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ABSTRACT

The Grassmannian mathematical system, well
known as the Ausdehnungslehre (Linear Extensi-
on Theory) together with the symbolic computa-
tion program Mathematica is used to synthesise
a class of planer mechanisms, named Grassmann
mechanisms. The objective of investigating Grass-
mann mechanisms is to be able to compute eas-
ily the design parameters of the mechanism from
given trajectory points.

Mechanisms in this class have moving links rota-
ting on pivots and intersecting tracks. The paper
reports on the simplest type of synthesis result of
Grassmann Chain mechanisms using four given
precision points for each mechanism apart to
determine the design parameters of the mechanism
of the class whose trajectory passes through those
points.

Sinteza mehanizama Grassmanovog lanca u ravnini
uz primjenu Ausdehnungslehre i Mathematice

SAZETAK

Grassmannov matematicki sustav, poznat kao Aus-
dehnungslehre zajedno sa programom za simbo-
licko racunanje Mathematica koristi se za sinteti-
ziranje klase ravninskih mehanizama, nazvanih
Grassmannovim mehanizmima. Cilj istrazivanja
Grassmannovih mehanizama je omogucavanje lak-
Seg izracunavanja dizajna parametara mehanizma
iz zadanih tocaka putanje.

Mehanizmi u toj klasi imaju pomicne veze koje
rotiraju na pivotima i sjekuce staze. Clanak izvjes-
tava o rezultatu najjednostavnijeg tipa sinteze me-
hanizama Grassmannovog lanca uz primjenu cetiri
zadane tocke preciznosti za svaki dio mehanizma
da bi se odredilli parametri dizajna mehanizma iz
klase cije trajektorije prolaze kroz te tocke.

1. INTRODUCTION

Mechanisms are less versatile than robots, but less
expensive, and if a straightforward method for automatic
mechanism synthesis could be developed, more manu-
facturing processes could be automated inexpensively.
The concept of the Ausdehungslehre was first expounded
in 1844 by Hermann Grassmann and forms a language
which has a geometric interpretation as a “prescription
to construct” [1]. The Ausdehnungslehre is a superset of
the Victor Calculus, and hence has significant applica-
tions to engineering, particularly when implemented with
a symbolic computational program like Mathematica [2].
This paper implements a synthesis of Grassmann Chain
mechanisms constructed of two chains of mechanisms
with moving links rotating on pivots and intersecting
tracks. That is to start with a required motion and to
determine the parameters of a mechanism to give this
motion. A numerical example is presented.

To our knowledge there has been no previous work on
synthesis of these of mechanisms, or on the use of the
Ausdehnungslehre to develop theories in this area.

2. THE AUSDEHNUNGSLEHRE AND GEOMETRIC
DUALITY

One of the important facets of Grassmannis theory is its
geometrical interpretation. The progressive (A) and the
regressive ( A) products may be interpreted geometri-
cally as follows: the progressive product or wedge ope-
rator may be read as constructing higher order elements
from lower order elements and the regressive products
or wedge-bar operator as intersecting elements to form
lower order ones [3]. The regressive product operation
is based on the fundamental formula called The Rule of
the Middle Factor [4].

Geometric duality in the plane can be represented as in

Table 1 below [3]:

Progresive Product  Regresive Product

L=P, AP, P=L AL,
n=P, AP, AP, =L, A LA L,
n=LAP I=PA L

Table 1: Geometric Duality
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Where: P denotes a point
L denotes a line
/4 denotes a plane
1 denotes the unit scalar

The equivalence relation = is used to affirm that these
relations are true algebraically up to a scalar multiple.
For some cases three lines do not intersect at a point.

3. SYNTHESIS OF GRASSMANN CHAIN MECHANISMS
- GENERAL CASE

The simple class of planar mechanisms discussed in this
paper is that which involves just fixed pivots and sliders.
and which have a single degree of freedom.

Given any number of precision points for each mecha-
nism of the chain it is required to find the chain mecha-
nism which will describe the trajectories for each me-
chanism apart through those points. Their input is con-
sidered to be a point rotating with uniform angular ve-
locity in a circle.
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Figure 1: The Construction Scheme of Grassmann Chain
Mechanism in the General Case

Regarding to the Figure 1 Grassmann Chain Mechanism
notation is as follows:

Note that the first indices refer to the number of the link
mechanism.

