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ABSTRACT

The paper deals with the problem of determining
which central points X of the triangle ABC have
the property that segments AX, BX, and CX are
the sides of a triangle. We shall prove that only
thirteen out of hundred and one central points
from Kimberling’s list have this property. Moreover,
the convex hull of ten among these points always
consists only of the points having the above
mentioned properties.

Trokuti iz sredisnjih tocaka

SAZETAK

U clanku se promatra problem pronalazenja
centralnih tocaka X trokuta ABC sa svojstvom da
su duzine AX, BX i CX stranice nekog trokuta.
Pokazuje se da samo trinaest od sto i jedne
centralne tocke Kimberling-ove liste imaju to
svojstvo. Nadalje, konveksna ljuska deset od tih
tocaka se uvijek sastoji samo od tocaka s istim
svojstvom.

1. INTRODUCTION
ne of the basic problems in triangle geometry
O is to decide when three given segments are sides
of a triangle. The opening chapter of the book
Recent Advances in Geometric Inequalities by Mitri-
novic, Pecaric¢, and Volenec [5] gives an extensive survey
of results on this question.
The present article is looking for ways of associating to

atriangle ABC a point P of the plane such that segments
AP, BP, and CP are always sides of a triangle.

C

A B
Bioi]:
When segments AP, BP, and CP are sides of a triangle?

The circumcenter O and the centroid G are easy examples
of such points P. Indeed, segments AO, BO, and CO
having equal length are sides of an equilateral triangle
while the segments AG. BG, and CG being two thirds of

medians are sides of a triangle (see [5. p. 20]).

Since O and G are just two of centers or central points
of a triangle ABC listed in Table 1 of [3], we can state a
problem that we completely answer in this paper.

Problem.

For what natural numbers i less than 102 will the central
point X; of the triangle ABC from the Kimberling’s list
have the property that AX;, BX,, and CX; are sides of a
triangle?

Our main result is the following theorem.

Theorem.

From 101 central points X; of the triangle ABC from
Kimberling's Table 1, only values 2, 3, 8, 9, 10, 20, 21,
22,40, 63, 71, 72, and 75 of the index i have the property
that AX;, BX;, and CX; are sides of a triangle regardless
of the shape of ABC. For the central point X o; the only
exception are isosceles triangles.

Let 7 denote a function that maps each triple (a, b ,c) of
real numbers to a number

2a2b? + 2a%c? + 2b2c?— a*— b4 — c*.

Since

T(a.b.c)=(a+b+c)(b+c —a)(a-b+c)(a+b-c),
it is clear that positive real numbers a, b, and c are sides
of a triangle if and only if 7 (@, b, ¢ ) > 0. Let T; be a
short notation for T ( AX;, BX;, CX;), where X; is the i-th
central point of ABC and i = 1.....101.

2. PLACEMENT OF ABC

We shall position the triangle ABC in the following
fashion with respect to the rectangular coordinate system
in order to simplify our calculations. The vertex A is the
origin with coordinates (0.,0), the vertex B is on the
x-axis and has coordinates ( r /1, 0), and the vertex C has
coordinates (g ru/ k,2 f g r/ k), where

h=f+g, k=fg-1, u=f2-1, v=g2-1,
o=2+1, wy=g2+1, ®=F+1and¥ =g4+ 1.
The three parameters r, f, and g are the inradius and the
cotangents of half of angles at vertices A and B. Without
loss of generality, we can assume that both fand g are
larger than 1 (i. e.. that angles A and B are acute).

Nice features of this placement are that all central points
from Table 1 in [3] have rational functions in f. g, and r
as coordinates and that we can easily switch from f. g,
and r to side lengths a, b, and ¢ and back with
substitutions

_rf(gi+l)

= b
k
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Moreover, since we use the Cartesian coordinate system,
computation of distances of points and all other formulas
and techniques of analytic geometry are available and
well-known to widest audience. A price to pay for these
conveniences is that symmetry has been lost and some
expressions are complicated and awkward to print.

y

C (grulk, 2fgrik)

Sy X

B (0, rh)

‘TA/ (0.0)

Fig. 2: Parameters are the intriadius and the cotangens
of half of angles at vertices A and B.

