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ABSTRACT

The paper deals with the modelling of solids
(hyperpatches) on the basis of their creative laws.
Creative representation of a solid enables to
modell also solids with “curve-like” edges, not
only solids with the polyhedral boundary as in
the boundary representation method. There is
provided also the possibility to control a non-
homogeneous distribution of the interior points
of a solid created as an interpolated figure. Basic
notions such as a solid cell, an isoparametric curve
segment and an isoparametric surface patch, or
tangent space and density vector in a solid point
are described and their relevance to the intrinsic
geometric properties of the solid is discussed.
Composite solid modelling problems on adjoining
of the elementar solid cells are mentioned.
Keywords: solid modelling, creative space,
interpolation of hyperpatches

Geometrijsko modeliranje po dijelovima hiper-
plohama

SAZETAK

Rad se bavi modeliranjem tijela (solids) na osnovi
njihovih zakona stvaranja (creative laws). Kreativno
predstavljanje tijela omogucava i modeliranje tijela
koja imaju “zakrivljene” stranice, ne samo tijela s
poliedarskim stranicama kao Sto je to slucaj u
metodi prezentiranja rubova (boundary
representation method). Postoji takoder i
mogucnost upravljanja nehomogenom raspo-
djelom unutarnjih tocaka tijela kreiranog poput
interpoliranog lika. Opisani su osnovni pojmovi
kao Sto su celija tijela, segment izoparametarske
krivulje i dio izoparametarske plohe, ili tangentni
prostor i vektor gustoce u tocki tijela, a raspravlja
se i o njihovoj primjerenosti unutarnjim geo-
metrijskim osobinama tijela. Spomenuti su
problemi modeliranja slozenog tijela pri dodavanju
elementarnih celija.

Kljucne rijeci: modeliranje tijela, kreativni prostor,
interpolacija po dijelovima hiperplohama

1. INTRODUCTION

olid modelling is one of those interesting pro-
S blems, which are still developing parts of Com-

puter Graphics. Solids can be created due to their
creative laws or by description of the incidence structure
of their boundary. There exists a lot of literature con-
cerned the second mentioned way of modelling, this topic
1s given in details in Mantyla [1].
Let us look therefore in details at the modelling of solids
on the basis of their creative laws and representations in
the Creative space.
Let K be a Creative space, an ordered pair K= (U,G).
where U - base is a set of figures in the space (subsets of
the extended Euclidean space E.) and G- generator is a
set of generating principles (G = GP (E,) U L, while
GP(E,) is a group of projective transformations in E,
and Lis a set of interpolations). More detailed descriptioh
can be found in Velichova [3], [6].
Solid T (a three-parametric subset of E3) is in K
synthetically represented by its creative representation,
an ordered pair (U,G), where U € U (a basic figure )
and G € G (a generating principle) are such, that
applying the generating principle G on the basic figure ,
U the created solid T will be obtained. Generating
principle G can be a geometric transformation, a class
of geometric transformations or any interpolation. The
first two types of generating principles provide modelling
of solids which are homogeneous, i.e. their interior points
are uniformly distributed. This feature of the uniform
points” distribution is implicitly assumed in the case of
solids defined by their incidence structure describing
order and incidence of all elements (vertices, edges,
faces) of the boundary of solids as three-dimensional
regions in Es. In this case we even restrict our consi-
derations on polyhedra only, while using creative
representation we can create also more complex shaped
solids with “curve-like™ edges.
The possibility to describe and to control the feature of
the non-uniform distribution of points in a solid is
provided in the case of its modelling as an interpolated
figure, using its creative representation in which the
generating principle is an interpolation. This fact can
play a very important role in many technical branches
(science of materials, timber industry) but also in the
sphere of medical diagnostics and image processing.
Industrial design and CAGD of non-homogeneous solids
using new efficient computer systems seem to be very
perspective.
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2. BASIC NOTIONS
Elementary notions and considerations concerned the
problem of the solid interpolation can be easily deduced
by analogy with the interpolation of curves and surfaces,
increasing the dimension of a figure to three.
Analytic representation of a hyperpatch - solid cell Cis
a vector function
r(u,v,w) = (x(u,v,w),y(u,v,w),z(u,v,w),h(u,v,w))

defined on the region Q = [0,1]3 (where x, y, z and / are
homogeneous coordinate functions at least C3 continuous
on a given region Q), which is a local homeomorphic
mapping of the region Q on the hyperpatch C (according
to Velichova [5]). A notion hyperpatch - cell of a solid
analogously corresponds to notion of a curve segment
or a surface patch. Composite solid can be obtained as a
composition of several elementary cells. A notion iso-
parametric surface of a solid can be coordinated to a
notion isoparametric curve of a surface. There exist three
isoparametric systems of surfaces (exactly one of
parameters u, v, w is constant) forming a net of surfaces
in a solid. Boundary surfaces (faces) correspond to the
constant values equal to 0 or 1. Setting two of parameters
u, v, w equal to a constant value we can speak about
isoparametric curves in a solid. and if the values are equal
to 0 or 1 about boundary isoparametric curves (edges).
Two isoparametric surfaces from different systems
intersect in an isoparametric curve, two isoparametric
curves intersect in a point. In a point of a solid all three
parameters are constant and we denote them as
parametric (curvilinear) coordinates of a solid point.
Points with parametric coordinates equal to O or 1 only
are vertices of a solid. A hyperpatch boundary (see Fig. 1)
consists of

