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3-JENSEN-CONVEXITY AT A POINT AND

3-WRIGHT-CONVEXITY AT A POINT AND RELATED

RESULTS

Sadia Khalid, Josip Pečarić and Marjan Praljak

Abstract. Two new classes of convex functions at a point are intro-
duced and some interesting related results are deduced.

1. Introduction and Preliminaries

The notion of convex function is one of the most important concepts in
the theory of inequalities (see [4, p.1]). Throughout this paper I is an interval
in R.

Definition 1.1. A function f : I → R is said to be convex if for all
x, y ∈ I and for all λ ∈ [0, 1], the inequality

f (λx + (1 − λ) y) ≤ λf (x) + (1 − λ)f (y)

holds.

The following definition of Jensen-convex (J-convex) function is given in
[4, p.5].

Definition 1.2. A function f : I → R is said to be convex in the Jensen
sense or J-convex if for all x, y ∈ I, the inequality

f

(

x + y

2

)

≤ f (x) + f (y)

2

holds.

Wright-convex (W-convex) function is defined as follows (see [4, p.7]):

Definition 1.3. A function f : I → R is said to be W-convex if for all
x, y + h ∈ I such that x ≤ y, h > 0, the inequality

(1.1) f (x + h) − f (x) ≤ f (y + h) − f (y)
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holds. The function f is said to be W-concave if the reversed inequality holds
in (1.1).

Let ∆h stands for the difference operator defined by (∆hf) (x) =
f (x + h)−f (x), where h > 0. Then (1.1) takes the form ∆hf (x) ≤ ∆hf (y)
such that x ≤ y.

Definition 1.4. Let n ∈ N and h1, . . . , hn > 0. A function f : I →
R is said to be n-Wright-convex if (∆h1 . . . ∆hn

f) (x) ≥ 0 holds whenever
x, x + h1 . . . + hn ∈ I.

Remark 1.5. Note that the 2-Wright-convex functions are simply the
Wright-convex functions.

The following theorem is given in [4, p.53].

Theorem 1.6. If f is a J-convex function defined on I, then for all points
x1, . . . , xn ∈ I and for all rational non-negative numbers p1, . . . , pn such that
∑n

i=1 pi = 1, the following inequality

(1.2) f

(

n
∑

i=1

pixi

)

≤
n
∑

i=1

pif (xi)

holds.

The following theorem is given in [4, p.161] (see also [6]).

Theorem 1.7. Let x1 ≥ x2 ≥ . . . ≥ x2n+1 or x1 ≤ x2 ≤ . . . ≤ x2n+1,
xi ∈ I for i = 1, . . . , 2n + 1 and let f be a W-convex function defined on I.
Then the following inequality is valid

(1.3) f

(

2n+1
∑

i=1

(−1)
i−1

xi

)

≤
2n+1
∑

i=1

(−1)
i−1

f (xi) .

The following theorem is a generalization of an inequality of Z. Opial [3]
given in [4, p.162].

Theorem 1.8. Let xk ∈ I for k = 1, . . . , 2n+1 and let
∑2k+1

i=1 (−1)i−1 xi ∈
I for k = 1, . . . , n.

(i) If

(1.4) x2k ≤ x2k+1,
2k
∑

i=1

(−1)i−1 xi ≥ 0 for k = 1, . . . , n,

then the reverse of (1.3) holds for every W -convex function f : I → R.
Further, if reverse of the inequalities in (1.4) hold, then reverse of (1.3)
is also valid.
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(ii) If instead of (1.4), the following conditions hold

(1.5) x2k ≤ x2k+1,

2k
∑

i=1

(−1)
i−1

xi ≤ 0 for k = 1, . . . , n,

then (1.3) is valid. If the reversed inequalities in (1.5) hold, then (1.3)
is also valid.

The following theorem is given in [4, p.322] and its proof can be obtained
easily from the proof of Theorem 1.8.

Theorem 1.9. Let xi, yi ∈ I (i = 1, . . . , n), ck =
∑k−1

i=1 (xi − yi) for
k = 2, . . . , n and let xk + ck ∈ I for all k.