The third advantage of the above position of the base
triangle is that we can easily find coordinates of a point
with given trilinears. More precisely. if a point P with
coordinates x and y has projections P,. Pj. and P, onto
the sidelines BC, CA, and AB and A = PP,/PP) and
I="PRp/RE then

¥ gh(ou+u)r s 2fghr
C fvAu+gou+hk’ T fyiu+gou+hk
This formulas will greatly simplify our exposition
because there will be no need to give explicitly coor-
dinates of points but only its first trilinear coordinate.
For example, we write Xg[a] to indicate that the
symmedian point X¢ has trilinears equal a:b:c. Then we
use the above formulas with A = a/b and L = b/c to get
the coordinates

(fuv+2g®)ghr fglzzkr
2(f2‘{’+fguv+g2dD)’fz‘P+fguv+g2d)

of X in our coordinate system.

3. CURVE DETERMINED BY THE FUNCTION T
Let P be a point in the plane of the triangle ABC with
coordinates p and g. We can easily find that
tapc=T(AP, BP, CP)is
3k (p? + q2)? = 4k3 r(p? + ¢?) (kip + kagq) -

=2k (ksp2—kap g —ksq?) +

+ f2r3 ke k7 (4kvp — 8gkq — r ke k7).
where
]\’] =fv+2g u, k2=2fg.
ki=f2Y-2820-2fguv —2f2g2, ky=8f2gv,
ks=f2VY +2f g3v+2g2d - 102g2-2f g u.
ke=fv—-2¢g and k;=gh+k
It follows that z45c = 0 is the equation of an algebraic
curve of order four which represents the boundary of
two regions in the plane of ABC. The first region includes
the vertices A, B, and C and has the property that a point
P belongs to it if and only if segments AP, BP, and CP
are not sides of a triangle. The second region which we
denote by Tpc is the complement of the first and has
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the property that a point P belongs to it if and only if
segments AP, BP, and CP are sides of a triangle. Hence,
the second region gives the solution to the first question
in the introduction. The boundary of T4p¢ (i. €., the curve
Tapc =0) is drawn in Figure 3.

Fig. 3: Graph of the curve t45¢ = 0 that is the boundary
of the region consisting of all points P such that
segments AP, BP and CP are sides of a triangle.

Our problem is thus equivalent with the problem of
determining which central points from the Kimberling’s
Table 1 are in the region T 4p¢ for every triangle ABC.

4. ELIMINATION OF 87 CENTRAL POINTS

An easy task is to eliminate 87 central points X; by
exhibiting a triangle for which 7; <0. In fact, only three
triangles with » = 1 and (f, g) equal to

101 102
fz (2720)9 f3 (100,100)
will suffice. Indeed, 7; < 0 for the triangle f;and i € I,
whereji="1142-8
Iy e KON g
I =lI'8T 26 35HASES (RGOS 6 N7 7784 87 !
I3 = {29, 48, 49, 64, 66, 67, 70, 74, 84, 92, 93, 98},
TA=H2 388 ORI 0¥ (1NN N0 2 RSl E7 27 S 8 (l1§ ¥ and
1| =1()—[2—I3—14.
The above statement is simple to state but the reader
should be aware that there is a lot of work behind it
because we must know coordinates of each central point
from Kimberling’s list. Under the assumption that one
believes that the above claim is true, we can proceed to
show that for indices in the set I, the triangle test 7; is
positive regardless of the shape of ABC .
We performed the above elimination on an IBM PC with
Pentium processor with 90 Mhz and 32 MB memory
extension using the Maple V (release 4) program for all
calculations and figures. For the recent discussion on
the role of computers in triangle geometry the reader
should see [1], [2]. and [6].