6 boundary surface patches -

face surfaces of a hyperpatch
r(0,v,w), r(1,v,w), r(u,0,w), r(u,1,w), r(u,v,0), r(u,v,1)

- 12 boundary curve segments -

edge curves of a hyperpatch
r(0,0,w), r(0,1,w), r(1,0,w), r(1,1,w),
r(0,v,0), r(0,v,1), r(1,v,0), r(1,v,1),
r@s0:0) 5 01), r e B0 n(s 1T L),

8 corner points - vertices of a hyperpatch
r(070:0)7 5 (0:150)5x (1 050)F (L1, 0);
r(0,0,1), r(0,1,1), r(1,0,1), r(1,1.1).

r(0,1,1)

edge r(0v,1) (el r)

face r(uv,1)

i (11,1
Pid L)

face r(1,v,w)

edge r(0,0,w)
r(1,1w)

T (1,1,0)
10,0,0)

r(u,0,0)

vertex r(1,0,0)
face r(u,0,w)

The analytic representation of a hyperpatch can be
obtained easily, from the creative representation, by the
multiplication of matrices, which are analytic repre-
sentations of the creative representation elements.
Creative representation of a hyperpatch, an ordered pair
(U.G), can have six possible forms according to the
different types of the basic figure U and the suitable
generating principle G:

(a surface patch, a class of geometric transformations)
(a solid cell, a geometric transformation)

(a net of boundary surface patches. an interpolation)
(a sequence of surface patches, an interpolation )

(a grid of boundary edge curves, an interpolation)

(a grid of points, an interpolation).

In the first two types of the hyperpatch creative repre-
sentation the analytic representation of a generating
principle is a regular square matrix of rank 4 with real
numbers as elements (for a geometric transformation)
or elements in a form of the real functions of one real
variable all defined and at least C! continuous at the unit
closed interval [0.1] (for a class of geometric trans-
formations). In both cases the basic figure is analytically
represented by a vector function, of one variable for a
curve segment and of two variables for a surface patch,
defined and satisfying certain conditions on the closed
regions, as described in Velichova [3], [5]. Hyperpatches
determined by these representations are homogeneous,
and different types of created solids are described in
Velichova [4]. For example, a solid of revolution can be
created from a surface patch subdued to a class of revo-
lutions about an axis, or a ruled solid from the same
basic figure subdued to a class of translations. In the
Fig. 2 there are illustrations of several solids generated
by classes of geometric transformations.

Next 3 types of creative representations use as the basic
figures ordered sets of points, curve segments or surface
patches. These can be analytically represented by their
vector equations and form the elements of the matrices -
analytic representation of the basic figures - maps of the
created hyperpatches, distributed in the appropriate order.
Generating principle is in all 3 types an interpolation.
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Fig. 2b

3. INTERPOLATION OF SOLIDS

In the following. we will describe the tri-cubic inter-
polation (cubic interpolation in three different directions)
of a hyperpatch. Analytic representation of a tri-cubic
solid cell is in a form

r(u,v,w)=a u 3w +amu§» wl+.. FajoUt+agy =

3 8 3

- sl

- Zaiik uv'w
i=0 j=0 k=0
S

= z Fi(zz) F,(v) F,(w) by,

=0 j=0 k=0

for (u,v,w) € [0,1]3, where Fi(u), Fj(v), Fx(w) are cubic
interpolation polynomials.

The set up of algebraic coefficients a;; (64 vectors) does
not reveal clearly geometric features of the interpolated
hyperpatch, while the set up of geometric coefficients
bjjx defines directly geometric properties of a hyperpatch
and these even form a basic figure in the hyperpatch
creative representation. From the analytic point of view
geometric coefficients bj form a three-dimensional
matrix of the type 4x4x4, the map of a hyperpatch. The
elements of this map are analytic representations of the
hyperpatch basic figure elements, it means quadruples
of homogeneous coordinates of the hyperpatch points
(finite points in E3), tangent vectors of the hyperpatch
edges. twist vectors of the hyperpatch faces. and vectors
defining the distribution of points inside the hyperpatch
- density vectors (points in E5 at infinity).

