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How td Désign‘ Nice Tilings?
ABSTRACE . o

Motnvated by famous nice tllmgs we classnfy all F—tlllngs_
(7,T) in the planes of constant curvature with 5 ba-
rycentric triangle orbits under a dlscontmuous isometry
group I'. We describe the 13 infinite series of the re-
sulting tilings by so-called D-diagrams and additional
rotation parameters in our Table. Depending on the pa-i
‘rameters, the tllmgs are realizable in the sphere (SZ) in
the Euclidean (E?) or hyperbolic (H?) plane. The start-
ing examples are depicted in our figures. Summarizing
two theorems are formulated in Section 3. -

Key words: D-symbol, tiling in the plane

Kako projektirati lijepoz: ppploéavéﬁje?
SAZETAK '

‘Motivirani lijepim poplocavanjem klaSIﬁaramo ‘sva
I'-poplogavanja (7,I) u ravninama konstantne za-
krivljenosti s pet baricentrickih trokutastih orbita pod
nekontinuiranom grupom izometrija I ‘U tabeli pri-:
kazujemo. 13 beskonacnih serija dobivenih poploge-
nja pomotu tzv. D-dijagrama i dodatnih parametara
rotacije. Ovisno o parametrima poplocenja se .mogu
realizirati u sfernoj ($?, euklidskoj (E?) ili hiper-
boli¢koj (HZ) ravnini. Pogetni primjeri prikazani su na
'slikama. Dva zakljuéna teorema lzrecena suu odjeljku 4

Kljutne ruea D-simbol, poplocavanje ravnine

1 An Archimedian tiling and its generaliza-
tion by D-symbols

‘ ’ r e start with a tiling which seemingly was a fa-

vorite one of Professor Bilinski [1]. This tiling

(7,T) in Fig. 1 fils the Euclidean plane E? with

regular triangles and quadrates under a symmetry group I',

acting transitively on the vertices of 7. Such an Archi-

median tiling can be described by the symbol (4,3,4,3,3)

showing the cyclic order of the corresponding polygons
about each vertex.

Now we introduce a concise symbol for (7,T), called
D—symbol (to honour of B. N. Delone (Delaunay), M. S.
Delaney and A. W. M. Dress [7, 8, 11]), which reflects the
combinatorics and periodicity of 7 at the same time.

We prepare the formal barycentric subdivision C of 7 with
(labelled or coloured) sides

] e, — (1.1)
Each barycentric triangle has a O-side opposite to its ver-
tex (a O—dimensional constituent of 7), a 1-side opposite
to a (formal 1-dimensional) edge centre, a 2—side (polygon
side) opposite to a (formal 2—dimensional) tile centre. We
assume that this barycentric subdivision is invariant under
the action of I'. Thus, we obtain finitely many, now exactly
S, barycentric triangles (numbered by 1,...,5 in Fig. 1)
whose I'-images induce the whole tiling 7. We can in-
troduce adjacency operations

00 ...... 5 61 e 02
for the above I'-orbits of barycentric triangles

{1,2,3,4,5} =: D := {D1,D,,D3,D4,Ds} (1.2)
and draw a complete diagram

30—

O i ............ G) R 3

This expresses exactly the above operations as involutive
permutations of the set D:

O (])(273)(4:5)1 O (1’2)(3)(475)a 02 (1)(2a5)(3v4)' (14)

Considering the barycentric triangles Cy, C2, C3, Cs, Cs in
Fig. 1, they form a fundamental domain

F=CiUGUC3UC4UCs (1.5)

for the group I'. The c—operations describe the generators
of T" as follows:

60(1) = 1 means that the triangle C; and 6o(C)) lie in the
same I'—orbit D;. We write 0p(C}) = C™, the line reflec-
tion myg, as a generator of T, is written into the exponent.