L= (2’5)’

5. X, - CENTROID
X>[1/a] is the intersection of medians which join vertices
with midpoints of opposite sides. Hence,

T) :E r-‘g?_flhz

£ K2
is always positive.
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6. X, - CIRCUMCENTER
X3[cosA] is the intersection of perpendicular bisectors
of sides. It follows that

3 At

g k*
is always positive.

7. Xy - NAGEL POINT
Xg[(b + ¢ — a)la] is the intersection of lines AA,,. BB,y.
and CC,., where A,,. B., and C,. are projections of
excenters A,, B,. and C, onto sidelines BC, CA . and AB,
respectively. One can easily find

16 -k =+ D= 3%")
= kz
Since /iZ 2 4(k + 1) and k2 — k + 1 > 0, we get that the
third factor of Ty is larger than &3 + 4. Hence. Tg > 0.

Ty

8. X9 - MITTENPUNKT

X9[b + ¢ — a] is the point of concurrence of the
symmedians of the excentral triangle A.B,C,. Recall that
symmedians are obtained by reflecting the medians about
the corresponding interior angle bisectors.

In the standard way we discover that

1‘4S9

Ty = . where
G T e N
Sy = ZP,- K (1) e rp Z‘/i./ k*™/, and
0 0

0 0 16 Upadi]
0 -8 -32 =32 0

3 24 -8 -96 -16
[a;]=|12 20 32 8 -—64]
18 4 26 168 -8
12 12 -12 100 16
i ey S SqOw <us i

It is not clear how one can argue that the polynomial Sy
is always positive. But, the following miraculous method
will accomplish this goal.

Write Sy in terms of f and g. We get a polynomial Uy
with 97 terms. Since both f and g are larger than 1, we
shall replace them with 1 + f and 1 + g. where new
variables are positive. This substitution will give us a
new polynomial Vy with 279 terms only 9 of which have
negative coefficients. If all coefficients were positive,
we would be done. In order to get rid of these 9
troublesome terms. we must perform two more
substitutions that reflect cases f> g and g > f. Hence. if
we replace fwith g + u’ for u’ 20, from Vy we shall get
a polynomial Py in g and «’ with 353 terms and all
coefficients positive. Similarly, if we substitute g with
f+v forv’ =0, from Vy we shall get a polynomial Qg in
fand v’ also with 353 terms and all coefficients positive.
This concludes our proof that 7y > 0.

9.X,, - SPIEKER CENTER
Xiol(b + c)/a] is the incenter of the medial triangle
A,B,,C,, whose vertices are midpoints of sides. It
follows that

s

10
e where
16k

ST0= (k+ 3))) (3k+ 1) (k— ])2 h3—

—2k2(4k3—Tk2—38k—31) h2— k4 (4k + 7) (4k + 3).
In order to prove that 79> 0 we apply the method of
proof for Xy. Polynomials U,y. V)¢, and P, are of
medium size having 29, 71, and 77 terms.

0=

10. X,, - SCHIFFLER POINT

X01[(b + ¢ — a)/(b + ¢)] is the point of concurrence of

Euler lines of triangles BCX,. CAX,, and ABX,, where

X is the incenter of ABC . Recall that the line joining

the centroid and the circumcenter of a scalene triangle

ABC is called the Euler line of ABC.

It follows that

o1 160tk +1)2 (F2h% = k22 (g2hA=kE)a (W2 tk? S dk)
flor k3 (3h* + 3k + 8k)*

so 7> is clearly always positive.

10l X63 - ISOGONAL CONJUGATE OF THE CRUCIAL
POINT

Xe3[b? + ¢2 — a?] is the point of intersection of the line

joining X; (incenter) with X5, (Schiffler point) and the

line joining X3 (Nagel point) with X, (De Longchamps

point - reflection of the orthocenter at the circumcenter).