(i) If

(1.6) xk+1 ≤ yk for k = 1, . . . , n − 1,

(1.7)

k
∑

i=1

xi ≤
k
∑

i=1

yi for k = 1, . . . , n − 1,

and

(1.8)

n
∑

i=1

xi =

n
∑

i=1

yi,

then

(1.9)

n
∑

i=1

f (xi) ≤
n
∑

i=1

f (yi)

holds for every W-convex function f : I → R. Furthermore, (1.9) holds
for every W-convex function f if reverse of the inequalities in (1.6) and
(1.7) hold.

(ii) If (1.6) and (1.8) hold and reverse of (1.7) holds, then reverse of (1.9)
holds for every W-convex function f : I → R. Furthermore, the same
is true if (1.7) and (1.8) hold and reverse of (1.6) holds.

A special case of Theorem 1.9 is given in [4, Remark 12.10].

Remark 1.10. Let a1 ≥ a3 ≥ . . . ≥ a2n+1, a2k ≥ 0 (k = 1, . . . , n),
a1, a2n+1 ∈ I, ak + ak+1 ∈ I (k = 1, . . . , 2n). Then for all the W -convex
functions f : I → R, we have

f (a1) + f (a2 + a3) + f (a4 + a5) + . . . + f (a2n + a2n+1)

≤ f (a1 + a2) + f (a3 + a4) + . . . + f (a2n−1 + a2n) + f (a2n+1) .

In 1997, I. Perić (see [5, p.10]) proved the following theorem for W-convex
functions.
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Theorem 1.11. Let f : [a, b] → R be a W-convex function, 0 < a ≤
y1 ≤ . . . ≤ yn and let Cn ≥ 0, n ∈ N. Let Ckyk, Cnyn, Ck+1yk,

∑n
k=1 Ck(yk −

yk−1) ∈ [a, b] for all k = 1, . . . , n − 1 with y0 ≡ 0. If

(1.10)

n
∑

k=1

Ck (yk − yk−1) ≥ Cn+1yn, n ≥ 1,

then

(1.11) f

(

n
∑

k=1

Ck(yk − yk−1)

)

+
n−1
∑

k=1

f (Ck+1yk) ≥
n
∑

k=1

f (Ckyk) , n ∈ N.

If f is W-concave, then the reversed inequality holds in (1.11).

Definition 1.12. Let pk (k ∈ N) be real numbers such that pi > 0

(i = 1, . . . , k) with Pk =
∑k

i=1 pi (k ∈ N). A sequence (xk, k ∈ N) ⊂ R is
said to be non-increasing in p-weighted mean, if the inequality

(1.12)
1

Pn

n
∑

k=1

pkxk ≥ 1

Pn+1

n+1
∑

k=1

pkxk, n ∈ N,

holds. A sequence (xk, k ∈ N) ⊂ R is said to be non-decreasing in p-weighted
mean, if the reversed inequality holds in (1.12).

The following theorem is given in [2, Theorem 3].

Theorem 1.13. Let xk and pk (k = 1, . . . , n) be real numbers such that
xk ≥ 0 and pk ≥ 0 with Pk =

∑k
i=1 pi (k = 1, . . . , n). Let p1x1,

∑n
k=1 pkxk,

Pkxk, Pk−1xk ∈ [a, b] for all k = 2, . . . , n and f : [a, b] → R be a W-convex
function.

(i) If the sequence (xk, k = 1, . . . , n) is non-increasing in p-weighted
mean, then we have

(1.13) f

(

n
∑

k=1

pkxk

)

≥ f (p1x1) +

n
∑

k=2

(f (Pkxk) − f (Pk−1xk)) .

(ii) If the sequence (xk, k = 1, . . . , n) is non-decreasing in p-weighted
mean, then we have

(1.14) f

(

n
∑

k=1

pkxk

)

≤ f (p1x1) +

n
∑

k=2

(f (Pkxk) − f (Pk−1xk)) .

If the function f is W-concave, then the reversed inequalities hold in (1.13)
and (1.14).

For a W-convex function f , Theorems 1.11 and 1.13 (i) are equivalent.
By making the substitutions Ck = xk and yk −yk−1 = pk (k = 1, . . . , n) condi-
tion (1.10) is equivalent to the condition that the sequence (xk, k = 1, . . . , n)
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is non-increasing in p-weighted mean and inequality (1.11) is equivalent to
(1.13).