* Supported by the Hungarian National Science Grant (OTKA),
Grant No. T020498/1996.
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Fig. 1: Ts512(3-1,4%;5-1) Fig. 2: Ts513(5-1;3-1,4%)

.
s
. D,

Fig.5: Ts11(3-1,2-2;3-2,2-2) Fig.6: Ts;1(3-1,2-2;3-1,2-2)

22



KoG-3/1998

Attila Bolcskei, Emil Molndr: How to Design Nice Tilings?

Now 61 (3) = 3 analogously means, that C3 and 61(C3) be-
long to the same I'—orbit D3, 01(C3) = Cg"‘, my is also a
generator of I'. Then 05(1) = 1 defines 62(C) = C{?, a
new generating reflection m; for I'.

Finally o) : (4,5) defines the generating rotation r by
61(Cs) = 61(Cs) = C} and its inverse r~! by 01(Cs) =
61(Ca) =C .

Notice almost the same situation in Figs. 3—4 as pictures of

the hyperbolic plane H? and the sphere S?, respectively, by
their conforme models.

We see, these tilings have the same D—diagram, denoted by
(%7, D), of 5 elements. Further, we say that the same adja-
cency structure

3 :={o,i€l={0,1,2} : 6?:=0;0;=1}, by (1.3) (1.6)

as a 'free’ Coxeter reflection group acts on 9P, and induces
first a group scheme

T:= (mg,my, ma,r : 1 =md = m} =m3) a.7mn

and a surface (topological 2—space) is defined by F, the
fundamental domain ¥ in (1.5) is endowed by the side
identification as (1.3) and (1.7) describe.

We have a symmeric matrix function with natural values

rij: D — Ny, defined by (1.3)

rij(D) :=min{r : (6;6;)"-D = D} (1.8)

which determines just the surface topology of (7, D) = F.

Now, ro; (D1,D2,D3) = 3, ro1(D4,Ds) = 1 appear in our
Table at I's ;o (3u, v*; Sw) as the coefficients of u and vt,
respectively. The coefficient of w is just

ri2 (D1, Dy, D3, D4, Ds) = 5. (1.9)

This indicates the vertex transitivity, since we have one
(01,02)—orbit. The coefficients

ro2 (Dl) =1 )
will not appear in our Table, r;; = 1 stands by convention
(iel).

Next we turn back to Fig. 1 by introducing the rotation pa-
rameters (orders, also a matrix function v;; on D):

102 (D2, D3, D4, Ds) = 2% (1.10)

vo1 (D1, D2, D3) =u=1,
Vo1 (D4, DS) = v+ = 4+,
le(Dl7D2)D3;D4;D5) =w=1.

(1.11)

Here v* indicates that we have a cyclic rotation group as a
stabilizer of the 2—centre at D4, Ds. Else we have dihedral
group with the corresponding rotation subgroup order.
Then as a last step we define the adjacency D-matrix by
mij = rij - Vij with mgy =2 foreach D € D,

. (1.12)
where mg; > 3 and my; > 3 are assumed for convention.

This fixes some rotation orders vz := 2 /roz, €. g.

vo2(D1) =% =2, vop(D2,D3,D4,Ds) =17, (1.13)

Moreover, and this could be the starting point, the matrix
function, by the barycentric simplicies C in the full subdi-
vision C:

mij . D— Ny«r,

m;j (D) :=min{m : (6;0;)"-C=C,Ce€ D}, (1.14)

will determine the combinatorial structure of the tiling
(7,T), by fixing the defining relations for the generators
of T, in addition to (1.7). By (1.11) we have

(mom)*=1, r=1, (mlrmzr_l)w =1,

, (1.15)
moreover, (mymz)“ = 1 by (1.13).

With (u,v;w) = (1,4;1) we obtain the Euclidean tiling
(7,T) in Fig. 1, indeed, as the Table at I's 12(3u,vt;5w)
contains. The group I' = p4g = 4 %2 is a Euclidean plane
crystallographic group, now.

In general we have vertex—transitive (Archimedian or uni-
form) tilings: (v,3u,v,3u,3u)-polygons w—times around
each vertex, with groups I by (1.7) and (1.15):

F:FS.IZZV*M,27WZ(+a0;[v];{(u7zyw)})' (116)

Here we indicated Conway’s notation and Macbeath’s sig-
nature, too [10].