In the usual way we find that

32 40
e T
where Sg3 is a polynomial of degree 10 in & with
coefficients polynomials in k of degree at most 11. The

polynomial Ugz has 72 terms while Vg3 has 162 terms
and all coefficients positive. Hence, T3 > 0.

T63

12. CENTRAL POINT X,

X7ila(b + c) (b2 + ¢2 - a?)] is the point of intersection of
the line joining X4 (orthocenter) with Xy (Mittenpunkt)
and the line joining X4 (Grebe-Lemoine or symmedian
point) with X3, (2nd Power point). As above, we find
that

4
-~ Y
16k* (h* + k* + 412K + Th?k + 3k +2k%)*
where S7; 1s a polynomial of degree 20 in /1 with
coefficients polynomials in k of degree at most 22. The
polynomial U7, has 265 terms while V-, has 615 terms
and only 8 negative coefficients. The polynomials P,

and Q7 both have 821 terms and all coefficients positive.
Hence, 77, > 0.

T7l

13. CENTRAL POINT X,

X7[(b +¢) (b2 + ¢2 —a?)] is the point of intersection of
the line joining X; (incenter) with X¢ (Grebe-Lemoine
point) and the line joining X, (orthocenter) with Xy

25
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(Nagel point). By standard procedure we find that
r So
% G e
S72 = (k2 + 28k + 4) h6 + k (k3 — 4k2 — 65k — 80) h4+
+ 2k (2k*— 6k3 — 55k2 — 104k — 64) h? +
+ k* (5k + 8) (4k2+ 11k + 8).

The polynomial U7, has 38 terms while V7, has 78 terms
and all coefficients positive. Hence, 77, > 0.

where

T72

14. X75 - ISOGONAL CONJUGATE OF THE 2ND POWER
POINT
X75[1/a?] is the point of intersection of the line joining
X7 (Gergonne point) with Xg (Nagel point) and the line
joining X (Spieker center) with X7¢ (3rd Brocard point
- isogonal conjugate of the 3rd Power point). By usual
method we find that
r"fzgzh2 Ss5

s o (h2k2 +3h%k+ k> +h2 +k2)*

where S75 is a polynomial of degree 10 in /i with
coefficients polynomials in k of degree at most 13. The
polynomial Uss has 109 terms while V75 has 268 terms
and only 15 negative coefficients. The polynomials P75

and 075 both have 319 terms and all coefficients positive.
Hence, 775> 0.

15. CENTRAL POINT X,

Xjo1la /(b - c)] is the point on the circumcircle in which
intersect the line joining X7, with X74 (isogonal conjugate
of the intersection of Euler line with line at infinity) and
the line joining X,o (Spieker center) with Xyg (Tarry
point). In the usual way we find that

)'4m| Ny 1y (f—g)2 (fk —h)? (gk —/1)2

Tror = 16k* (h* +k* —h2k% — 4 h%k +2k> - 3h% + k2)?
where

M= 3] Batd L2l e

n, =3f2g2 +fg3+f2+2g2 4 figy

my =(1+3k)h* +(1+ k) k2.

From this it is obvious that 77¢; > 0 in all cases except
when ABC is isosceles.

16. X_/‘0 - CIRCUMCENTER OF THE EXTRIANGLE
Xa0l(D + ¢) (b —c)? +a (b + ¢) — a?) —a?] is the point of
concurrence of the perpendiculars from the excenters to
the respective sides. Then

e

40
Sl where
16k

Sa0 = 38 + (4k2 — 24k -8) ho —

— (14k* + 24k3-56k2 — 32k + 16) h*+

+4k2 (k +2) (k3 +12k2 42k — 4) h2 +

+ k* (k2 — 4k—4) (3k2 + 4k + 4).
The polynomial Uy has 41 terms while Vo has 71 terms
and only 8 negative coefficients. Consider Vyy as a
polynomial of degree 8 in g. It is amazing that
coefficients of g5, g, and g3 are polynomials in f with

40 =

26

all coefficients positive. Even greater miracle is that
quadratic trinomials associated to the first three terms
(corresponding to powers 8, 7, and 6 with g6 factored
out) and the last three terms (quadratic part of V) both
have positive leading coefficients and negative discri-
minants. We conclude that 749> 0.