First Link Secondlink

. Mechanism Mechanism
N° of tracks (order) m n
N° of pivots m+2 n+2
Tracks L",..‘,le L21 L2n
Pivots E..E R R
Sliding points P“, le le. . PZH
N°of precision points h g
Precision points Q. Q. Q. . ng
N° of mobile links m+2 n+2
Mobile links M”. M”mm oM

Table 2: The Notation of Grassmann Chain Mechanism
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P, — represents the center of the input circle

Q"ii — represents the intersection point on the circle
made by the last mobile link passing through the last
pivot of the first link mechanism corresponding to the
precision point Qii of the link mechanism

Q,.,, — represents the i'" precision point of the second
last link mechanism of the chain mechanism

The proposed Chain Mechanism has only two chains
mechanisms with one track and three pivots each.

3.1. THE SYNTHESIS OF THE
FIRST LINK MECHANISM OF THE CHAIN
The proposed synthesis process has two stages as follows

[5]:

3.1.1. STAGE 1 FOR THE FIRST LINK MECHANISM:
LOCATION OF THE LAST PIVOT AND THE
CENTER OF THE CIRCLE

The first stage is the synthesis of the center of the circle

P and the last pivot P. This part of the synthesis requires

only four precision points as shown in Table 3. It is easy

to observe, that the number of unknowns of this stage
does not depend on the number of tracks and the other
pivots of the mechanism and depends only on the
unknown coordinates of the center of the circle P and
the pivot P,

Definition of the points  N° of unknowns of the

PandP _ firststage
Pn =0+ X0 l * yt)j_ X() 2 yo
P3=®+x31+y3j X,,Y,

Table 3: The Number of Unknowns of the First Stage of
the Synthesis

If the mechanism is to be of 1 degree of freedom the
problem is to find the center of the unit circle, the pivots
and the position of the tracks.

With reference to Figure | select4 precision points Q, .
where h=1, 2, 3, 4 and join with coresponding points
Q"ii on the circle and pass through pivot P_.

Q, AP, AQ% =0 i=1and j=1,2,3,4 (1)
ek Splve these equations for the coor-
Mechanicm dinates of P (the cepter of the cir-
. cle) and P, (the last pivot of the first
. mechanism). The result allows two
e sets of solutions, so we may have
Lo Lo two possibilities for P, and P_.

S S, Assume the selected order of the

Pk1~ Pk, four given precision points

f Q,Q,,Q,.Q,, and select the

0. 0. corresponding rotating points at

r+2 equal intervals on the circle cir-

M cumference. We have an infinite
k1 k(r+2)

number of possibilities for the
selection of the position of the
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rotating points on the circle circumference. For each
particular selection of the rotating points, the solution
of the points P_and P, is changed. Therefore, there is an
infinite number of solutlons for the points P and P..
These solutions are related to the position of the res-
pective rotating points. The selection of the rotating
points gives the time of movement from one precision
point to the another.

Suppose that those rotating points have the positions as

follows:
Q"|| =0 +[x, + R Cos(0)] i +[y, + R Sin(0)] j:

(
Q',,= ©+[x,+R Cos(Pi/2)] i +[y, +R Sin(Pi/2)] j:
[

Q" =O+[x_+R Cos(Pi)] i +[y, + R Sin(P1)] j:

Q'_®+{Q+Rc%@mnn.ﬂx+RSm@manL
It is important to notice that we have two solutions for
P and P.. For each permutation of the four precision
pomts the positions of the points P and P, will be chan-
ged as is shown in Table 3. There Is a conespondence
between the precision points (Q,, ) and the rotating points

& L ) and for any changes in thls correspondence, the
solution for the center of the circle P, and the pivot P,
will be changed.

Permutations of

N of N° of solutions
precision the precision ~ for P and P,
points points out of four
4., 48
S, 240
6 6., 720
~ N°of tracks Defimtlon of the N° of
~ and their tracks L pivots
positions " of the
. second
. _ stage
One track LIl =(O+xai) A(O@+ybj) 2
anywhere in
the plane
Twotracks L, =(©+xai)A(@+ybj) 3
anywhere in L,=0©0+ xali) AO+ yb_j)
the plane

Three tracks =(O@+xai)A(O+ybj) 4

anywhere in =(O+xa 1) A (© +ybj)
the plane =(O+xa l) AO+ be)
m | m+1

The number of possibilities for the position of P and P,
is related to the number of precision points and the fact
that there are two solutions in each case. If the number
of the precision points is greater than four then, to the
first four selected precision points add the other precision
points and the number of possibilities of the position of
P and P_will be increase.

