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ITERATIONS OF THE GENERALIZED GRAM–SCHMIDT

PROCEDURE FOR GENERATING PARSEVAL FRAMES

Tomislav Berić

Abstract. In this paper we describe some properties of the gener-
alized Gram–Schmidt procedure (GGSP) for generating Parseval frames
which was first introduced in [3]. Next we investigate the iterations of the
procedure and its limit. In the end we give some examples of the iterated
procedure.

1. Introduction

Let H be a finite–dimensional Hilbert space. A sequence (fi)
n
i=1 in H is

a frame for H if there exist constants 0 < A ≤ B < ∞ such that

(1.1) A‖f‖2 ≤
n
∑

i=1

|〈f, fi〉|2 ≤ B‖f‖2
, for all f ∈ H.

Frames for Hilbert spaces were introduced in [5] by R. J. Duffin and A. C.
Schaeffer in 1952. In 1980’s frames begun to play an important role in wavelet
and Gabor analysis. Since then, frames are an important tool in both theo-
retical and applied mathematics. Frames have found a number of applications
due to the inbuilt redundancy which provides resilience to noise and coefficient
erasures. Among them, frames for which A = B = 1 in (1.1), called Parseval
frames, have proved to be most useful since they provide the same simple
reconstruction formula as orthonormal bases, but with the added benefit of
having redundancy. Explicitly, if (fi)

n
i=1 is a Parseval frame, then

f =

n
∑

i=1

〈f, fi〉fi, for all f ∈ H.

The frame operator S : H → H is defined as Sf =
∑n

i=1 〈f, fi〉fi. It is

positive and invertible and from the equality S− 1
2 SS− 1

2 = I we can easily get

that
(

S− 1
2 fi

)n

i=1
is a Parseval frame, a fact which we will use in the rest of
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the paper. For more details on frame theory we refer to the book [4] or the
survey article [1].

In [3], an algorithm was devised which generates Parseval frames using a
generalization of the Gram–Schmidt orthogonalization procedure (or GGSP
for short). For a given frame (fi)

n
i=1, the algorithm produces a Parseval frame

(gi)
n
i=1 in the following manner: the first vector g1 is simply the normalized

vector f1 as in the first step of the ordinary Gram–Schmidt algorithm. If
fk 6∈ span{fi}k−1

i=1 , then gk is derived from the ordinary Gram–Schmidt step.
If, on the other hand, fk is linearly dependent on the previous vectors, then
(gi)

k
i=1 is the Parseval frame S−1/2

(

(gi)
k−1
i=1 ∪ {fk}

)

, where S is the frame

operator of the frame (gi)
k−1
i=1 ∪ {fk}. In this step the previously generated

vectors g1, . . . , gk−1 have to be adjusted using the vector fk. An important
feature of this construction is that in each step k we get a Parseval frame for

span (fi)
k
i=1.

We will denote the mapping (fi)
n
i=1 7→ (gi)

n
i=1 by Φ. The algorithm’s

pseudocode is given below, verbatim as in [3].

1 Procedure GGSP(n , f ; g ) .

2 for k := 1 to n do

3 begin

4 i f fk = 0 then

5 gk := 0 ;

6 else

7 begin

8 gk := fk −
∑k−1

j=1 〈fk, gj〉gj ;

9 i f gk 6= 0 then

10 gk := 1
‖gk‖ gk ;

11 else

12 begin

13 for i := 1 to k − 1 do

14 gi := gi + 1
‖fk‖2

(

1√
1+‖fk‖2

− 1

)

〈gi, fk〉fk ;

15 gk := 1√
1+‖fk‖2

fk ;

16 end ;

17 end ;

18 end ;

19 end .

We refer the reader to [3] for details on the algorithm and some of its proper-
ties.

The objective of this paper is to further investigate the algorithm with
an emphasis on the iterations of the algorithm. Iterative algorithms are often
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employed in applications and in frame theory some notable examples of iter-
ative procedures include the frame algorithm ([6]) and the gradient descent
of the frame potential used for construction of approximate unit-norm tight
frames ([2]). We are inspired here by these algorithms to study the limit case
of the iterated GGSP.

