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BOUNDARY PERTURBATION FOR THE DIRICHLET

BOUNDARY VALUE PROBLEM

Tomislav Fratrović and Eduard Marušić-Paloka

Abstract. We study the effects of small boundary perturbations on
the solutions of the boundary value problems posed in such domains. We
start from the domain Ω and then perturb its boundary by the product of
a small parameter and some smooth function. The zeroth order approxi-
mation is simply the same boundary value problem posed in domain Ω, but
the first order corrector is also found, containing some interesting effects.

1. Introduction

Perturbation theory [8, 13] has an important role in many branches of
mathematical physics and especially in fluid dynamics. Because of the com-
mon non-linearity issues, for the simplification of the mathematical model one
usually uses idealized geometries for the flow domains. These geometries can
be close to or far from the shapes in practice. It is of a practical interest
to keep the approximation and the approximate solution close to the exact
one. With the introduction of a small parameter as the perturbation quantity,
e.g. a coordinate perturbation for the domain change [5,7,9,11], the approxi-
mation becomes more accurate as the parameter tends to zero. The book [7]
discusses how perturbation of the boundary stays rather neglected topic in
the study of PDEs, due to the trivial change of variables followed by long and
tedious calculations. In [11], the Stokes resolvent system is considered in a
domain with a perturbed boundary and the asymptotic expansion is justified
by the layer potential techniques. Authors also proved the continuity of the
solution with respect to the small parameter. The application of the layer
potential theory is also found in [1], dealing with the asymptotic expansions
of boundary perturbations of steady-state voltage potentials resulting from
small perturbations of the shape of a conductivity inclusion.

More general setting may be found in the papers [5,6] on the topic of par-
abolic and elliptic boundary value problems on varying domains. Significant
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part deals with the discussion and formulation of the domain convergence

Ωn −→ Ω,

after which the author shows how solutions behave as a sequence of the ob-
served domains approaches an open set.

A useful application of the asymptotic methods may also be found in the
elasticity theory. The approach within some of the papers is different from
ours, so caution is needed in the use of term boundary perturbation. For ex-
ample, in [2] boundary perturbations are referred to in a sense of effects on the
boundary data of the solution in the presence of internal small defects (elastic
linear cracks). Similar case happens in [4], with the asymptotic expansion
of the boundary displacement in the presence of elastic inhomogeneities, and
in [14] with perturbations in the electromagnetic fields. These are the cases
when the perturbations are observed as a direct consequence of the underlying
dynamic systems. On the other hand, from our point of view, the external
perturbation of boundary affects the solutions of boundary value problems.

If we assume that the domain is almost ideal in shape, the question we
are posing is about the influence of small irregularities and imperfections of
the real domain. In the present paper, we study the effects of small boundary
perturbations on the solutions of the boundary value problems posed in such
domains. We start from the domain Ω and then first perturb the geometry of
its boundary for the value of εh(x) where ε is a small parameter that controls
the level of perturbation and h ∈ C∞(R) is some smooth function, given in
advance. We consider the problem both in rectangular and polar coordinates,
but the perturbation appears only in the direction normal to the boundary.
The zeroth order approximation is simply the same boundary value problem
posed in the domain Ω, which is an obvious choice. However, a corrector of
order ε can be found, containing some interesting effects. It turns out that
the perturbation is not local, i.e. it does not affect the solution only in the
vicinity of the boundary, but in the whole domain.

2. Perturbation method in rectangular coordinates

2.1. Description of the problem. We consider the domain with a perturbed
boundary in rectangular coordinates. For example, if we start with the unit
square ]0, 1[ × ]0, 1[ in R2, the perturbation of the boundary can be obtained
depending on the small parameter ε and the given function h(x) as in

Ωε =
{

(x, y) ∈ R2 ; 0 < x < 1 , 0 < y < 1 − ε h(x)
}

.

In this example, the perturbation is present only on the top side of the original
square. Let us consider first the Poisson equation in Ωε with the given function
f and the homogeneous Dirichlet boundary condition

(2.1) −∆uε = f in Ωε , uε = 0 on ∂Ωε .
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The numerical solution to this type of equation (using FreeFem++ solver) for
values ε = 0.01, h(x) = sin(9πx) and f(x, y) = y cos x is presented in Figure
1.