17. X,, - DE LONGCHAMPS POINT

When we apply the above method of proof to De
Longchamps point X» or to Exeter point X», it does not
work so that we must do something else. The idea is to
position the triangle ABC so that the circumcenter O is
the origin, the vertex C is [r, 0] where r denotes the
circumradius, and positions of the vertices A and B are
determined by parameters f and g which are tangents of
half of angles that OA and OB make with the x-axis
OC. Without loss of generality we can assume that /> 0
and g > 0. With this placement the triangle test 75 is an
expression that will clearly always be positive.

The coordinates of A and B are

e £ i 2 .
r(l f7)’21f7 g r(l g))’21g7 :
li-Eofis 1+ f° Ji- g Il

It follows that X, has coordinates
HE 48 ~0) . 2rhilkiD)
(fh=k)(gh—k) (fh=k)(gh—k) |
while
_64rt (P +3)(k+3)" + f2g%)
(fh-k)*(gh—k)*

20

18. X,, - EXETER POINT
Xo2o[b* + ¢* — a*] is the point of concurrence of lines
AA;, B,B;, and C,C,, where A, is the intersection different
from A of the median line AA,, with the circumcircle
and A, is the intersection of tangents to the circumcircle
at B and C and with B,, C,, B, and C; defined analo-
gously.

In order to prove that 75, > 0 we use the same placement
of the base triangle ABC as in the proof for X».

Since the equation of the circumcircle is x2 + y2 = 12,
one can find coordinates of A,, B,, and C, by solving
quadratic equations. The coordinates of A,, B, and C,
are

-rk rh
(r,rg),  (ryrf), (k+2’k+2

It follows that X5, has coordinates

r(k*+4k—h*) =2rh(k+2) :
T DR . while
Wik tc gl enb o a8

)

i 64r*S,,
b Lk e B
Sn=(k+3)2m+2(k+1) (K3 +k2-16k-34) h* +
+ (k* - 4i3+112k + 224) (k +1)2 h2 +
+ 16 (k3 - 12k - 20) (k + 1)3.
If we consider Sy, as a polynomial in fand g we get a

, where
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polynomial W, with 27 terms. When we replace f with
g + u in Wy, we obtain a polynomial of order 8 in u
whose coefficients are polynomials in g with all
coefficients positive. Hence, W»; is positive when f 2 g.
In a similar way we see that it is also positive when

g >f Hence, T5> 0.

19. NEW TRIANGULAR TRIPLES

We can now compute distances AX;, BX;. and CX; for
last twelve central points from our theorem to get the
following corollary.

Most interesting points, lines. circles, curves....
associated with the triangle ABC are expressions that
involve symmetric functions of lengths a, b. and ¢ of
sides BC.CA, AB that we denote as follows.

s=a+b+ec. t= bc+ ca+ ab, m=ab c,
suy=—a+b+c, sy=a-b+c, s=a+b-c,
=D, mi=Cay me=ab,
d,=b"—c, d,=c—a. d=a=-D|
=Dt c: Zp =€ +a, Ze=a+th

For each k> 2, sy Sip. and sg. are derived from s, , sp
and s, with the substitution a = ak, b=bk, c =ck Ina
similar fashion we can define analogous expressions
using letters m, d. t and z.