Wlth 1eference to Table 4 for 4 precision points there
will be 48 (2 x 24) changes, for precision points there
will be 240 (2x120) changes and for 6 precision points
there will be 720 (2x360) changes.

3.1. 2. STAGE 2 FOR THE FIRST MECHANISM:
LOCATION OF PIVOTS AND TRACKS

The second stage is the synthesis of the tracks and all

other pivots. The number of tracks determines the

number of pivots of the second stage. If m represents

the number of tracks then, m+1 represents the number

of pivots of the second stage of synthesis.

Table 5. 6 and 7 show the number of pivots and the ori-

entation of the tracks required by stage 2 of the synthe-

sis as a function of the number of precision points.

Table 4: Number of Possibilities for the Position of P"

and Pz. Related to the Permutation of the
Precision Points

Table 5: Number of Precision Points Related to the
Number of Pivots and the Tracks Oriented
Anywhere in the Plane

Definitionof the ~ N°of  Nof
_ pivots P ~_unknown 'vprecxsmn
' parameters pomts
E-Oixity) X 9 6
Pz=®+x1i+y:i X..y
xa.yb
P=0+xi+y]j X .y 10
P G)+x1+y_] X,Y '
@+x1+yJ Xy
xa ,yb,
xa, . yb,
1 =O+xity]j X .Y 14
P O+x1+yJ X,y
P - ®+x1+yJ X .9
P O+xityj Xy
xa . yb,
xa, . yb,
xa, , yb,
2m+1)*2 (2m+1)*2
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Table 6 shows the mechanism parameters if the track
L, is parallel to one of the axes. This table could be
considered as a particular case of Table 5.

If there are more than two tracks their orientation in the
plane could vary. For example, the position of two tracks
in the plane could be: both anywhere in the plan - Table
5, both parallel to one of the axes - Table 6, or one track
parallel to an axis and one track anywhere in the plane -
Table 7.

With reference to the Figure 1 the second stage is the
synthesis the pivots P, P, and the position of the tracks
L, . Assume that the mobile link from the rotating points
Q"ij will pass through the pivot P, then will intersect

the first track L | in a sliding point P .

Proceeding around the loop shows that the final equation
comes from the requirement that the points P, . P_
and Q,  be collinear, that is

P.APL.1AQ,,=0 )
where h=1, 2, 3,4, ..., is the number of precision points
and m represents the number of tracks.

Table 8 shows the final equations for the general case of

m tracks starting with one and two tracks.

Table 6: Number of Precision Points Related to the
Number of Pivots and Tracks Oriented Parallel
to One the Axes in the Plane

N°of tracks  Definition of the N°of  Definitionofthe ~ N°of  Nof
and their tracks L pivots _pivots P unknown  precision
positions of the , ~ parameters  pointsh
second . » '
stage
One track L =(©+ybj)Ai 2 P=0+xi+y]j % .Y S
parallel to one P=0+ xzi + yzj , 2y
of the axes yb
Two tracks L =0©+ybj)Ai 3 P=0+xi+y]j Xy 8
parallel to one L,= O+ ybj) Ai P= Otxity] XV
of the axes P=0+xi+y] X .y
yb,
yb,
Three tracks L"=(®+yb]j)/\i 4 P1=®+xli+ylj X v 11
parallel to one L, =(©+ybj)Ai P=0+xi+y]j x .y '
of the axes L.=(0©+ybj) i P=0+xi+y]j XY
P=0+xi+yj X,.y,
yb,
yb,
yb,
m m+1 3m+2 3m+2
Table 7: Number of Precision Points Related to the
Number of Pivots and Tracks Oriented One
Parallel to One of the Axes and One Anywhere
in the Plane
N° of tracks Definition of the N°of  Definition of the Nege N° of .
and » tracks L, andL | pivots pivots P unknown  precision
their of the parameters points h
positions second " .
stage
Two tracks L, =©+ybjAi 3 P=0+xi+yj X .Y, 9
in the plane: L12 =(O+ xazi) A (O + yb_,i) P2= O+ xzi + y)j X.y
one parallel P=0+xi+yj X..Y,
to one of the : yb]
axes and one Xa, , yb2

anywhere
in the plane
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N" of ” Fmai Equatmn .
ﬁtt.acl‘S» .
one track F[l]

two tracks E[2] =

m tracks F[m] = le A Pm+l A Q"‘

Table 8: Final Equations for m Tracks

Note: If the second stage of synthesis has more than four un-
known more than four precision points are required. The sup-
plementary precision points firstly must satisfy the condition
(1) to find their corresponding rotating points and secondly
the condition (2) to find the mechanism parameters required
by the second stage.

