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ABSTRACT.

A covering of the sphere in the three-dimensional
Euclidean space is constructed consisting of three-
sided and two-sided regions. Each region is
represented as a rational quadratic Beziér patch
over a triangular or a rectangular domain, respect-
ively.
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Prekrivanje kugle racionalnim kvadraticnim
Beziérovim plohama

SAZETAK

Prekrivanje kugle u trodimenzionalnom euklidskom
prostoru konstruirano je tako da se sastoji od
trostranih i dvostranih podrucja. Svako podrucje
predstavljeno je po dijelovima racionalnim
kvadraticnim Beziérovim plohama nad trokutastom
ili pravokutnom domenom.

Kljucne rijeci: Beziérove plohe, racionalne splajn
funkcije

INTRODUCTION
n the practice of geometric modelling a recurrent
Irequest is to describe different objects by a given
collection of spline-functions. The exact repre-
sentation of the three-dimensional sphere in the
Euclidean space by quadratic rational spline-functions
has been the subject of several papers in the CAD-
literature. Unfortunately, the first publication on con-
structing rational Beziér sphere patches [S] contains an
error [2], and the paper on the exact representation of a
spherical cap by a single rational Beziér patch [1] is not
easily available. So we have no information about the
type of Beziér patches in that representation.
Our subdivision technique of the sphere is based on the
investigation of quadrics given in [4], especially on the
following theorem:
The rational quadratic Beziér triangle is a quadric if
and only if all three extended boundary curves meet in
one point of the quadric.
From this theorem it follows that the sphere can’t be
subdivided into triangular regions represented by rational
quadratic Beziér patches. Therefore, patches of other type
are also necessary to fill the gaps between the triangular
patches.
An obvious construction of triangular regions satisfying
the condition of the theorem is the following. Four given
points on the sphere determine a tetrahedron. The planes

of the faces around a fixed vertex cut the sphere in three
circular arcs bordering an appropriate triangular region
(Fig. 1).

Fig.1:  Appropriate triangular region of the sphere.

Four such triangular regions are determined by the
tetrahedron. Between each two neighbouring triangles
a two-sided gap arises. There are six such two-sided
regions. Each of them will be covered by a degenerated
four-sided Beziér patch (Fig.2).
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Fig.2: Subdivision of the sphere.

The computations of the geometric data of a two-sided
patch have been carrried out by Mathematica [6]. what
is the new result of this paper.

MATHEMATICAL DESCRIPTION OF

RATIONAL QUADRATIC PATCHES

The two-parametric vector equation of a rational qua-
dratic Beziér patch over a triangular parameter domain
has the form [3]:
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r(u,v) =
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i+j+k=2 i+j+k=2

where u, v and s are the barycentric coordinates of a
point in the triangular domain with respect to the vertices
of the triangle, u+v+s=1and 0 <u,vs=<1.

e
e
are the bivariate Bernstein basis functions of degree 2.
The geometric data of the patch are the six control points
pij« and the scalar weight factors w; ;> 0.

If the basis functions B j are written into the vector

(Q=u- v)z, 2u(l=u—-v), 2v(l—u—-v), ”2, 2uv, vzl
then the formal scalar product by the vector

Sk

B;;(uyv,s)=

(Poo2 Woo2 > Pro1 Wior» Port Woits P20o *2005 Prio Witos Poo *o20)
stands in the nominator and the scalar product by the
vector of the weight factors

(Wo02 5 Wio1> Wor1s Wa00s Wi10> Woo)

stands in the denominator of the expression of r (u.v).
The four-sided rational quadratic Beziér patch is given
by the tensor product form:

2 2
r(u,v)= Z p;;jwi; Bi(w)B;(v)/ ZW",/ B;(u)B;(v)
i,j=0 i,j=0
where 0 <u,v <1 and

L = e ond)

i12-i)! ’ e

is the quadratic Bernstein basis. The geometric data of
the patch are the nine control points p;; and the scalar
weight factors w; ;> 0.

The matrix form of the nominator and the denominator are

B(u)=

.
Poo Woo Poior  Po2 Wo2 (5=

[(1 —u)® 2u(l-u) u:] PioWio PuWi P W 2v(l1-v)
Paoitoose PR 018 Poy Moo v?

and

i) O (1-v?
[(l —)E 2u(l=w) 112] Wio Wi Wi 2v(1-v)

Wag Wy Wy v
respectively.
SPHERICAL PATCHES

Each boundary curve of a triangular patch is a segment
of the circumscribed circle of a regular triangle. Such a

i
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Fig.3: Control points of a circular arc.
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circular arc of 60° can be represented as a quadratic
rational Beziér curve determined by the control points
Py, Py and P; and the corresponding weights 1, 1/2 and
I8(Ei1g99).

Obviously, the point P, is the reflected lower vertex P of
the triangle on the line of Py and P,. The control points
of the 4x3 boundary curves of the spherical patches can
be computed from the vertices of the tetrahedron in a
similar way by appropriate reflexions of the corre-
sponding vertices. As the boundary curves of a Beziér
patch are Beziér curves generated by the boundary
control points of the triangular patch, all the geometric
data of the triangular patches are determined by the four
vertices AV, BV, CV and DV of the tetrahedron (Fig.4).
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Fig.4: Control points and weights of a triangular patch.

The coordinates of the vertices of the tetrahedron and
the control points are listed in Fig.5 in the input form of
Mathematica.