IsoValue
-0.00117182
0.000585912
0.00175774
0.00292956
0.00410138
0.00527321
0.00644503
0.00761685
0.00878868
0.0099605
0.0111323
0.0123041
0.013476
0.0146478
0.0158196
0.0169914
0.0181633
0.0193351
0.0205069
0.0216787
0.0228506
0.0240224
0.0251942
0.026366
0.0275378
0.0287097
0.0298815
0.0310533
0.0322251
0.0351547

Figure 1. Solution to the Poisson equation in a rectangular Ωε

2.2. Change of variable. Let us look closer to the equation (2.1) and the
domain Ωε. We want to eliminate the dependence of boundary and by that
the domain itself on the small parameter ε. That is why we introduce a new
variable

(2.2) z =
y

1 − ε h(x)
.

We should calculate and simultaneously express
∂z

∂x
and

∂z

∂y
in the new vari-

ables:

∂z

∂x
=

εy h′

(1 − ε h)2 =
εz h′

1 − ε h
,

∂z

∂y
=

1

1 − ε h
.

Now, in the new variables (x, z) the domain Ωε becomes a square Ω =]0, 1[2.
Along with the intended domain change, the change of variables affects func-
tions and partial derivatives, as well. We change the notation of the solution
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to (2.1) from uε(x, y) to Uε(x, z), but keep the same notation for f , for sim-
plicity. The derivatives in the new variables are changing as follows:

∂

∂x
 

∂

∂x
+

∂z

∂x

∂

∂z
=

∂

∂x
+ ε

y h′

(1 − ε h)2

∂

∂z
=

∂

∂x
+ ε

z h′

1 − ε h

∂

∂z
=

=
∂

∂x
+ ε z h′

∞
∑

k=0

εk hk ∂

∂z

∂

∂y
 

∂z

∂y

∂

∂z
=

1

1 − ε h

∂

∂z
=

∞
∑

k=0

εk hk ∂

∂z

∂2

∂x2  

(

∂

∂x
+

∂z

∂x

∂

∂z

) (

∂

∂x
+

∂z

∂x

∂

∂z

)

=

(

∂

∂x
+

ε z h′

1 − ε h

∂

∂z

) (

∂

∂x
+

ε z h′

1 − ε h

∂

∂z

)

=
∂2

∂x2 +

(

ε z h′′

1 − ε h
+

ε2 z (h′)2

(1 − ε h)2

)

∂

∂z
+ 2

εz h′

1 − ε h

∂2

∂z∂x

+
ε2z (h′)2

(1 − ε h)2

∂

∂z
+

ε2z2 (h′)2

(1 − ε h)2

∂2

∂z2

=
∂2

∂x2 + ε
z h′′

1 − ε h

∂

∂z
+ 2 ε2 z (h′)2

(1 − ε h)2

∂

∂z
+ ε

2z h′

1 − ε h

∂2

∂z∂x

+ ε2 z2 (h′)2

(1 − ε h)2

∂2

∂z2 =

=
∂2

∂x2 + ε

(

z h′′ ∂

∂z
+ 2 z h′ ∂2

∂z ∂x

)

+

∞
∑

k=2

εkhk−2
[

(

zh′′h + 2(k − 1)z(h′)2) ∂

∂z
+ 2zh′h

∂2

∂z∂x

+ (zh′)2(k − 1)
∂2

∂z2

]

∂2

∂y2  
1

(1 − ε h)2

∂2

∂z2 =

∞
∑

k=0

εk (k + 1) hk ∂2

∂z2 .
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To summarize, we write down the first few orders of approximations of the
derivatives:

∂

∂x
 

∂

∂x
+ ε · z h′ ∂

∂z
+ ε2 · z h h′ ∂

∂z
+ O(ε3)

∂

∂y
 

∂

∂z
+ ε · h

∂

∂z
+ ε2 · h2 ∂

∂z
+ O(ε3)

∂2

∂x2  
∂2

∂x2 + ε ·
(

z h′′ ∂

∂z
+ 2z h′ ∂2

∂z∂x

)

+ O(ε2)

∂2

∂y2  
∂2

∂z2 + ε · 2 h
∂2

∂z2 + ε2 · 3 h2 ∂2

∂z2 + O(ε3) .