We will end this section by introducing a term that will be important in
the rest of the paper. We say that a sequence of vectors (fi)

n
i=1 in a Hilbert

space H is a zero extended orthonormal sequence if the sequence becomes
orthonormal once we remove all the zero vectors. We say that (fi)

n
i=1 is a

zero extended orthonormal basis if the reduced sequence is an orthonormal
basis.

2. Properties of the iterated GGSP

Since we will be dealing with the iterations of GGSP with the limit case in
mind, the first thing we would like to know is which frames remain unchanged
under the application of GGSP. It turns out that that set is the same as for
the ordinary Gram–Schmidt procedure.

Proposition 2.1. Let (fi)
n
i=1 be a frame for a Hilbert space H. The

following statements are equivalent:

(i) Φ ((fi)
n
i=1) = (fi)

n
i=1,

(ii) (fi)
n
i=1 is a zero extended orthonormal basis.

Proof. If (ii) holds, GGSP becomes the ordinary Gram-Schmidt proce-
dure (leaving zero vectors unchanged) so it doesn’t change the orthonormal
basis.

If we assume (i) is true, let k ∈ {1, 2, . . . , n} be the greatest index (if it

exists) for which fk 6= 0 and fk ∈ span {fi}k−1
i=1 . The k–th vector can change

only in the k–th step of the algorithm. So we must have fk =
1

√

1 + ‖fk‖2
fk.

Taking norms of both sides, we get ‖fk‖2 =
‖fk‖2

1 + ‖fk‖2 so fk has to be zero

which is a contradiction.
Therefore, {fi}n

i=1 \ {0} is a linearly independent set. Therefore k ≤
d (d = dim H). Since GGSP for linearly independent sets is the regular
Gram-Schmidt procedure, we have that Φ ((fi)

n
i=1) is an orthonormal basis

(possibly with zeros). Since we assumed Φ ((fi)
n
i=1) = (fi)

n
i=1, it follows that

(fi)
n
i=1 \ {0} is an orthonormal basis for span {fi}n

i=1 = H .

Next we will turn our attention to the iterations of the GGSP and describe

the limit case with regards to the ℓ2–norm. We denote by G0 =
(

g
(0)
i

)n

i=1
=
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(fi)
n
i=1, the starting frame for H . Also, recursively we define the sequence

Gm+1 =
(

g
(m+1)
i

)n

i=1
:= Φ(Gm), m ≥ 0,

and

G = (gi)
n
i=1 := (‖·‖2) lim

m→∞

(

g
(m)
i

)n

i=1

if the limit exists. Notice that if the limit (gi)
n
i=1 exists, it is also a Parseval

frame.
We will also adopt the following notation: since the input vectors may

change more than once during the application of GGSP, we will have to ob-
serve not just the final vectors, but also the vectors as they appear in each

step. Let us denote by g
(m,k)
i the i–th vector we get in the k–th step of the

m–th iteration of GGSP. We immediately see that g
(m,n)
i = g

(m)
i for all i and

m.
There are two possibilities for the starting frame. Either the last vector is

in the span of the preceding vectors, or it is not. The next proposition shows
that we only need consider the first case when we study the convergence of
iterations because in the latter case the last vector stabilizes right after the
first iteration and has no effect on the other vectors.

Proposition 2.2. If fn /∈ span{fi}n−1
i=1 , then for all m > 1 we have

g
(m)
n = g

(1)
n = α(I − P )fn, where P is the orthogonal projection onto

span{fi}n−1
i=1 and α = ‖(I − P )fn‖−1.

Proof. Let us denote by P the orthogonal projection onto span{fi}n−1
i=1 .