3. 2. THE DETERMINATION OF THE UNKNOWN
PARAMETERS IN GRASSMAN CHAIN
MECHANISM - GENERAL CASE

With determination of the unknown parameters method
of Grassman Chain Mechanisms is an extension of the
synthesis method for Grassmann Mechanisms.
Grassmann Chain Mechanisms may be constructed by
two, three or any number of mechanisms joined in a
chain. Each mechanism has an independent number of
tracks and pivots (e. g. the first mechanism could have
one track and tree pivots, the second mechanism could
have two tracks and four pivots and the third mechanism
could have again one track and three pivots).

The construction scheme for Grassmann Chain Mecha-

nisms is shown in the Figure 1.

This part is called determination of unknown parameters.

because the method used involves precision lines in ad-

dition to precision points. Precision lines are lines which
the trajectory must touch or through which it must pass.

In the examples, they will be represented as variable

points with one of the coordinates fixed.

The determination of the unknown parameters of the

second mechanism has also two stages: the first stage of

this method calculates the location of the last pivot and
second stage calculates the location of the pivots and
tracks.

3.2.1. STAGE 1 FOR THE SECOND LINK
MECHANISM: LOCATION OF THE LAST
PIvoT

With reference to the Figure 1 the first stage is the
determination of the last pivot R (R ).
The Grassmannian expression for the first stage is:
O L (3)
where h=1.2 is the number of the precision point of the
first link mechanism and g =1. 2. 3. 4, ..., is the number
of the precision point of the second link mechanism.
Solve these equations for the coordinates of the pivot
R(R ).
This part of synthesis requires only two precision points
as shown in Table 9.
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((QO /\P ) A L )/\P2 /\ Q."Iv=>P" /\P2 /\‘ th '
((((QO o Pl) A Ll]) o PZ) A LIZ)A P] o th = PIZ o P3 . th

Deﬁniti(vy.h'(‘»f the piviit Rmz Nu of unknowns of the:'
' . first stage
Rn+2= @ . xn+2i : yn+2j 2

n+2? yn+2

Table 9: Number of Unknowns of the First Stage

For the same reason as discussed in section 3.1.1. the
number of unknowns to be solved in the first stage of
the second link mechanism synthesis does not depend
on the number of tracks and the other pivots of the
mechanism.

To determine unknown parameters of the second mecha-
nism it is necessary to have two precision points and
four precision lines.

The method of the first stage:

The stage has only two unknowns. Assume the selected
order of the two precision points ( Q,, and Q,,) and se-
lect the corresponding precision points from the first
mechanism (Q,, and Q,,). Apply equation (3) and solve
for the co-ordinates of the pivot R (R ).

Suppose there are given four precision lines:
d LP2 =(O+ bj)/\xllpzi
3 =0+ C‘])/\Xllp:l and L =(©+djrx, i

p4

n+2

= (O aj)/\xl

where: Xuor Xipr Xips and x, , are the x co-ordinates
where the trajectory must pass or touch the precision

lines.

Assume that the trajectory will pass or touch the preci-
sion lines in at least one point. Write this point each pre-
cision line with x co-ordinate unknown

Ql‘pl it i XLpli % aj. Ql,pz e b x.,pz i bj,
Q,,=©+x, ji+cjand Q _ =0+x +dj

Apply the condition that the mobile link to the corre-
sponding points from the previous trajectory ( Q.. Q, .
Q,, and Q, ) passes through the last pivot R (R ). and
solve for their unknown co-ordinates.

QIJ/\RsAQl,m:O
Q /\R /\Q ,=0 (4)
Q /\R /\an

Ql(\/\R AQIp-l

Solve these equations for the x co-ordinates of the pre-
cision lines and find the precision points on the respec-
tive precision lines, Q,,. Q,.. Q,, and Q, .

19
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The selection order of the precision points or the preci-
sion lines of the second link mechanism with the re-
spective precision points of the first link mechanism
determines the trajectory shape and the Chain Mecha-
nism assembly. For each permutation of the precision
points or the precision lines the position of the pivot
RJ(RM) will be changed as is shown in the Table 10.

3.2.2. STAGE 2 FOR THE SECOND LINK
MECHANISM: LOCATION OF PIVOTS AND
TRACKS

The second stage is the determination of the tracks and

all other pivots. The number of tracks determines the

number of pivots.

The method of the second stage:

With reference to Figure 1 the second stage is the

determination of the pivots R, ... \R__ and the position

of the tracksL_, ... L, .