2.3. Asymptotic expansion. We would like to construct an approximation to
the solution of the boundary value problem, the approximation that is asymp-
totically equal to the original one with respect to the parameter ε. We are
going to use the definition from [8].

Definition 2.1. Given f(ε) and ϕ(ε), we say that ϕ(ε) is an asymptotic
approximation to f(ε) as ε ց 0 whenever f(ε) = ϕ(ε) + o(ϕ) as ε ց 0. In
that case we write

f ∼ ϕ as ε ց 0.

We look for the solution uε(x, y) = Uε(x, z) to (2.1) in the form of an
asymptotic expansion, a formal power series in the small parameter known as
a perturbation series,

(2.3) Uε(x, z) = U0 + ε U1 + ε2 U2 + ε3 U3 + · · ·
for certain functions Uk(x, z), yet to be determined. For simplicity, after the
change of variables, we kept the same notation f for the function on the right
hand side of (2.1). Depending on the given formula for f , it needs to be
expanded in the same manner

(2.4) f(x, z) = f0(x, z) + ε f1(x, z) + ε2 f2(x, z) + · · ·
By introducing the expansions (2.3) and (2.4) into the Poisson equation (2.1),
changing the derivatives in the new variables and collecting equal powers of
ε, we get

−
{

(

∂2U0

∂x2
+

∂2U0

∂z2

)

+ ε ·
(

∂2U1

∂x2
+

∂2U1

∂z2
+ z h

′′ ∂U0

∂z
+ 2 z h

′ ∂2U0

∂z ∂x
+ 2 h

∂2U0

∂z2

)

+
∞
∑

k=2

ε
k ·
[

∂2Uk

∂x2
+

∂2Uk

∂z2
+

k
∑

ℓ=2

h
ℓ−2

[

(

zh
′′
h + 2(ℓ − 1)z(h′)2

)

∂Uk−ℓ

∂z

+ 2zh
′
h

∂2Uk−ℓ

∂z∂x
+ (zh

′)2(ℓ − 1)
∂2Uk−ℓ

∂z2

]]}

= f0 + ε f1 + ε
2

f2 + · · · in Ω .
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Denoting

∆xz =
∂2

∂x2 +
∂2

∂z2 ,

we end up with a recurrent system of problems for Uk, k = 0, 1, . . . :

−∆xzU0 = f0 in Ω , U0 = 0 on ∂Ω(2.5)

−∆xzU1 = f1 + z h′′ ∂U0

∂z
+ 2 z h′ ∂2U0

∂z ∂x
+ 2h

∂2U0

∂z2 in Ω,

U1 = 0 on ∂Ω
(2.6)

−∆xzUk = fk +

k
∑

ℓ=2

hℓ−2

[

(

z h′′ h + 2(ℓ − 1) z (h′)2
) ∂Uk−ℓ

∂z
+

+2z h′ h
∂2Uk−ℓ

∂z∂x
+ (z h′)2 (ℓ − 1)

∂2Uk−ℓ

∂z2

]

in Ω,

Uk = 0 on ∂Ω, k = 2, 3, . . .

(2.7)

Theorem 2.2. Let uε(x, y) be the solution to the boundary value problem
(2.1) and Uk(x, z), (k = 0, 1, . . .) obtained from (2.5), (2.6) and (2.7). Then
for m ∈ N we have

uε(x, y) ∼
m
∑

k=0

εk Uk

(

x,
y

1 − ε h

)

as ε ց 0.

Proof. Let Uε be the expansion (2.3) with Uk obtained from (2.5), (2.6)
and (2.7). Since

−∆xz

(

Uε −
m
∑

k=0

εk Uk

)

= O(εm+1) in Ω , Uε −
m
∑

k=0

εk Uk = 0 on ∂Ω ,

due to the maximum principle we have

∣

∣

∣Uε −
m
∑

k=0

εk Uk

∣

∣

∣ = O(εm+1) = o(εm) .