Definition 1.1.

The D—diagram (%, D) together with the matrix function
D — m;j (D) will be called D-symbol.

We mention roughly the theorem of A. W. M. Dress:

A “good” D-symbol describes a tiling (7,T’), up to an
equivariant homeomorphism, uniquely in a space of con-
stant curvature S? (>), E? (=), H? (< 0) iff for the so—
called curvature

1 1 1\ =
K(D,mij) = + -] 20 (17
(Bms) D%D(mol(l)) my2(D) 2) = 0 @In
holds.
Definition 1.2

Two tilings (T,T) and (T',T") are equivariantly homeo-
morphic if there is a bijection
0:T—>T (1.18)
preserving all incidences (thus all adjacencies) such that

I'=¢ 'Te. (1.19)

In short, @ carries also the group action from 7 onto 7".
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The curvature to I's 12 (3u,v*;5w) will be by (1.17)

1 1 1 1 1 1
el oot 2 I o
(3u+5w 2) +(v+5w 2)2
(1.20)
1.2 1.5
Tuov w2

This provides us spherical tiling for (u,v;w) = (1,3;1) in
Fig. 4 by stereographic projection. The underline indi-
cates, as it reads in the Table, that I" is not maximal in
that case. Namely, the combinatorial automorphism group
of 7 is larger than the group I' = m3 = 3 2. The tiling
(T, T = AutT) is just the icosahedron tiling on S that can
be described by D-symbol of 1 element and matrix mg; = 3,
myp=>5,as (@ =3u=v=3,vV=>5w=25) stands in the
Table. This group is generated by 3 reflections on the sides
of the spherical triangle with angles %, %, . We excluded
v = 2, serving digons on S2.

We see in Fig. 3 the minimal hyperbolic solution in H2:
(u,v;w) = (1,5;1) providing K = ~11—0 negative curvature.
But we have infinite hyperbolic series by choosing 1 < u or
1 <wwith3<v,e.g. (4,v;w) =(2,3;1) as Archimedian
tiling (3,6,3,6,6).

2 The face-transitive dual tiling (4, 3, 4, 3, 3)
and its relatives. Self dual tilings

In Fig. 2 we have depicted the dual tiling (7, I') to the for-
mer one in Fig. 1. We only remarks that the machinery by
D-symbol is straightforward. We change the lines, adja-
cencies, o;—operations in the D—diagram (1.3) as

— 2 02,

@2.1)

l-——— 0, +— 1---- o0

indicate. Then the matrix functions r;j, v;j, m;;, introduced
in the former section 1, also change the indices 0 <+ 2 and
1 & 1. This reads in our Table at I's 13 (5u,3v,w*), where
the shorter dual diagram of (1.3) can be seen with changing

the nodes (3) +» (5) for a technical reason later on.

For short we left the loops from the D—diagrams in our Ta-
ble.

Fig. 2 directly depicts the dual tiling of Fig. 1. Since the
former one was vertex transitive, the laer one is tile transi-
tive by pentagons with vertex valences (4,3,4,3,3) in the
title of this section 2.

Fig. 3 and Fig. 4 depict the dual tilings by dotted O ------
lines in H? and S?, respectively. This convention will also
be kept later on.

Self dual tilings with corresponding parameters can be seen
in Fig. 6 to the groupI's 11 (3u=3,2v=4;3w=3,2x=4).
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For (u,v;w,x) = (1,4;1,4) we would have self dual Eu-
clidean tilings with concave 8—gons and triangles in a nice
manner, left to draw by the Reader.