2. Main Results

In [1], I. A. Baloch, J. Pečarić and M. Praljak introduced a new class
of functions Kc

1 (a, b) that extends 3-convex functions and can be interpreted
as functions that are 3-convex at point c. They also proved some of the
properties of this new class. In particular, they proved that a function is 3-
convex on an interval if and only if it is 3-convex at every point of the interval.

In this paper we define a class of 3-J-convex functions at a point c ∈ I
denoted by Γc

1 (I) (a class of 3-J-concave functions at a point c ∈ I denoted
by Γc

2 (I)) and a class of 3-W-convex functions at a point c ∈ I denoted by
Ξc

1 (I) (a class of 3-W-concave functions at a point c ∈ I denoted by Ξc
2 (I)).

Definition 2.1. Let I be an interval in R and c ∈ I. A function f :
I → R is said to be 3-J-convex at a point c (3-J-concave at a point c) if there
exists a constant Ã such that the function F (x) = f (x) − Ã

2 x2 is J-concave
(J-convex) on I ∩ (−∞, c] and J-convex (J-concave) on I ∩ [c, ∞).

Definition 2.2. Let I be an interval in R and c ∈ I. A function f : I →
R is said to be 3-W-convex at a point c (3-W-concave at a point c) if there
exists a constant A such that the function G (x) = f (x) − A

2 x2 is W-concave
(W-convex) on I ∩ (−∞, c] and W-convex (W-concave) on I ∩ [c, ∞).

The following theorem is our first main result.

Theorem 2.3. Let xi ∈ I ∩ (−∞, c] (i = 1, . . . , n) and yj ∈ I ∩ [c, ∞)
(j = 1, . . . , m) and let p1, . . . , pn and w1, . . . , wm be rational non-negative
numbers such that

∑n
i=1 pi =

∑m
i=1 wi = 1. If f ∈ Γc

1 (I) and if

(2.1)
n
∑

i=1

pix
2
i −

(

n
∑

i=1

pixi

)2

=
m
∑

j=1

wjy2
j −





m
∑

j=1

wjyj





2

,

then

(2.2)

n
∑

i=1

pif (xi) − f

(

n
∑

i=1

pixi

)

≤
m
∑

j=1

wjf (yj) − f





m
∑

j=1

wjyj



 ,

while for f ∈ Γc
2 (I), the reverse of (2.2) holds.

Proof. Since f ∈ Γc
1(I), there exists a constant Ã such that F (x) =

f (x)− Ã
2 x2 is J-concave on I∩(−∞, c] and J-convex on I∩[c, ∞). By applying
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inequality (1.2) with f and I replaced by −F and I ∩ (−∞, c] respectively,
we have

n
∑

i=1

piF (xi) ≤ F

(

n
∑

i=1

pixi

)

,

equivalent to

(2.3)

n
∑

i=1

pif (xi) − f

(

n
∑

i=1

pixi

)

≤ Ã

2





n
∑

i=1

pix
2
i −

(

n
∑

i=1

pixi

)2


 .

By applying inequality (1.2) with f and I replaced by F and I ∩ [c, ∞) re-
spectively, we have

m
∑

j=1

wjf (yj) − f





m
∑

j=1

wjyj



 ≥ Ã

2







m
∑

j=1

wjy2
j −





m
∑

j=1

wjyj





2





.(2.4)

From (2.3) and (2.4), we have

n
∑

i=1

pif (xi) − f

(

n
∑

i=1

pixi

)

− Ã

2





n
∑

i=1

pix
2
i −

(

n
∑

i=1

pixi

)2


 ≤ 0 ≤

m
∑

j=1

wjf (yj) − f





m
∑

j=1

wjyj



− Ã

2







m
∑

j=1

wjy2
j −





m
∑

j=1

wjyj





2





,

which, together with (2.1), yields inequality (2.2). If f ∈ Γc
2 (I), the inequali-

ties above are reversed and the second inequality of the theorem follows.