For an expression f. let [f] denote a triple (f, ¢(f). w(f)).
where ¢(f) and y(f) are cyclic permutations of f. For
example. if f=sinA and g =b + ¢ . then

[f] = (sinA. sinB. sinC) and [g] = (b + c.c +a.a + D).
Let us call a triple [a] of real numbers triangular provided
a. b, and c are sides of a triangle.

COROLLARY
If the triple [a] is triangular, then the triples

\[a(azu +2d? —az)}. [ﬁZaz 2o —ds —cf'},

2a ( g —My )+a(2 g =My )= a :I

E e T 2
a —3a d2a+2d2u 3241:1’

[ F 2 Oy
\/a m,z, +a (2 24~ IIIU)—Cl a0 :|

& o T 6 8
\/dzu 2,-2a"dy, 25, +2a 25, —a ]

\/nl,, (a* -24%d2 +d2, ):|~

e Ty s
L\/nz“ (@ dytanzs—ad—d;: dz")]'

~q

S0 o 8ivs 7=
[m“(a Eae (25 i) = av = a

it b |}

4.2
=

M

(:211 g 3’”::)+

|
33 2,2 3 D98 5!
a dudlu +a dlumu 0 dudlu _dudlu)- ’

9 9 o
[(Bad;m % +azd;(3mu % AR, 2

ata a<a
I

4 212

+a (m“+zz‘,)—a6—d4* 2

a~a ’

[a\/zg (2, =, ) =an } and (with ABC not

isosceles) [m“|d“|] are also triangular.

20. NAGEL POINT - SECOND PROOF

In this and the following sections we shall give alter-
native proofs for all fourteen central points using more
traditional methods of proof. Of course, again we shall
suppress most details because they are awkward to print.
We first find that AXg2=a (a s , + 2d,?) / s. It follows
that

PSS T I
= (a., C)(f ) is positive since s3 = 27m.

Ty
%

21. MITTENPUNKT - SECOND PROOF

Since AXo? = (a2 (524 + 224) — d*) | (52— 21)2, we obtain
Ty =Sy / g*. where Sy is a polynomial

(4R%2 —r2) (12R%2+ 16r R + 12) O —

-2¢3r (4R2—8rR +r?) 02— %2, and g = r + 4R.
Here. ois the semi-perimeter, r is the inradius, and R is
the circumradius. In order to derive this representation
for Sy we first write numerator and denominator of
T ([AXy]) in terms of elementary symmetric polynomials
s, t. and m and then use the fact [5, p.7] that lengths of
sides a. b. and c are roots of the polynomial
x3-20x2+ (02 + g r)x—4Ro.

The conclusion that Sy > 0 is argued as follows. Let

I, =2R* +10R-r> £2(R-2r)VR® - 2Rr.

It is well-known (see [5, p. 2]) that [_ < 02 </,. Hence, it
suffices to show that the polynomial Sy is positive on
the segment [/, [,]. In other words, it suffices to show
that for every number p in the interior of the segment
(L, 1,], replacing o* and 02 with p2 and p in Sy we obtain
positive value.

Any point p from this segment different from /_ and 7,
can be represented as (I_+ k1) / (k+ 1) for some positive
real number k. When we compute Sy at p or at [_ and /,
and substitute R = 2r + € where € >0 (recall that

R > 2r), we obtain A(M — N), where expressions A, M,
and N are all positive. But, on can check that M2 — N2 is
positive so that our claim follows.

22. SPIEKER CENTER AND DE LONGCHAMPS POINT
— SECOND PROOF

Since AX 02 = (a Sy, + § (224 — M)/ (4s), we have

Tio= Sio/ 16. where S;( denotes the polynomial

30% - 2r (4qg —35r) 62— r¥(4q — r)(4q + 3r).

We continue as in the above proof to show that S;o >0

for every triangle.

The identical approach applies to the central points X»

(De Longchamps point). X>, (Exeter point), X49. X3, X71.

X73. and X75.