As the former analysis to D—diagram and group
Ts.11 (3u,2v;3w,2x) = *u, 2, w, v, x 2.2)

in our Table show, the barycentric triangles form a funda-
mental domain

F=CiUCUC3UC4UCs (2.3)

with reflections in its sides as the D—diagram D dictates.
So F will be a disc with cornerpoints by (2.2) or angles
T T RN T
;’ E; ;V—’ ;7 ; (24)

on the boundary. The corresponding reflections generate
the group T and produce the tiling (mzcT,T) in S2(> 0),
E2 (= 0) or H? (< 0) by the curvature

1 1 1 1 1 1
K*(@*a—w‘a)'z“‘(s—u*a‘z)

1 1 1 1 1 1
—t——= S e NP 2.5
+<2v+2)c 2)+(2v+3w 2) @)
1 1 1 1 5 >

-——= = 0.
u v w+x 2 <

This is in conformity with the comparison of the angle sum
in (2.4) and the angle sum 37 of a Euclidean pentagon.

Fig. 6 shows a self dual spherical tiling from the infinite
series (u,v;w,x) = (1,2;1,x). The self dual tiling with the
group

Isi1(3-1,2-3,3-1,2-3) =43m =%2,3,3 (2.6)

realizes on S2 with concave hexagons and triangles or by a
polyhedron with 4 hexagons and 12 triangles as faces. The
Reader would make this polyhedron.

Fig. 5 shows us again a Euclidean tiling from the series
T's ;1 with the same D-diagram, however, it is not self dual
because of the parameters (u,v;w,x) = (1,2;2,2). Then we
have

'=pmm=%2,2,2,2 2.7

a plane chrystallographic group with a rectangle disc as
fundamental domain. We have depicted the continuous
triangles and rhombs, moreover the dotted hexagons and
rhombs.

All tilings to T's 1 is (2,2,2)transitive, i. . we have 2-2-2
I'orbits of tiles, edges and vertices, respectively.

This transitivity property is indicated at the diagrams in our
Table for every series.
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3 The classification of D-symbols and their
tiling series with |D| =5

The D-symbol method provides us a systematic tool to
classify tilings in the plane, moreover in the space, and in
d—dimensional space, in general.

This program was proposed in [11] and solved up to d = 3,
|D| = 3, i. e. up to 3 barycentric simplices in the funda-
mental domain. In the plane (d = 2) the tilings have been
classified up to |D| = 4 for another publication just by the

program of [11] illustrated in this paper. However, we face
to great difficulties in dimension d = 3 as [11] indicates.
E. g. 8 homogeneous 3—spaces (Thurston-geometries) may
occur, if the metric realization is still possible. Splittings on
2-surfaces (orbifolds) occur already in [11] where different
geometries are realizable in the different pieces. Behind
these stands the Thurston—conjecture to be decided.

In [11] we showed that for any cardinality |D)| fixed there
exists finitely many D—diagrams (Z;, D) in each dimension
d, where the index set I = {0,1,... ,d} occurs for the adja-

Table: Two—dimensional D-symbols with |D| =5

Ts.1(5u;v,2w, 2x) = *u,v,w,x,2
= (+)0i[]§{(“:V»W,x,2)});
1<u,3<v,2<wx

max. iff v = 2w = 2x does not hold,

else Iy (2 = 5u; 7 = v =2w = 2x)
is its super group.

(w;vw,x) — B2 : (1;3,2,2),...

Ts.2(3u,2v;w,4x) = *xu,v,2,x,w
= (+,0; [l {(u,%,2,w,x)});
1<u,2<v,3<w,1<x

max. iff 3u # 2v or w # 4x,

else Ty (d=3u=2v;i =w = 4x)
is its super group.

(uvwx) — S%:(1,2;wm,1), (1,3;3,1),
(1,3;4,1), (1,3;5,1), (1,4;3,1), (1,5:3,1)
— B : (1,3;6,1), (1,4;4,1), (1,6:3,1)
— M2 :else

[s3(5u;v,4w) =2 * u,v,w,2
= (+,6;[2]; { (w,v,w2)});
1<u,3<y1<w

max. iff v # 4w,

else Iy (@ =5u;7 =v =4w)
is its super group.

(uvmw,) — B2 : (1;3,1),...