After n − 1 steps of the first iteration we get the vectors g
(1,n−1)
i = g

(1)
i ,

i = 1, . . . , n − 1, which form a Parseval frame for its span. Also, we have

span{g
(1)
i }n−1

i=1 = span{fi}n−1
i=1 . Now let us observe the n–th step:

g(1)
n = g(1,n)

n = α

(

fn −
n−1
∑

i=1

〈

fn, g
(1)
i

〉

g
(1)
i

)

= α

(

fn −
n−1
∑

i=1

〈

fn, P g
(1)
i

〉

g
(1)
i

)

= α

(

fn −
n−1
∑

i=1

〈

P fn, g
(1)
i

〉

g
(1)
i

)

= α (fn − P fn) = α(I − P )fn,

where α = ‖(I − P )fn‖−1
so that g

(1)
n is a unit vector. Now, in the same way,

in the second iteration we get

g(2)
n = (I − P )α(I − P )fn = α(I − P )2fn = α(I − P )fn = g(1)

n ,
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which is again a unit vector so we do not need to normalize it. In each of the
following iterations we will get the same vector.

The case when the last vector is linearly dependent upon the previous
vectors is actually just a special case of a more general result which we give
in the next theorem.

Theorem 2.3. If fk ∈ span{fi}k−1
i=1 , then g

(m)
k converges to zero as m

tends to infinity.

Proof. Let us enumerate by k1 < k2 < . . . < ks all the indices such

that fkr
∈ span {fi}kr−1

i=1 . For an arbitrary index j among them, in the first

iteration and the j–th step of GGSP we get the vector g
(1,j)
j . If j < ks, the

j–th vector will later change, let’s say that the first time it happens is in the
k–th step. The square of the new vector’s norm will be:

∥

∥

∥g
(1,k)
j

∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

g
(1,j)
j +

1

‖fk‖2





1
√

1 + ‖fk‖2
− 1





〈

g
(1,j)
j , fk

〉

fk

∥

∥

∥

∥

∥

∥

2

=
∥

∥

∥g
(1,j)
j

∥

∥

∥

2
+ 2

1

‖fk‖2





1
√

1 + ‖fk‖2
− 1





∣

∣

∣

〈

g
(1,j)
j , fk

〉∣

∣

∣

2

+
1

‖fk‖4





1
√

1 + ‖fk‖2
− 1





2
∣

∣

∣

〈

g
(1,j)
j , fk

〉∣

∣

∣

2
· ‖fk‖2

=
∥

∥

∥
g

(1,j)
j

∥

∥

∥

2
+

1

‖fk‖2

∣

∣

∣

〈

g
(1,j)
j , fk

〉∣

∣

∣

2

×





1
√

1 + ‖fk‖2
− 1







2 +
1

√

1 + ‖fk‖2
− 1





=
∥

∥

∥g
(1,j)
j

∥

∥

∥

2
− 1

1 + ‖fk‖2

∣

∣

∣

〈

g
(1,j)
j , fk

〉∣

∣

∣

2
.

Since j = kl for some l, then in this manner the j–th vector will change in steps

kl+1, kl+2, . . . , ks giving us vectors g
(m,kl+1)
kl

, . . . , g
(m,ks)
kl

, respectively. By
the previous calculation we see that for all m ∈ N, 1 ≤ l ≤ s − 1, l + 1 ≤ r ≤ s
we have

(2.1)
∥

∥

∥g
(m,kr)
kl

∥

∥

∥

2
=
∥

∥

∥g
(m,kr−1)
kl

∥

∥

∥

2
− 1

1 +
∥

∥

∥g
(m−1)
kr

∥

∥

∥

2

∣

∣

∣

〈

g
(m,kr−1)
kl

, g
(m−1)
kr

〉∣

∣

∣

2
.
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In particular, since g
(m,kl)
kl

=
g

(m−1)

kl
√

1+
∥

∥g
(m−1)

kl

∥

∥

2
, in the kl+1–th step using the

Cauchy-Schwarz inequality we get
∥

∥

∥g
(m,kl+1)
kl

∥

∥

∥

2
=
∥

∥

∥g
(m,kl)
kl

∥

∥

∥

2
− 1

1 +
∥

∥

∥g
(m−1)
kl+1

∥

∥

∥

2

∣

∣

∣

〈

g
(m,kl)
kl

, g
(m−1)
kl+1

〉∣

∣

∣

2

≥
∥

∥

∥g
(m,kl)
kl

∥

∥

∥

2
−

∥

∥

∥g
(m,kl)
kl

∥

∥

∥

2∥
∥

∥g
(m−1)
kl+1

∥

∥

∥

2

1 +
∥

∥

∥
g

(m−1)
kl+1

∥

∥

∥

2

=
∥

∥

∥g
(m,kl)
kl

∥

∥

∥

2






1 −

∥

∥

∥g
(m−1)
kl+1

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
kl+1

∥

∥

∥

2







=

∥

∥

∥g
(m−1)
kl

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
kl

∥

∥

∥

2 · 1

1 +
∥

∥

∥g
(m−1)
kl+1

∥

∥

∥

2 .(2.2)