Let the basic figure of a hyperpatch be an ordered grid
of 64 finite points in E3. According to the type of the
used interpolation polynomials we can obtain a tri-cubic
interpolation hyperpatch containing all elements of its

basic figure (polynomials (A)), or such, that contains
only 8 points of the given basic grid (Bernstein cubic
polynomials (B)). In the first type, the basic grid of points
defines also the curvature of edges and faces, and density
of the hyperpatch, i.e. distribution of points inside.
Analogy of a Beziér patch, approximation Beziér cubic
hyperpatch (cell) defined by a grid of 4x4x4 points
consists of faces, which are Beziér cubic approximation
patches. Edges are Beziér cubic curve segments passing
through the 8 corner points. Density of points’
distribution inside the cell is an approximation of the
order and position of points inside the basic figure grid
and it is defined implicitly in the basic figure of the
hyperpatch.

Interpolation polynomials are for ¢=u, v, win a form

Fo)=—458+9r2-55t+1
Fi()=13.583-2252+91
Fr()=—-135+182—-451t

Fi(t)=458-452+1t (A)

Fo®)=(1 -1

Fit)=3t(1 -1)?

) =32 -1

Fyn=13 (B)

Map of a hyperpatch can be considered as an ordered
quadruple of the square matrices By = (Pyj),

i, j, k=0,1,2,3 of the type 4x4. Analytic representation
of a hyperpatch is then in a form

3 33
r(u,v,w) = 2 Fk(w)(z Z (u) By, F (v)]
k=0 =0 j=0
(u,v.w) € [0,1]3.
Let us now consider another basic figure of a hyperpatch,
while the elements of this ordered set of points are not
only finite points, but also points in Ej3 at infinity -
vectors. These describe geometric properties of the
created hyperpatch explicitly. The map of such basic
figure can be also considered as an ordered quadruple
of the square matrices of the rank 4 - arrays B, for
k = 0,1,2.3. Each array is a basic figure of an iso-
parametric patch and contains also density vectors of
the points’ distribution in the hyperpatch. Let us establish
the following designations (in the Fig.3 illustrated for
the curvilinear coordinate values u = v =w = 0):

e

uvw
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r(u,v,w)=r,,, solid point

ar(u,v,w) _
all — fuvw

isoparametric curve

tangent vector to the

7)
SRV e ;
—— =7 twist vector to the

auav uvw

isoparametric patch

&Y 30 v1ianes

=r""
Judvow b

density vector

Separate arrays are then in a form

v \ 4
Fooo  Toio Tooo Toio

- .
B~ Fioo Tiio Tioo Tiio
Of u u uv uv
Fooo  Toro TFooo Toio
u uv uv

u
Fioo Trio Tioo  Tiio

v v
Foor  Toir Toor Ton
v |4
Lior T Lo Ting
u u uv uv
Foor  Torr TFoor Torni

uv uv

u u
Lior T T T

w w (RN e
Fooo  Toio Tooo Toio
w w w W
B Fioo Trio Tioo  Tiio
2 uw uw rlll'l\' uvw

Fooo Toio Tooo Toio

uw uw uvw uvw

Fioo Trio Tioo  Trio

w w i "
Foor  Torr Toor  Ton

w w W W
B0 Lot O T Ting
3 % uw uw uvw uvw
TFoor  Torr  Foor o011
uw uw uvw uvw

Eio1® "Lqr1 S hrol Ll

Geometric coefficients of an analytic representation of
the interpolated hyperpatch are in this case: 8 quadruples
of the hyperpatch vertices coordinates, 24 tangent vectors
to the hyperpatch edges, 24 twist vectors of the hyper-
patch faces and 8 density vectors in the hyperpatch
vertices. In this way we describe geometrically not only
the boundary of the hyperpatch as a three-dimensional
region in the extended Euclidean space Ej, but also the
intrinsic distribution of the region’s points.

At any point r,,. of a hyperpatch there is defined a
tangent trihedron I, formed by 3 tangent planes to the
isoparametric patches of the hyperpatch in this point.
Each of the tangent planes is defined by two tangent ve-
ctors to the isoparametric curves in their common point,

uv u v uw u w
Tabe = Tabe Tabes Tabe = Tabe Labes

These planes intersect in the common point I, each
two of them having a pierce line in a tangent line to the
isoparametric curve

M v w

Tabe = Cabe Tabe-

uw v

abc M Tabe

uv uv v w

Ll =
Tabe =, Tabe N Tahe =05 T
Twist vectors of the concerned isoparametric patches r«",

12

uw v s
N Tabe U

rov, pvv characterize their geometric shape, curvature and
convexity or concavity.

uvw

Density vector ry,. is oriented towards the interior of
the tangent trihedron and its length is related to the
density of points’ distribution inside the hyperpatch
(see Fig. 3).