23. SCHIFFLER POINT — SECOND PROOF

This time

AXp 2=

M 22 (a2 (S —my) + amy 2, + Sp Se 224) 1 (s (s3—4s t+ 5m)3?),

29
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so that the sign of 75; depends only on the sign of
8r o (r +R) which is clearly positive.

24. CENTRAL POINT X, — SECOND PROOF

Since AX 012 = m2 d 2 (s44+m s—a3 7,-b3 7,—c3 z,),

we immediately get

df (@t )d,f (as, +my) df (as.+m,)
(5"~ 55%t+ 412 +6m s)2

is always positive unless ABC is isosceles.

Tim=

25. CONVEX HULL OF THE POLYNOMIAL GROUP
The results in the previous sections might be quite
inadequate to some readers because it is clear from the
Section 3 that the region 7 4¢ in the plane of the triangle
ABC consisting of all points P such that segments AP,
BP, and C P are sides of a triangle is rather large while
we have only found thirteen points that always belong
to this region. In this section we shall improve our results
by showing that the same technique applies to prove that
the convex hull of the central points X, X3, Xg. Xo. X,
X51. Xe63. X71. X72. and X75 always belongs to the region
Typc. Notice that these are precisely the points for which
our argument involving polynomials with all coefficients
positive worked.

Theorem

For any triangle ABC the convex hull of central points
Xo, X;, X Xo, X20, X5y, Xe63, X71, X7, and X75 consists
only of points P with the property that the segments AP,
BP, and CP are sides of a triangle.

Proof.

We shall only give outlines for the proof that the segment
GO joining the centroid G with the circumcenter O and
the triangle GON with vertices G, O, and the Nagel point
N both lie in the region Tsp¢. In a similar fashion one
can show that any segment and any triangle on any two
and on any three of the ten central points listed in the
statement of the theorem have the same property. Of
course, it 1s impossible to give all details of our proofs
because in some cases we get polynomials with hundreds
of terms so that without computers this approach is a
hard task. Since most readers might make a standard
mistake in thinking that everything about triangles
belongs to elementary mathematics (whatever this might
mean), it would be interesting to the author to see their
“elementary” proofs of our results.

A point P in the interior of the segment GO has
coordinates [p, ¢], where

p=rBhkx+2fv+4gu)/ (6k(x+1)),
q=r(8fg+3(h2—k2)x)/(12k(x + 1)) and x is a positive
real number.

When we substitute these values into the polynomial 745¢
we obtain i Sgo / (6912 (x + 1)*%), where

Sco= 2?:0 k; x' and each coefficient k; is a polynomial

infand g. The replacement of f with I + fand g with 1 +
g in k; for i=0.....4 leads to polynomials with all
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coefficients positive which completes our proof for this
very simple case. For most other segments with ends
among ten points from the statement we must also
perform substitutions f=g +u’and g=f +v’ (with u’,
v’ > 0) in order to get polynomials with all coefficients
positive.
Let us now consider the triangle GON. An arbitrary point
P in its interior has coordinates [p, ¢], where
p=r6(fy-2¢)xy+2(fv+2gu)x +3hky+2fv+

+4gu)/ (6k (x+ 1)y + 1)),
q=r4xy+8fgx+3(h2-k2)y+8fg)/

[ (12k (x + 1)(y + 1)),
and x and y are positive real numbers. When we substitute
these values into the polynomial t45c we obtain
* Scon / (6912 (x + 1)* (y + 1)*), where Sgon is a
polynomial of order 8 in x and y and whose coefficients
ki (i=0.....24) are polynomials in fand g. The replacement
of fwith 1 + fand g with 1 + g in k; for i=0....,24 leads to
polynomials with almost all coefficients positive.
However, after we perform substitutions f= g + u’ and
g=f+v’ (withu’. v’ =0) we obtain polynomials with
all coefficients positive which completes our proof. For
other triangles the same strategy always applies but with
far more complicated polynomials (with several
hundreds of terms and very large coefficients).
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