Remark 2.4. From the proof of Theorem 2.3 it is clear that for f ∈ Γc
1 (I),

the following refinement of inequality (2.2) holds

(2.5)

n
∑

i=1

pif (xi) − f

(

n
∑

i=1

pixi

)

≤ Ã

2





n
∑

i=1

pix
2
i −

(

n
∑

i=1

pixi

)2


 =
Ã

2







m
∑

j=1

wjy2
j −





m
∑

j=1

wjyj





2






≤
m
∑

j=1

wjf (yj) − f





m
∑

j=1

wjyj



 ,

while for f ∈ Γc
2 (I), the reversed inequalities hold in (2.5) and we obtain the

refinement of the reverse of (2.2).
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Theorem 2.5. Let xi ∈ I ∩ (−∞, c] (i = 1, . . . , 2n + 1) be such that
x1 ≥ x2 ≥ . . . ≥ x2n+1 or x1 ≤ x2 ≤ . . . ≤ x2n+1 and yj ∈ I ∩ [c, ∞)
(j = 1, . . . , 2m + 1) be such that y1 ≥ y2 ≥ . . . ≥ y2m+1 or y1 ≤ y2 ≤ . . . ≤
y2m+1 with the condition

(2.6)

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2

=

2m+1
∑

j=1

(−1)
j−1

(yj − ȳ)
2

,

where x̄ =
∑2n+1

i=1 (−1)i−1 xi and ȳ =
∑2m+1

j=1 (−1)j−1 yj. If f ∈ Ξc
1 (I), then

2n+1
∑

i=1

(−1)
i−1

f (xi) − f

(

2n+1
∑

i=1

(−1)
i−1

xi

)

≤
2m+1
∑

j=1

(−1)
j−1

f (yj) − f





2m+1
∑

j=1

(−1)
j−1

yj



 ,(2.7)

while for f ∈ Ξc
2 (I) the reverse of (2.7) holds.

Proof. Since f ∈ Ξc
1(I), there exists a constant A such that G (x) =

f (x) − A
2 x2 is W-concave on I ∩ (−∞, c] and W-convex on I ∩ [c, ∞). By

applying inequality (1.3) with f and I replaced by −G and I ∩ (−∞, c] re-
spectively, we have

0 ≥
2n+1
∑

i=1

(−1)
i−1

G (xi) − G

(

2n+1
∑

i=1

(−1)i−1xi

)

=

2n+1
∑

i=1

(−1)
i−1

f (xi) − A

2

2n+1
∑

i=1

(−1)
i−1

x2
i

−



f

(

2n+1
∑

i=1

(−1)i−1 xi

)

− A

2

(

2n+1
∑

i=1

(−1)i−1 xi

)2


(2.8)

=

2n+1
∑

i=1

(−1)
i−1

f (xi) − f

(

2n+1
∑

i=1

(−1)
i−1

xi

)

− A

2

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2

.
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By applying inequality (1.3) with f and I replaced by G and I ∩ [c, ∞) re-
spectively, we have

0 ≤
2m+1
∑

j=1

(−1)j−1
G (yj) − G

(

2m+1
∑

j=1

(−1)j−1
yj

)

=
2m+1
∑

j=1

(−1)j−1
f (yj) − A

2

2m+1
∑

j=1

(−1)j−1
y

2
j

−
[

f

(

2m+1
∑

j=1

(−1)j−1
yj

)

− A

2

(

2m+1
∑

j=1

(−1)j−1
yj

)2]

(2.9)

=
2m+1
∑

j=1

(−1)j−1
f (yj) − f

(

2m+1
∑

j=1

(−1)j−1
yj

)

− A

2

2m+1
∑

j=1

(−1)j−1 (yj − ȳ)2
.

From (2.8) and (2.9), we have

2n+1
∑

i=1

(−1)i−1
f (xi) − f

(

2n+1
∑

i=1

(−1)i−1
xi

)

− A

2

2n+1
∑

i=1

(−1)i−1 (xi − x̄)2 ≤ 0 ≤

2m+1
∑

j=1

(−1)j−1
f (yj) − f

(

2m+1
∑

j=1

(−1)j−1
yj

)

− A

2

2m+1
∑

j=1

(−1)j−1 (yj − ȳ)2
,

which, together with (2.6), yields inequality (2.7). If f ∈ Ξc
2 (I) the inequali-

ties above are reversed and the second inequality of the theorem follows.

Corollary 2.6. Let n ∈ N and let x = (x1, . . . , x2n+1) ∈ [0, c]2n+1 and
y = (y1, . . . , y2n+1) ∈ [c, 2c]

2n+1 be monotonic and satisfy

(2.10) x1 + y1 = . . . = x2n+1 + y2n+1 = 2c.