According to Definition 2.1, this means that Uε ∼
m
∑

k=0

εk Uk. The result now

follows from the fact that

uε(x, y) = Uε

(

x,
y

1 − ε h

)

.
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3. Perturbation method in polar coordinates

3.1. Star-shaped domain. We can generalize the idea on a star-shaped domain
Ωε that can be described in the polar coordinates (r, ϕ) as

Ωε =
{

(r, ϕ) ; 0 ≤ ϕ < 2π , 0 ≤ r < g(ϕ) − ε h(ϕ)
}

which can be seen as a small perturbation of the domain

Ω =
{

(r, ϕ) ; 0 ≤ ϕ < 2π , 0 ≤ r < g(ϕ)
}

.

We can assume that g(ϕ), h(ϕ) ∈ C∞(R), that both are periodic with period
2π, and the solution to (2.1) is now uε(r, ϕ). One example and the visu-
alization of the numerical solution to the Poisson equation in this type of
Ωε for f(r, ϕ) = 1 is shown in Figure 2. To keep this example simple, the
unperturbed domain is taken to be a unit circle, so g(ϕ) = 1.

IsoValue
-0.00857075
0.00428537
0.0128561
0.0214269
0.0299976
0.0385684
0.0471391
0.0557099
0.0642806
0.0728513
0.0814221
0.0899928
0.0985636
0.107134
0.115705
0.124276
0.132847
0.141417
0.149988
0.158559
0.16713
0.1757
0.184271
0.192842
0.201413
0.209983
0.218554
0.227125
0.235696
0.257122

Figure 2. Solution to the Poisson equation in a star-shaped
domain Ωε

In this type of problem we introduce a new variable

(3.1) ρ =
g(ϕ) r

g(ϕ) − εh(ϕ)
.

This transformation maps Ωε on Ω, but the Laplace operator in the new
variables changes again and depends on the small parameter ε explicitly. First
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of all,

∂ρ

∂r
=

g(ϕ)

g(ϕ) − εh(ϕ)
=

1

1 − ε h
g

=

∞
∑

k=0

εk

(

h

g

)k

∂ρ

∂ϕ
=

g′(g − εh) − g (g′ − εh′)

(g − εh)2 r = ε
gh′ − hg′

(g − εh)2 r

= ε
gh′ − hg′

g2

1

(1 − ε h
g )2

r = ε

(

h

g

)′
1

1 − ε h
g

ρ

= ρ

(

h

g

)′ ∞
∑

k=0

εk+1
(

h

g

)k

.

The Laplace operator in polar coordinates reads

(3.2) ∆ =
1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2

∂2

∂ϕ2 .

Denoting Uε(ρ, ϕ) = uε(r, ϕ), in the new variables we get the expression

∆Uε =

(

1 − ε
h

g

)−2
{

1
ρ

∂

∂ρ

(

ρ
∂Uε

∂ρ

)

+
1
ρ2

∂2Uε

∂ϕ2
+

2ε

ρ
(

1 − ε h
g

)

(

h

g

)′
∂2Uε

∂ρ∂ϕ

+
ε

ρ
(

1−ε h
g

)

(

ε
2

(

1−ε h
g

)

[(

h

g

)′]2

+

(

h

g

)′′
)

∂Uε

∂ρ
+

ε2

(

1 − ε h
g

)2

[(

h

g

)′]2
∂2Uε

∂ρ2

}

=
1
ρ

∂

∂ρ

(

ρ
∂Uε

∂ρ

)

+
1
ρ2

∂2Uε

∂ϕ2

+ ε

{

2
h

g

[

1
ρ

∂

∂ρ

(

ρ
∂Uε

∂ρ

)

+
1
ρ2

∂2Uε

∂ϕ2

]

+
2
ρ

(

h

g

)′
∂2Uε

∂ρ∂ϕ
+

1
ρ

(

h

g

)′′
∂Uε

∂ρ

}

+O(ε2)

Now we turn to the equation (2.1) set in the polar coordinates. We look
for the solution uε(r, ϕ) in the form of an asymptotic expansion