For this type of basic figure the suitable interpolation is
determined by Hermit interpolation polynomials (C) in
a form

Fo()=28-312+1

Fi)=-—28+31

F)=8-212+t

Fit)y=18—12 (@)

4. ADJOININGS OF HYPERPATCHES

Very important part of the composite solid modelling is
the adjoining of elementary hyperpatches - solid cells
into a composite solid. According to the number and the
type of equal elements in the basic figures of joining
cells, three types of different adjoinings can be distin-
guished, each of them determining different geometric
properties of the resulted composite solid. Let us describe
the adjoining of two hyperpatches with the analytic
representations

p(u,v,w), q(u,v,w), (uyw) e Q,

while the analytic representation of the resulting solid
will be denoted as r(u,v,w).

A. Continuous adjoining - GO continuity

The two joining cells have a common boundary face
patch, it means, in the maps of the joining cells there ex-
ist 16 equal (or collinear) elements: 4 quadruples of coor-
dinate vectors of the adjoining boundary patches’ verti-
ces, 8 tangent vectors to the edges of the adjoining boun-
dary patches in the corner points and 4 twist vectors of
the adjoining boundary patches in these vertices (Fig. 4).

pluyw)

q(u,vw)

The composite solid is a continuous region in the
extended Euclidean space E5 and contains no wholes or
bubbles. The adjoining face patches are equal and fit
perfectly together, coincide. Isoparametric curve seg-
ments which are not parts of the adjoining faces need
not be smooth. There can be created new edges in the
boundary curve segments of the joining faces and new
vertices in their corner points.
p(1,v,w)=q(0,v,w)=r(0.5,v,w)
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The presented equation expresses in the compound form
16 equations, which determine the collinearity of the
vectors representing coinciding faces of the adjoining
hyperpatches.

B. Smooth adjoining - G' continuity

Except of the common adjoining face patch, two joining
cells must satisfy also the condition of the collinear
tangent vectors to all adjoining isoparametric curve
segments in the points of the common isoparametric
patch. This means, that the adjoining of all isoparametric
curve segments not inciting with the common
isoparametric patch and 4 adjoining boundary patches
is smooth. These conditions can be expressed by the
following three compound equations

u Ges hes s u
Lo s = O.Ppyy = B'qO\'\r

uw uw uw

o5 = Y-Phw = 6'q0r\|‘

uv uv uv

Lo sme = €.Pj = 9.90,,
where @, 3, 7, 6, €& ¢ are non zero real numbers.

To the former 16 equal (collinear) elements necessary
for GO continuity we must add 4 tangent vectors to the
adjoining edges and 8 twist vectors of the smoothly
adjoining boundary patches, two of them in the each of
the 4 common vertices. The maps of the joining cells
will consist of 28 equal (or collinear) elements (Fig. 5).

C. Homogeneous adjoining - G2 continuity

In addition to the equality of all previous geometric
parameters of the adjoining cells for G? and G!
continuity. the continuous distribution of the cell’s points
will be assured as well, requiring the collinearity of
density vectors in the common vertices; the maps of the
joining cells will have equal (or collinear) 32 elements.

5. APPLICATION POSSIBILITIES

Global properties of the solid models - volume, surface
area, moment of inertia. center of gravity, and so on, can
be calculated by the evaluating the triple integral

®= j f(r)dv
Solid
where @ is the property required, f(r) is a vector function
describing ® and integration is over the entire volume
of the solid.
For a composite solid S created by adjoining of a finite
number of cells C;

§=0C

i=1
any integral taken over the solid decomposes into the
sum of integrals

n

[royav=Y [rmyav

S i ¢
where the cells C; have disjoint interiors. The methods
of evaluating triple integrals on computers are discussed
in details by Mortenson [2].
The volume of a solid cell represented analytically by a
vector function
r(u,v,w) = (X(u,v,w).y(u,v,w).z(u,v,w),h(u,v,w))
defined and at least C3 continuous on the region
Q =[0.1]3. is the value of the triple integral

V= ”j (r'r'r") du dv dw
Q

where (r“r rv) is the triple scalar product of the partial
derivatives of the analytic representation - vector
function r(u,v,w) with respect to the variables u, v, w.
Outlined problematic concerned interpolation of solids
is anew but very interesting and perspective sphere of a
further developement in geometric modelling of figures
in E;. It will undoubtedly serve as a source of a wide
field for study of the three-dimensional figures in
complexity, it means not excluding their interior density
- the distribution of their intrinsic points, which is up till
now a sphere ignored by Geometry.

There had been developed a system of easy separate progra-
mmes (in QB45 and TPASCAL programming lan-guages)
providing calculations and visualizations of solids on the base
of the mentioned theory which are used at the Department of
Mathematics, Slovak Technical University in Bratislava. Some
of them are used regularly in the pedagogical process.
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