If f ∈ Ξc
1 (I), then (2.7) holds with n = m.

Proof. One can easily see that (2.10) implies ȳ = 2c − x̄ and (2.6) with
m = n and I = [0, 2c].
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Remark 2.7. From the proof of Theorem 2.5, it is clear that for f ∈ Ξc
1 (I)

the following refinement of inequality (2.7) holds

(2.11)

2n+1
∑

i=1

(−1)
i−1

f (xi) − f

(

2n+1
∑

i=1

(−1)
i−1

xi

)

≤ A

2

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2

=
A

2

2m+1
∑

j=1

(−1)
j−1

(yj − ȳ)
2

≤
2m+1
∑

j=1

(−1)
j−1

f (yj) − f





2m+1
∑

j=1

(−1)
j−1

yj



 ,

while for f ∈ Ξc
2(I), the reversed inequalities in (2.11) hold.

The results in the next remark weakens the assumption (2.6) of Theorem
2.5.

Remark 2.8. Let n, m ∈ N and let x = (x1, . . . , x2n+1) ∈ [a, c]
2n+1

and

y = (y1, . . . , y2m+1) ∈ [c, b]2m+1 be monotonic. If f ∈ Ξc
1 ([a, b]) and if A is

such that G (x) = f (x) − A
2 x2 is W-concave on [a, c] and W-convex on [c, b],

then from the proof of Theorem 2.5 we conclude that inequalities (2.8) and
(2.9) hold and, combined together, they can be rewritten as

A

2





2m+1
∑

j=1

(−1)
j−1

(yi − ȳ)
2 −

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2





≤
2m+1
∑

j=1

(−1)
j−1

f (yj) − f





2m+1
∑

j=1

(−1)
j−1

yj





−
[

2n+1
∑

i=1

(−1)
i−1

f(xi) − f

(

2n+1
∑

i=1

(−1)i−1xi

)]

.(2.12)

Therefore, for inequality (2.7) to hold it is enough to assume that

0 ≤ A





2m+1
∑

j=1

(−1)
j−1

(yi − ȳ)
2 −

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2



 .

For example, this condition is satisfied in the following situation. Since
G is W-concave on [a, c] for x + h1 + h2 ≤ c and W-convex on [c, b] for
y + h1 + h2 ≤ b, h1, h2 > 0, we have

(2.13) 0 ≥ ∆h1 ∆h2G (x) = ∆h1 ∆h2f (x) − Ah1h2

and

(2.14) 0 ≤ ∆h1∆h2 G (y) = ∆h1 ∆h2f (y) − Ah1h2
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respectively.

(i) If ∆h1∆h2 f (x) ≥ 0, then (2.13) implies A ≥ 0 and in addition if

2n+1
∑

i=1

(−1)
i−1

(xi − x̄)
2 ≤

2m+1
∑

j=1

(−1)
j−1

(yj − ȳ)
2

,

then the left hand side of (2.12) is nonnegative, which yields inequality
(2.7).
or

(ii) If ∆h1 ∆h2f (y) ≤ 0, then from (2.14) we conclude that A ≤ 0 and in
addition if

2n+1
∑

i=1

(−1)i−1 (xi − x̄)2 ≥
2m+1
∑

j=1

(−1)j−1 (yj − ȳ)2 ,

then (2.7) follows again from the nonnegativity of the left hand side of
(2.12).

If f ∈ Ξc
2 ([a, b]), then we have reversed inequality in (2.12) and by the same

arguing as above, the reverse of the inequality (2.7) holds.

Remark 2.9. In fact, we have shown that under the assumptions of
Remark 2.8, the following refinement of inequality (2.7) for f ∈ Ξc

1 ([a, b])
holds

2n+1
∑

i=1

(−1)i−1 f (xi) − f

(

2n+1
∑

i=1

(−1)i−1xi

)

≤ A

2

2n+1
∑

i=1

(−1)i−1 (xi − x̄)2

≤ A

2

2m+1
∑

j=1

(−1)j−1 (yi − ȳ)
2 ≤

2m+1
∑

j=1

(−1)
j−1

f (yj)−f





2m+1
∑

j=1

(−1)
j−1

yj



 ,

while the reversed inequalities hold for f ∈ Ξc
2 ([a, b]).