Av={-1,1,-1}; BV={1,-1,-1}; CV={1,1,1}; DV=(-1,-1,1};
K11={1,1,-3}; K21={0,0,-3}; K31=(-1,-1,-3};
K12={1,3,-1}; K22={0,3,0}; K32={-1,3,1};
K13={-3,1,1}; K23=(-3,0,0}; K33=(-3,-1,-1};
K14=(3,1,-1}; K24=(3,0,0}; K34={3,-1,1};
K15={1,-3,1}; K25={0,-3,0}; K35=(-1,-3,-1};
K16={1,-1,3}; K26={0,0,3}; K36=(-1,1,3};

Fig.5. The coordinates of the control points.

The control points K I J; (I = 1,2,3"and J = 1...6) are
numbered according to the two-sided patches, where the
second index is the patchnumber. The circles building
the patch boundaries on the sphere are drawn by
Mathematica in Fig.6.

Fig.6: Patch boundaries determined by four points of
the sphere.
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The usual way of representing a triangular patch by
parameter lines is drawing three sets of surface curves
according to constant barycentric coordinates in the
triangular parameter domain: u = const, v = const and
s = 1 — u — v = const. Unfortunately, Mathematica
requires constant limits for the parameter values in the
command ParametricPlot3D. Therefore, the triangular
domain bordered by the linesu=0,v=1andu +v=1
has to be transformed into a rectangular domain for
example by the parameter transformation « = ¢ — st and
v=st, (0 <st <1). Inour notation bfig3 [u_.,v_], [k]

(k = 1,..,4) is the two-parametric vector equation of a
triangular Beziér patch (Fig.7).

Array[bfig3[u_,v_1,41;
fiifs t :=fs 1.
fvls ,t li=s t;
A[RGBColor[r_,g_,b_1]:=CMYKColor[O0,r,r,1-r];
AlGraylLevel[x_1]:=Graylevel[x];
triangs=ParametricPlot3D
[Ibfigaffuris t] fvis L1011
bfigsiEuls £ fVls L1121
bfig3[fuls,t],fvls,t]11[3],
bfig3[fuls,t],fvls,t11[4]}
//Evaluate,{s,0,1},{t,0,1},PlotPoints—->{12,12},
Boxed->False,Axes—>None,
ColorOutput->A,Background->Graylevel[0.8],
ViewPoint->{1,-3,.5}1;

Fig. 7: Drawing command for the triangular patches.

The four patches drawn by Mathematica are shown in
Fig. 8 together with the control net of one patch.

Fig. 8: Triangular patches drawn by Mathematica.

The two-sided patches can be considered as degenerated
four-sided patches. The geometric data of such a patch
are not determined by the two opposite boundary curves
coinciding with the boundaries of the neighbouring
triangular patches. In Fig.9 the degenerated control net
of the 2nd patch and the corresponding Beziér control

net over a rectangular parameter domain are shown. The |

unknown data are the geometric data of the middle

longitudinal parameter curve, namely, the control point
Py and its weight w, moreover the weights of the points
Pjo and Pj, coinciding with the vertex CV and AV,
respectively. For symmetry reasons these weights are
equal, denoted by c.

v Ry(D) R0« By()
K3 K2 Kioll WP, (1/2) P,(w) |B,(1/2)
= Ryo(1) Ry (¢) By (1)

Fig.9: Geometric data of a degenerated two-sided patch.

These unknown data in the vector equation of the rect-
angular Beziér patch can be determined from the
condition that any point of the generated patch must lie
on the sphere. After substituting the coordinates of an
arbitrary point of the patch into the equation of the sphere
(with center point in the origin and radius=3) and
reordering the equation, the coefficients of the terms u/v/
(i=0.4,v=0.4) can be collected with Mathematica.
The condition that each coefficient equals to zero leads
to a system of equations for the unknowns. However,
the number of equations is greater than the number of
unknowns, and the equations are not linear, the solution

P, =(0,3,0), w=+/3/3, c=+3/2
can be found interactively by Mathematica. After that it
can be verified easily that an arbitrary point of the
generated patch by these data lies on the sphere indeed.
The control net of a two-sided patch is shown in Fig.10.

K,

Fig.10: The control net of a two-sided patch.

The drawing command for the six patches is written in
Fig.11, where bfig2 [u_,v_] [k]. (k = I...,6) denotes the
two-parametric vector equation of a rational quadratic
Beziér patch over a rectangular domain.
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Array[bfig2[u_,v_1,61;

monds=

ParametricPlot3D[{bfig2[u,v][1],bfig2[u,v][2],
bfig2[u,v][3],bfig2[u,v][4],
bfig2[u,v][5],bfig2[u,v][6]}

//Evaluate, {u,0,1},{v,0,1}

PlotPoints->{12,12}, Boxed->False,Axes—>None,

ColorOutput—->A,Background->GraylLevel[0.8],

ViewPoint->{1,-3,.5}]

Fig.11: Drawing command for the two-sided patches.

The two-sided patches drawn by Mathematica together
with the control net of one patch are shown in Fig.12.

Fig.12: Two-sided patches drawn by Mathematica.

Finally, the four triangular and six two-sided patches
form a subdivision of the sphere, where each of them is
represented by a rational quadratic Beziér patch. The
necessary computations to this construction without
Mathematica would be hopelessly difficult, moreover,
alot of programming work would be required to generate
such figures. The presented solution computed for the
exact representation of the sphere by spline functions
drawn by Mathematica is shown in Fig.13.

Higil 3ib

Fig.13: The covering of the sphere.
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