I's4 is dual to T's 2 by
15204363,462,561
and ——— Gm—— ey —

r5.5(5u;2v73w) =2x*u2,vw
= (+»O;[2];{(u721vvw)});
1<u,2<y1<w

max. iff 2v # 3w,

else Ty (& = Su; v = 2v =3w)
is its super group.

(wyw) — E? : (1;2,1) — HP :else

I's is dual to I's ;) by
152604363,462,561
and ——— G m—— ey —

I's7 is dual to I's 5 by

11,242,3603,404,565
and ——— o —

I'sg is dual to I's 3 by
15264363,402,561
and ——— Gm——— o —

B
(1,3,1)
Self dual (Sd)

F5,9(5u;5vj =2,2%u,2,v

= (02,2 {(w,29)}); 1 < 1<
non maximal:

Ty ( = 5u; v = 5v) is its super group.
(;v) — B : (1;1),...

—

(1,2,1)
Self dual: 3 & 4

Ts.10(5u;5v) = *u,2,v, x

= (_) l,[],{(u,2,v)}),l <u, 1<v
non maximal:

T'1 (@ = 5u; v = 5v) is its super group.

(uv) — B : (1;1),...

—

Ts.11(3u,2v;3w,2x) = *u,2,w,v,x
(+,0[1:{(#,2,mwx)});
1<u,2<y,1<w,2<x

max. iff 3u # 2v or 3w # 2x,

else Ty (i1 = 3u = 2v;v = 3w = 2x)

(1,2,2)

A o is its super group.

2.2.2) (mviwx) — §2:(1,2;1,%),(1,%1,2),
o (1,3;1,3),(1,3;1,4),(1,3:1,5),(1,4;1,3),
Self dual: 3 ¢ 5 (1,5:1,3) — F? : (1,2;2,2),(1,3;1,6),

' (1,4;1,4),(1,6:1,3),(2,2;1,2) —
H? : else
Ts.12(3u,v+;5w) = v * u,2,w
= (+,0: ) {(w,2,w)});

1<u,3<y1<w

max. iff 3u # v,

else ') (2 =3u=v;V = 5w)
is its super group.

(w,v;w) — S%:(1,3;1) — E?: (1,4;1)
— I :else,e.g (1,5:1)

(2,2, 1)-transitive

Is3isdualtols o by3 &5, -+ 60—
Ts.13(5u;3v,w4) =w*u,2,v
= (+70;[W];{(u)2’v)});
1<u,1<y,3<w
max. iff 3v # w,
else T'y (i = Su;7 = 3v=w)
is its super group.
(uvw) — S2:(1;1,3) — E? : (1;1,4)
— I :else,e. g (1;1,5)
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cencies, colours, matrix functions, etc. The geometric rea-
son, namely that for the adjacency matrix

mj . D— N[xl,

3.1
mij =2 stands for [i—j| > 1, i,j €l @)

considerably reduces the number of cases, and we gave an
ordering and listing algorithm for D—diagrams and for the
D-symbols, in general. This is of very large complexity,
but for d = 2, in the plane, the realizability in S2 E? or
H? is no question more. Althugh we need computer as in
[7,8,10], e. g., the algorithms are elaborated (D. H. Huson,
O. Delgado Friedrichs are cited in our references).

Our Table lists all D—diagrams of elements |D| = 5 in our
lexicographic order by the index set I = {0,1,2}. We men-
tion the steps to this ordering:

i) Let a D-diagram (X;,D(D;)), with a fixed starting
element Dj, be given. Assume, that Dy,... ,D,, r <
|D| =: n have already been numbered. Consider
oo (D), 61(D,). The first of them, not listed yet, will
be D, if it exists.

ii) Else we take ©3(Dy),...,02(D1);...;04(Dy),...,
64(D1). The first new one will be D, .

iii) Then we proceed with r — r+ 1 as above, still we end
at Dy, n=|D|.

iv) The distance of two elements Dy, Dy can be obtained:

We chose D, = Dy for starting element and proceed
as above. If we get Dy = Dy then the distance is
DyDy =k—1.