Remark 2.10. We have stated Remarks 2.8 and 2.9 that extend the
results given in Theorem 2.5. Analogous extension hold for all other results
of this section, namely Theorems 2.3, 2.11, 2.12 and 2.14, but we will not
state them explicitly.

The next theorem is a generalization of Theorem 1.8 and its proof, which
is omitted, is analogous to the proof of Theorem 2.5.

Theorem 2.11. Let xk ∈ I ∩ (−∞, c] (k = 1, . . . , 2n + 1) and yl ∈
I ∩ [c, −∞) (l = 1, . . . , 2m + 1) satisfy (2.6) and let

∑2k+1
i=1 (−1)

i−1
xi ∈

I∩(−∞, c] for k = 1, . . . , n and
∑2l+1

j=1 (−1)
j−1

yj ∈ I∩[c, ∞) for l = 1, . . . , m.
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(i) If

(2.15) x2k ≤ x2k+1,

2k
∑

i=1

(−1)
i−1

xi ≥ 0 for k = 1, . . . , n,

and

(2.16) y2l ≤ y2l+1,

2l
∑

j=1

(−1)
j−1

yj ≥ 0 for l = 1, . . . , m,

hold, then reverse of (2.7) is valid for every f ∈ Ξc
1 (I). Further, if

reverse of the inequalities in (2.15) and (2.16) are valid, then reverse
of (2.7) is also valid for every f ∈ Ξc

1 (I).
(ii) If instead of (2.15) and (2.16),

(2.17) x2k ≤ x2k+1,

2k
∑

i=1

(−1)
i−1

xi ≤ 0 for k = 1, . . . , n,

and

(2.18) y2l ≤ y2l+1,

2l
∑

i=1

(−1)
i−1

yj ≤ 0, for l = 1, . . . , m,

hold, then (2.7) is valid for every f ∈ Ξc
1 (I). Further, if reverse of the

inequalities in (2.17) and (2.18) are valid, then (2.7) is also valid for
every f ∈ Ξc

1 (I).

The next theorem is a generalization of Theorem 1.9 and its proof, which
is omitted, is analogous to the proof of Theorem 2.5.

Theorem 2.12. Let xi, yi ∈ I ∩ (−∞, c] (i = 1, . . . , n) and uj , vj ∈ I ∩
[c, ∞) (j = 1, . . . , m) and let ck =

∑k−1
i=1 (xi − yi) for k = 2, . . . , n and dl =

∑l−1
j=1 (uj − vj) for l = 2, . . . , m. Also assume that xk + ck ∈ I ∩ (−∞, c] for

all k and ul + dl ∈ I ∩ [c, ∞) for all l.

(i) If

(2.19) xk+1 ≤ yk for k = 1, . . . , n − 1; ul+1 ≤ vl for l = 1, . . . , m − 1,

(2.20)
k
∑

i=1

xi ≤
k
∑

i=1

yi for k = 1, . . . , n − 1;

l
∑

j=1

uj ≤
l
∑

j=1

vj for l = 1, . . . , m − 1,

(2.21)

n
∑

i=1

xi =

n
∑

i=1

yi ,

m
∑

j=1

uj =

m
∑

j=1

vj
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and

(2.22)

n
∑

i=1

(

x2
i − y2

i

)

=

m
∑

j=1

(

u2
j − v2

j

)

,

then for every f ∈ Ξc
1 (I), the following inequality holds

(2.23)

n
∑

i=1

(f (xi) − f (yi)) ≥
m
∑

j=1

(f (uj) − f (vj)) .

Furthermore, (2.23) holds for every f ∈ Ξc
1 (I) if the reversed inequal-

ities in (2.19) and (2.20) hold.
(ii) If (2.19), (2.21) and (2.22) hold and the reverse of the inequalities

in (2.20) hold, then the reversed inequality in (2.23) holds for every
f ∈ Ξc

1 (I). Furthermore, the same is true if (2.20), (2.21) and (2.22)
hold and the reversed inequalities in (2.19) hold.

A special case of Theorem 2.12 is given in the following remark.