Uε(ρ, ϕ) = U0(ρ, ϕ) + ε U1(ρ, ϕ) + · · ·
and for the right hand side term expanded as

f(ρ, ϕ) = f0(ρ, ϕ) + ε f1(ρ, ϕ) + · · ·
We obtain following problems for the first two terms

−
(

1
ρ

∂

∂ρ

(

ρ
∂U0

∂ρ

)

+
1
ρ2

∂2U0

∂ϕ2

)

= f0 in Ω , U0 = 0 for ρ = g(ϕ)(3.3)

−
(

1
ρ

∂

∂ρ

(

ρ
∂U1

∂ρ

)

+
1
ρ2

∂2U1

∂ϕ2

)

= f1 − 2
h

g
f0 +

2
ρ

(

h

g

)′
∂2U0

∂ρ∂ϕ
+

+
1
ρ

(

h

g

)′′
∂U0

∂ρ
in Ω , U1 = 0 for ρ = g(ϕ) .

(3.4)
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3.2. Application of the boundary perturbation method. Steady viscous fluid
flow through a long straight pipe of uniform circular cross-section and induced
by a constant pressure difference or pressure drop between the two ends is
generally known as the Poiseuille flow (see e.g. [3] or some more recent and
related results [10], [12]). Because of the nature of geometry involved, polar
coordinates are used in the governing equations.

Example. Consider the Poiseuille flow through a pipe which has a cross-
section that can be described as

ωε = { (r, ϕ) ; r ≤ R − ε h(ϕ) } .

The pipe is then
Ωε =]0, 1[ × ωε .

Governing equations. The Navier-Stokes system that governs the flow is






−∆vε + Re (vε · ∇ )vε + ∇pε = 0 in Ωε

div vε = 0
vε = 0 on ]0, 1[ × ∂ωε , pε = qx , vε × n = 0 for x = 0, 1

Solution. The solution is given by
{

vε = uε(r, ϕ) · (q1 − q0)
pε = q0 + x · (q1 − q0)

,

where uε is the solution to the boundary value problem

(3.5) −∆ uε = 1 in ωε , uε = 0 on ∂ωε .

The problem (3.5) is a simplified version of the problem considered in the
previous section with g(ϕ) = R and f = f0 = 1. The expansion for Uε(ρ, ϕ) =
uε(r, ϕ) has a form

Uε(ρ, ϕ) = U0(ρ, ϕ) + ε U1(ρ, ϕ) + · · · .

Now (3.3) becomes

−
(

1

ρ

∂

∂ρ

(

ρ
∂U0

∂ρ

)

+
1

ρ2

∂2U0

∂ϕ2

)

= 1 in Ω , U0 = 0 for ρ = R ,

so that

U0 =
1

4
(R2 − ρ2) .

The second term U1, according to (3.4), satisfies

−
(

1

ρ

∂

∂ρ

(

ρ
∂U1

∂ρ

)

+
1

ρ2

∂2U1

∂ϕ2

)

= −2
h

R
+

1

ρ

h′′

R

∂U0

∂ρ
= −2

h

R
− 1

2

h′′

R
.

Function

W1 =
ρ2

2R
h(ϕ)
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satisfies that equation, but not the boundary condition since

W1(R, ϕ) =
R

2
h(ϕ) 6= 0 .

To overcome this, we look for U1 in the form U1 = W1 + V1 where

−
(

1

ρ

∂

∂ρ

(

ρ
∂V1

∂ρ

)

+
1

ρ2

∂2V1

∂ϕ2

)

= 0 for ρ < R , V1(R, ϕ) = −R

2
h(ϕ) .

That problem is easily solved using the Fourier method and we get

V1 =
∞
∑

k=0

ρk (Ak cos kϕ + Bk sin kϕ ) ,

with (for k = 1, 2, . . .)

Ak = −R1−k

2π

∫ 2π

0
h(t) cos kt dt

Bk = −R1−k

2π

∫ 2π

0
h(t) sin kt dt(3.6)

A0 = − R

4π

∫ 2π

0
h(t) dt .