v) Let two D—diagrarﬁs D(D,) and D'(Dy) be given,
each with distinguished starting elements as above.
We define D < D' by the following preferences a—d:

a) |I| < |I'| (dimension);

b) |D < |?'| (cardinality);

c¢) Consider equally numbered elements and their 6—
images. In reverse preference on I = I’ we consider
distances: D;6,(D1) < Dy oy(Dy); if = holds
then Dy 64(D32) < Dy 64(Dy); ... ; if = holds then
D, Gd_l(Dl) < D O'd_l(Dlr); o

d) If = stands in each place then the D—diagrams are
isomorphic. Then come the matrix function m;;
and m';; by increasing preferences in their 01, 12,
(d — 1) d entries for the equal elements.

You see that these algorithms can be implemented onto

computer; although we can proceed now by hands. We for-
mulate our results by the Table and figures.
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Theorem 3.1.

There are exactly 13 isomorphism classes of D—diagrams
with |D| = 5 elements in dimension 2, numbered by group
schemes I's 1-T's5 13 and the free rotation orders as parame-
ters.

Among them we have 3 self dual classes: 2 non-maximal
and 1 possibly maximal series I's 11 for the dually equal pa-
rameters.

We have 5 dual pairs of series for the dually equal param-
eters for which the corresponding groups are conjugate by
the duality mapping.

The last concept is just the same as in (1.18-19) but ¢
changes dotted and continuous lines, preserves broken lines
(see (1.1)) in the barycentric subdivisions.

The corresponding tilings are realizable in a plane of con-
stant curvature, we listed in our Table and read

Theorem 3.2.

There are exactly 15 Euclidean tilings (7,T) with 5
barycentric triangle orbits under T, up to equivariant home-
omorphism: One self dual tiling in I's ;; and seven dual
pairs: 3 pairs in I's 3—I's 4; 1 pairs in T's 51’5 7; 2 pairs in
I's.11; 1 pairs in T's 12-T's 13.

In Fig. 7 we have depicted the minimal representants of
the other series. One dual pair to I's 5—I's 7 is Euclidean.
One minimal spherical dual pair belongs to I's —I'5.4. The
other minimal representants are hyperbolic. The last ones
are non-maximal. Combinatorally both are the regular hy-
perbolic tilings with pentagons of angles 21/5.

4 Closing remarks and memories

Professor Stanko Bilinski renewed the topic of combina-
torial tilings in his pioneering papers [1,2]. The hyper-
bolic plane H? is very rich with possibilities. Those sur-
faces — the orientable ones of genus equal or bigger than
2 — whose universal cover is H? were involved into his
researches.

The theory of D-symbols, initiated and systematically de-
veloped by Andreas Dress and his school in Bielefeld, re-
ceived an important influence from Professor Bilinski at an
Oberwolfach seminary in 1984. The lecture held in his
kind place and published in [3] gave the task to look for
the quasi-regular polyhedra of genus 2 by D-symbols (that
time Delaney—symbols), thus by computer. This was com-
pletely solved in [7, 8].

The second author met him first in that Oberwolfach confer-
ence (organized by A. W. M. Dress and Jorg Wills), we all
could enjoy his kind anecdotes. We think he was paternal
friend (viterlicher Freund) of many geometricians all over
the world, in particular in the German and Slavic cultural
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F5.9(5-1;5'1) 1‘5,10(5-1;5-1)

Fig. 7
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territory. He was member of the Croatian and the Austrian
Academy of Sciences [3-6]. He formed a strong geometry
school in the University of Zagreb with many PhD students
in various fields of geometry. His works [1-5] implicitely
influenced our paper [9] where his favorite Archimedian
tilings were discussed on the base of plane (NEC) crys-
tallographic groups and their fundamental domains, found
finally by a computer program COMCLASS [10] (e-mail
adress: comclass@matf.bg.ac.yu).

We thanks the Editors of KoG for the invitation to this pa-
per to honour of Professor Stanko Bilinski.
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