Remark 2.13. Let c ≥ a1 ≥ a3 ≥ . . . ≥ a2n+1 ≥ a, a2k ≥ 0
(k = 1, . . . , n), ak + ak+1 ∈ [a, c] (k = 1, . . . , 2n) and let b ≥ b1 ≥ b3 ≥ . . . ≥
b2m+1 ≥ c, b2l ≥ 0 (l = 1, . . . , m), bl + bl+1 ∈ [c, b] (l = 1, . . . , 2m). Then the
sequences

x1 = a1, xk = a2k−2 + a2k−1 for k = 2, . . . , n + 1,

yk = a2k−1 + a2k for k = 1, . . . , n, yn+1 = a2n+1,

u1 = b1, uk = b2k−2 + b2k−1 for k = 2, . . . , m + 1,

vk = b2k−1 + b2k for k = 1, . . . , m, vm+1 = b2m+1

satisfy conditions (2.19) and (2.20) for k = 1, . . . , n and l = 1, . . . , m and
(2.21) for i = 1, . . . , n + 1 and j = 1, . . . , m + 1. Furthermore, for i =
1, . . . , n + 1 and j = 1, . . . , m + 1 condition (2.22) is equivalent to

2n
∑

i=1

(−1)
i
aiai+1 =

2m
∑

j=1

(−1)
j

bjbj+1.

If all of these assumptions are satisfied, then for every f ∈ Ξc
1 ([a, b]), the

following inequality

f (a1 + a2) + f (a3 + a4) + . . . + f (a2n−1 + a2n) + f (a2n+1)

− (f (a1) + f (a2 + a3) + . . . + f (a2n + a2n+1))

≤ f (b1 + b2) + f (b3 + b4) + . . . + f (b2m−1 + b2m) + f (b2m+1)

− (f (b1) + f (b2 + b3) + . . . + f (b2m + b2m+1))

holds.
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The next theorem is a generalization of Theorem 1.13 and its proof, which
is omitted, is analogous to the proof of Theorem 2.5.

Theorem 2.14. Let xk ∈ I ∩ (−∞, c] and pk (k = 1, . . . , n) be real num-
bers such that xk ≥ 0 and pk ≥ 0 with Pk =

∑k
i=1 pi (k = 1, . . . , n) and let

p1x1,
∑n

k=1 pkxk, Pkxk, Pk−1xk ∈ I ∩ (−∞, c] for all k = 2, . . . , n. Let yl ∈
I∩[c, ∞) and ql (l = 1, . . . , m) be real numbers such that yl ≥ 0 and ql ≥ 0 with
Ql =

∑l
j=1 qj (l = 1, . . . , m) and let q1y1,

∑m
l=1 qlyl, Qlyl, Ql−1yl ∈ I ∩ [c, ∞)

for all l = 2, . . . , m. Let f ∈ Ξc
1 (I) and

(

n
∑

k=1

pkxk

)2

− (p1x1)
2 −

n
∑

k=2

x2
k

(

P 2
k − P 2

k−1

)

=

(

m
∑

l=1

qlyl

)2

− (q1yl)
2 −

m
∑

l=2

y2
l

(

Q2
l − Q2

l−1

)

.

(i) If the sequences (xk, k = 1, . . . , n) and (yl, l = 1, . . . , m) are non-
increasing in p-weighted and q-weighted mean, respectively, then we
have

f

(

n
∑

k=1

pkxk

)

− f (p1x1) −
n
∑

k=2

(f (Pkxk) − f (Pk−1xk))

≤ f

(

m
∑

l=1

qlyl

)

− f (q1y1) −
m
∑

l=2

(f (Qlyl) − f (Ql−1yl)) .(2.24)

(ii) If the sequences (xk, k = 1, . . . , n) and (yl, l = 1, . . . , m) are non-
decreasing in p-weighted and q-weighted mean, respectively, then we
have

f

(

m
∑

l=1

qlyl

)

− f (q1y1) −
m
∑

l=2

(f (Qlyl) − f (Ql−1yl))

≤ f

(

n
∑

k=1

pkxk

)

− f (p1x1) −
n
∑

k=2

(f (Pkxk) − f (Pk−1xk)) .(2.25)

If f ∈ Ξc
2 (I), then the reversed inequalities hold in (2.24) and (2.25).
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3-Jensen-konveksnost u točki i 3-Wright-konveksnost u točki i

povezani rezultati
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Sažetak. Uvedene su dvije nove klase konveksnih funkcija u
točki i izvedeni su neki zanimljivi povezani rezultati.
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