The kl–th vector can change in this way a finite number of times (s − l times,
to be exact) and each time we get a decrease in norm as in (2.1). In the end
we will have a lower bound on the norm:

(2.3)
∥

∥

∥g
(m)
kl

∥

∥

∥

2
≥

∥

∥

∥g
(m−1)
kl

∥

∥

∥

2

1 +
∥

∥

∥
g

(m−1)
kl

∥

∥

∥

2 · 1

1 +
∥

∥

∥
g

(m−1)
kl+1

∥

∥

∥

2 · · · 1

1 +
∥

∥

∥
g

(m−1)
ks

∥

∥

∥

2

On the other hand, the vector g
(1)
ks

satisfies:

∥

∥

∥g
(1)
ks

∥

∥

∥

2
=

‖fks
‖2

1 + ‖fks
‖2 .

We then have

g
(2)
ks

=
1

√

1 +
∥

∥

∥g
(1)
ks

∥

∥

∥

2
g

(1)
ks

=
1

√

1 +
‖fks

‖2

1 + ‖fks
‖2

· 1
√

1 + ‖fks
‖2

fks
=

1
√

1 + 2‖fks
‖2

fks
.

Easy induction shows that

(2.4) g
(m)
ks

=
1

√

1 + m‖fks
‖2

fks
, m ∈ N.
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Therefore, limm→∞
∥

∥

∥
g

(m)
ks

∥

∥

∥
= 0. Now, for a fixed 0 < ε < 1 we can find

m0 ∈ N such that
∥

∥

∥g
(m)
ks

∥

∥

∥

2
< ε, ∀m ≥ m0. For any m > m0 from (2.1) we get

∥

∥

∥g
(m)
ks−1

∥

∥

∥

2
=

∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2 − 1

1 +
∥

∥

∥g
(m−1)
ks

∥

∥

∥

2

∣

∣

∣

∣

∣

∣

∣

∣

〈

g
(m−1)
ks−1

√

1 +
∥

∥

∥
g

(m−1)
ks

∥

∥

∥

2
, g

(m−1)
ks

〉

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

1 +
∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2







∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2
−

∣

∣

∣

〈

g
(m−1)
ks−1

, g
(m−1)
ks

〉∣

∣

∣

2

1 +
∥

∥

∥g
(m−1)
ks

∥

∥

∥

2






.

We see that

(2.5)
∥

∥

∥
g

(m)
ks−1

∥

∥

∥

2
≤

∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2 .

Also, using (2.3) we get that

(2.6)
∥

∥

∥g
(m)
ks−1

∥

∥

∥

2
≥

∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2
1

1 + ε
.

Combining (2.5) and (2.6) we see that

∥

∥

∥g
(m)
ks−1

∥

∥

∥

2
= γm

∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2

1 +
∥

∥

∥g
(m−1)
ks−1

∥

∥

∥

2 ,

for some γm ∈
[

1
1+ε , 1

]

. Using the last result we can easily see that

∥

∥

∥g
(m0+l)
ks−1

∥

∥

∥

2

=
γm0+1 · · · γm0+l ·

∥

∥

∥g
(m0)
ks−1

∥

∥

∥

2

1 + (1 + γm0+1 + γm0+1γm0+2 + . . . + γm0+1γm0+2 · · · γm0+l−1)
∥

∥

∥
g

(m0)
ks−1

∥

∥

∥

2

≤

∥

∥

∥g
(m0)
ks−1

∥

∥

∥

2

(

1 + 1
1+ε + 1

(1+ε)2 + . . . + 1
(1+ε)l−1

) ∥

∥

∥g
(m0)
ks−1

∥

∥

∥

2 =

=
1

1− 1

(1+ε)l

1− 1
1+ε

=
ε

1+ε

(1+ε)l−1
(1+ε)l

=
ε(1 + ε)l−1

(1 + ε)l − 1
< 2ε
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holds for big enough l ∈ N. Therefore, limm→∞
∥