Thus, we have computed the first two terms in the asymptotic expansion of
the solution

uε(r, ϕ) = Uε(ρ, ϕ) ∼ U0(ρ, ϕ) + εU1(ρ, ϕ) .

Taking into account that

ρ =
R r

R − ε h
= r + ε r

h

R
+ O(ε2) ⇒ ρ2 = r2 + 2 ε r2 h

R
+ O(ε2) ,

we get

1

4

(

R2 − ρ2) =
1

4

(

R2 − r2 − 2 ε r2 h

R

)

+ O(ε2) .

Therefore,

uε(r, ϕ) =
1

4
(R2 − r2) + ε

( ∞
∑

k=0

rk (Ak cos kϕ + Bk sin kϕ )

)

+ O(ε2)

=
1

4
(R2 − r2) + ε H(r, ϕ) + O(ε2) ,

where

H(r, ϕ) =

∞
∑

k=0

rk (Ak cos kϕ + Bk sin kϕ ) ,
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with Fourier coefficients Ak and Bk given by (3.6). We see that the zeroth
order approximation is simply the solution to the boundary value problem
posed in domain Ω, which is the usual Poiseuille quadratic velocity profile

v(0)
ε =

1

4
(R2 − r2) · (q1 − q0) .

In addition, we found a corrector of order ε for the Poiseuille velocity

v(1)
ε = H(r, ϕ) · (q1 − q0) ,

depending only on the choice of perturbation function h(ϕ), through the cal-
culation of Fourier coefficients (3.6). To illustrate the example, let us take
h(ϕ) = cos 5ϕ and R = 1. Calculations show that the only non-zero coeffi-
cient in the Fourier series is

A5 = −1

2
,

so the first order approximation for the velocity is

vε =

(

1

4
(1 − r2) − 1

2
ε r5 · cos 5ϕ

)

· (q1 − q0) + O(ε2) .

The cross-section and the numerical solution for ε = 1
5 are presented in Figure

3.

Figure 3. Star-shaped cross-section ωε and the FreeFem++
solution (velocity profile)

To visualize our result, the asymptotic approximations of zeroth and first
order for the velocity profile are given in Figure 4, followed by the calculated
corrector of order ε in Figure 5.
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Figure 4. Velocity profile. Zeroth and first order approximation.

4. Conclusion

Methods of the asymptotic analysis used in this paper can easily be ap-
plied to the similar boundary value problems and similar domains with the
perturbed boundary. Results, however, depend on the possibility to do the
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Figure 5. Corrector for the velocity profile.

calculations and obtain the exact solution. We considered two cases, bound-
ary value problems set in the rectangular coordinates and in the polar coor-
dinates. Utilizing the same idea of the appropriate change of variable and
the asymptotic expansion, we found the approximations of solutions to the
Dirichlet problems. To justify our approach, we formalized the ideas of Sec-
tion 2 in Theorem 2.2. By choosing the Poiseuille flow through a perturbed
pipe in Section 3.2 and finding explicit approximation of the velocity pro-
file, we showed that in some cases even the first order approximation gives
effective and satisfying results. Comparison with the zeroth order approxi-
mation (unperturbed solution) is the informative way to study the effects of
the boundary perturbation. Their difference is quantified by the corrector,
showing the magnitude of deviation from the initial problem.

We expect to obtain further results by this method, considering the
Dirichlet and the Neumann spectrum of the Laplace operator acting in the
star-shaped domain with the perturbed boundary. This problem is connected
to the question “Can one hear the shape of the drum?” posed by M. Kac in
the middle of the last century.
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Perturbacija ruba za Dirichletov rubni problem

Tomislav Fratrović i Eduard Marušić-Paloka

Sažetak. Proučavamo utjecaj malih perturbacija ruba
domene na rješenja rubnih problema zadanih na takvom po-
dručju. Polazna točka u promatranju je domena Ω, čijem se rubu
dodaje pomak u obliku umnoška malog parametra i neke glatke
funkcije. Nulta aproksimacija je upravo originalni rubni problem
u području Ω, dok aproksimacija prvog reda sadrži korektor koji
ima zanimljiv učinak na rješenja Dirichletovog problema.
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