The polynomial

(−44n3 − 60n2 − 3n)X3 + (36n3 + 24n2 − 21n)X2 + (36n2 + 39n)X + 9n + 8
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has discriminant ≍ n3. Substituting n 7→ n3 and X 7→ X/n, we obtain the
polynomial

(−44n6 − 60n3 − 3)X3 + (36n7 + 24n4 − 21n)X2 + (36n5 + 39n2)X + 9n3 + 8

with discriminant ≍ n3. Since the discriminant is quite small compared to
the height of the given polynomial, we expect that the roots in C are quite
close. In order to get the polynomial with small discriminant in the p-adic
value, we proceed with the following “reversion”. Substituting n 7→ 1/n in the
previous polynomial and then multiplying by n7 gives

(−3n7−60n4−44n)X3+(−21n6+24n3+36)X2+(39n5+36n2)X +8n7+9n4,

which has the discriminant −1728(4n25 + 9n28) and now putting n = pk, we
would get a polynomial with very small p-adic absolute value of the discrim-
inant. Unfortunately, we have no way of knowing that this polynomial is
irreducible. In order not to repeat previous construction from the start, we
simply do the following to the last polynomial

n 7→ 2−5/332/3pk, X 7→ 22/334/3X, multiply with 229/33−14/3

and obtain the family of polynomials

Pk(X) = (−45056pk−17280p4k−243p7k)X3 +(8192+1536p3k−378p6k)X2

+ (512p2k + 156p5k)X + 8p4k + 2p7k.

Now the coefficients of S(X) = a0 + a1X + a2X2 + a3X3 in the order a0,
a1, a2, a3 are

1,
256p−25k

(

2097152 + 9p3k
(

327680 + 99p3k
(

1536 + 256p3k + 9p6k
)))2

19683 (128 + 81p3k)
,

− 16p−23k
(

45056 + 27p3k
(

640 + 9p3k
))2

19683 (128 + 81p3k)
·

·
(

2097152 + 9p3k
(

327680 + 99p3k
(

1536 + 256p3k + 9p6k
)))

,

p−21k
(

45056 + 27p3k
(

640 + 9p3k
))4

78732 (128 + 81p3k)
,

which gives the following points we are interested in (for p 6= 2)

(0, vp(a0)), (1, vp(a1)), (2, vp(a2)), (3, vp(a3))

= (0, 0), (1, −25k), (2, −23k), (3, −21k).

Looking at the Newton polygon obtained from these points and using (4.1),
we see that sepp(Pk) = p−25k/2 ≍ H(Pk)−25/14 because H(Pk) ≍ p7k. Even if
asymptotics does not change for p = 2, we are not certain that the polynomials
Pk(X) are irreducible in this case. For p 6= 2 this is guaranteed by Eisenstein’s
criterion.
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Remark 4.1. This last family of polynomials was deduced from the family

(−45056n6 − 17280n3 − 243)X3 + (8192n7 + 1536n4 − 378n)X2

+ (512n5 + 156n2)X + 8n3 + 2, n ≥ 0

by the usual process of “reversion”. The original family of polynomials gives
a separation of roots in the real case with the exponent −25/14 which is at
present the best exponent for a family of irreducible cubic polynomials with
polynomial growth of coefficients. Although Schönhage [15] proved that in
the real case the best possible exponent −2 is attainable, his families of poly-
nomials have exponential growth of coefficients. One of the main ingredients
Schönhage used to construct these families is continued fraction expansion of
real numbers. In the p-adic setting there are several types of continued frac-
tions that have been proposed. None of them have all the good properties of
the standard continued fractions and at the moment Schönhage’s construction
does not seem to translate easily to p-adic numbers. This is one of the reasons
why we are interested in families of polynomials with polynomial growth of
coefficients.
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P -adska separacija korijena kvadratnih i kubnih polinoma

Tomislav Pejković

Sažetak. Promatramo p-adsku separaciju korijena za
kvadratne i kubne polinome s cjelobrojnim koeficijentima. Sluča-
jevi kvadratnih i reducibilnih kubnih polinoma potpuno su ri-
ješeni. Za ireducibilni kubni slučaj i p 6= 2, dana je familija poli-
noma s najboljom do sada poznatom separacijom.
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