∥

∥
g

(m)
ks−1

∥

∥

∥
= 0 also. We would

get that limm→∞
∥

∥

∥g
(m)
kr

∥

∥

∥ = 0, for all r ∈ {1, 2, . . . , s}, analogously using the

estimate (2.3) and the parameters γm ∈
[

1
(1+ε)k , 1

]

, for a suitable k ∈ N.

Observe that in no iterations will we get a zero vector if we did not start
with a zero vector, we can just get it in the limit case. Using Theorem 2.3 we
can now state our main result.

Theorem 2.4. The sequence (Gm)m≥0 has a convergent subsequence in
the ℓ2–norm for any choice of the starting sequence (fi)

n
i=1 and its limit

(gi)
n
i=1 is a zero extended orthonormal basis for span {fi}n

i=1. Moreover,
gk = 0 if and only if fk ∈ span {fi}k−1

i=1 .

Proof. First, let’s observe that the square of the ℓ2–norm of any Parse-
val frame is equal to the dimension of the Hilbert space. Therefore, we have
a sequence (Gm)m≥0 of Parseval frames (except possibly for the starting se-

quence which can be an arbitrary frame), that is, it is a sequence of elements

on the sphere of radius
√

d in Hn, where H is a d–dimensional Hilbert space.
An easy compactness argument gives us a subsequence which converges to a
limit G which is also a Parseval frame.

Now we have a limit Parseval frame (gi)
n
i=1 for a d dimensional space

which has exactly n − d zero vectors. It is known that such a sequence must
be an orthonormal basis with n − d zeros added.

The limit zero extended orthonormal basis in the previous theorem can
be reached in some iteration only if we already started with a zero extended
orthonormal basis. Otherwise, by Proposition 2.1, each iteration will yield a
different Parseval frame.

Even though the sequence of Parseval frames produced by GGSP has a
convergent subsequence for any starting frame, it is still unknown whether
this sequence converges for any starting frame or, if it does not, a complete
characterization of those frames that cause it to converge still remains an open
problem.

3. Examples

In this section we will explore some numerical examples. In each of these
examples of frames in R2 we can notice that after only a few iterations two
vectors will stand out and form something that approximates an orthonormal
basis. Other vectors will converge to zero. On the left we will have the starting
frame together with the first 8 iterations and on the right will be the 1000-th
iteration, which will serve to illustrate the limit Parseval frame.

First, we will choose the starting frame which has three vectors, out of
which two are orthonormal (Figure 1).
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Figure 1. On the left: the frame {(1, 0), (0, 1),
(

1/
√

2, 1/
√

2
)}

together with the first 8 iterates, on the right:
its iteration limit

Next we keep the two orthogonal vectors as before, but choose another
third vector (Figure 2).
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Figure 2. On the left: the frame {(1, 0), (0, 1),
(

−1/
√

2, 1/
√

2
)}

together with the first 8 iterates, on the
right: its iteration limit

We finish with a nice example in which the geometry preserving property
of the algorithm is apparent in each iteration, but after a couple of iterations
two vectors start to stand out which will form an orthonormal basis in the
limit (Figure 3).
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Figure 3. On the left: the frame {(cos(2kπ/10),
sin(2kπ/10))}10

k=1 together with the first 8 iterates, on the
right: its iteration limit
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comments on how to improve on some results.
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Iteracije poopćenog Gram–Schmidtovog postupka koji generira

Parsevalove bazne okvire

Tomislav Berić

Sažetak. U ovom članku opisujemo neka svojstva poopćenog
Gram–Schmidtovog postupka (GGSP) koji generira Parsevalove
bazne okvire, koji je prvi put opisan u [3]. Potom proučavamo
iteracije postupka i njihov limes. Na kraju dajemo nekoliko prim-
jera iteriranog postupka.
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