Assume that all moblle links from the precision points

of the first mechanism Q,, will pass through the pivot

R, and then insersect the track L, in a sliding point
i

The final equation comes from the requirement that the

points P, | R and ng be collinear that is

P2n A l{n+l A QZg i

wheretg =l 5251354 =5 is the number of the precision

point of the second link mechanismandn=1.2,3.4,...

is the number of the track of the second link mechanism.

Table 11. shows the final equation for the general case

of n tracks starting with one and two tracks.

Table 11: Final Equation for n Tracks

4. EXAMPLE USING FOUR PRECISION POINTS FOR
EACH MECHANISM OF THE CHAIN MECHANISM

Referring to the Table 5 to synthesis the first mechanism
it is necessary to have six precision points. As the result
of that for the second mechanism it is necessary to have
also two precision points and four precision lines. As
the problem gave only four precision points for the first
mechanisms and two precision points and two precision
lines for the second mechanism it will be assume any
two of the unknowns for each mechanism.

|
(S

4.1. THE FIRST LINK MECHANISM

The first mechanism has the following precision points:
Q,=0+7i-j,Q,=0+i,Q,,=0+2i-2jand
Q” =0 + 5i -3j.

Assume the position of the track L | = (© + 3j) A i.
Referring to the synthesis method presented in the
paragraph 3.1. the first mechanism has the following

solutions:
P = O + 1.25i —1.25j, P3 = 0O + 3.25i -2.25j,
Pl =0 +2.52301i —0.427847j and

P, =0 +4.96599i -0.517007j.
The first mechanism will plot the trajectory as is show
in the figure below.

Q. 2 3 4 5 6 J)

f Q
Figure 2: The Trajectory of the First Link Mechanism

4. 2. THE SECOND LINK MECHANISM
The second mechanism has the following precision
points: Q, =0O +9i—4j, Q,, = © + 7j and the following
precision lineS'

l-®+x - 6j andL —@+Xpl—5j
Assume the posmon of the track L, =(©+10j) Ai.

Stage 1: Select the precision points Q,, and Q. For
each of the precision points the mobile link must join
them and their corresponding precision points on the
previous trajectory (Q, and Q,,) and pass through the

Table 10: Number of Changes in the Position of R (R 2)

Related to the Permutation of the Precmon Pomts

N° of precnsmn Permutation of the precnsnon Changes of the posmon of R

points points out of two . .
6 T 30
Table 11: Final Equation for n Tracks

Number of Final Equation » . .
tracks
one track []—((Q AR /\Lm/\R ~Q, P /\R/\Q
two tracks E[2] = ((((Q"/\ Rl) ALJ)AR) A Lzz)/\ R AQ, =P, AR A Q2i
n - tracks Enl =P AR AQ
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last pivot R,. Apply the equation (3) and the problem
gives the solution for R..

QnARsAQu:O

leARJAQn:O

The problem has one solution for R;: R, =© — i—14j.
Select any point on each precision line and write this
point with x co-ordinate unknown. Then apply the
Grassmannian equation (4) and solve for their unknown
co-ordinates.

In this example the Grassmannian equations are:

Qn 2 R3 2 Ql,pl =9

QH 2 RJ 2 QLpZ ok

The problem gives the solutions for the points QLpl and
QLPZ. These points may now be consider precision points
and named: Q,, =0 +i— 6j,and Q,,=O + 3.90909i - 5j.

Stage 2: Calculates the co-ordinates of the pivots R,
and R, by applying the equation F[1] from the Table 11.
((QII A Rl) X LZl) £ RZ 2 QZI = PZI ” R.’./\ QZ!
((QIZA Rl) x LZI)A RZ A QZZ = PZZ 4 RZA QZZ
((Ql3/\ Rli X LZI)A R2 a Q23 = PZJ A RZA QZ}
((QHA Rn A LZI)A Rz & Q24= Pz-l 4 Rz/\ QzJ

The solution for the pivots R  and R, is:
R, = © —4.47433i - 3.83747j and
R, =0 +10.7921i - 4.55935j.

The second mechanism will plot the trajectory as is
shown in the figure below.

Qu

Figure 3: Trajectory of the Second Link Mechanism

5. CONCLUSIONS

The paper has shown a method of synthesis of a class of
mechanisms constructed by moving links, rotating on
fixed points and intersecting fixed lines using a
Grassmannian mathematical formulation and the
symbolic computational programme Mathenatica.
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