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ABSTRACT

The paper deals with the modelling of hyperpatches
(solid cells) on the basis of their creative representa-
tions and with the calculations of some intrinsic geo-
metric properties of hyperpatches. The analytic repre-
sentation of the hyperpatch in the form of a vector func-
tion of three variables provides the possibility to calcu-
late and to control geometric properties and the density
of distribution (homogeneous or non-homogeneous) of
the hyperpatch interior points.

Key words: hyperpatch modelling, geometric proper-
ties, density of interior points

Gustoéa raspodjele unutarnjih tocaka u modeliranju
hiperdijelova

SAZETAK

Rad se bavi modeliranjem hiperdijelova (punih Celija) na
osnovi njihovih kreativnih reprezentacija i proracunima
za neka svojstva unutarnje geometrije hiperdijelova.
Analiticka reprezentacija hiperdijela u formi vektorske
funkcije od tri varijable omogutuje izracunavanje i kon-
trolu geometijskih svojstava i gustoce raspodjele (ho-
mogene ili nehomogene) za unutarnje tocke hiperdijela.

Kljune rijeci: modeliranje hiperdijelovima, geometri-
jska svojstva, raspodjela unutarnjih to¢aka
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1 Introduction

modelling (described in [1], [2]). There exist dif-
ferent approaches to this problem, based on differ-
ent representations of the modelled objects. Forms of the
distinguished representations are determined by the areas

S olid modelling is an important part of geometric

of application of the generated objects, that are composite
solids composed from several solid cells — hyperpatches. In
the hyperpatch modelling, the geometry of the hyperpatch
interior points can be considered on the basis of the intrin-
sic geometric properties, which are equivalent to the intrin-
sic geometric properties of surfaces. The intrinsic geomet-
ric properties of a hyperpatch are determined by the partial
derivatives of the analytic representation of the hyperpatch,
a vector function in three variables, and can be calculated
from the coefficients of the hyperpatch fundamental forms.
They can be extracted directly from the hyperpatch basic
figure, which is a part of the input data structure for the
computer processing.

In the relevance to the form of the basic figure, the geom-
etry of the distribution of hyperpatch interior points can be
defined implicitly or explicitly.

2 Basic relations

Let K = (U, G) be a Creative space described in details in
[3]. A hyperpatch (a solid cell) S that is a three-parametric
subset of the extended Euclidean space .E> can be created
on the basis of its creative law, which is in K synthetically
represented by the creative representation, an ordered pair
(U,g), where the basic figure U€ U and the generating prin-
ciple g€ G are such, that applying the generating principle
g on the basic figure U the hyperpatch S can be created.
There are available three different forms of the generating
principle g (geometric transformation T, a class of geomet-
ric transformations T(u) defined on the interval, or any in-
terpolation I(u)), that can be applied to the suitable basic
figure, according to [4].

Creative representation of a hyperpatch, an ordered pair
(U,g), can be expressed in the six different forms:

(a surface patch, a class of geometric transformations)
(a solid cell, a geometric transformation)

(a net of boundary surface patches, an interpolation)
(a sequence of surface patches, an interpolation )

(a grid of boundary edge curves, an interpolation)

(a grid of points, an interpolation).
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The possibility to describe and to control the feature of the
non-uniform distribution of points in a hyperpatch is pro-
vided in the case of its modelling as an interpolated fig-
ure, using the creative representation in which the gener-
ating principle is an interpolation. These are the last four
types of the creative representations. The intrinsic geo-
metric properties of the created hyperpatch are explicitly
predetermined in the basic figure, which is in a form of
the ordered set of separate geometric figures (points, curve
segments or surface patches) related to the hyperpatch, or
vectors that can be tangent vectors to the isoparametric
curve segments, twist vectors to the isoparametric surface
patches and the density vectors in the given hyperpatch
points. These geometric figures are represented analytically
by their vector functions appearing as the elements of the
analytic representation of the entire basic figure, a map of
the created hyperpatch. In the map — matrix, there are all
elements distributed in the appropriate order and predeter-
mine the intrinsic geometric properties of the created hy-
perpatch, the curvature of the isoparametric curve segments
(edge curves) and the isoparametric surface patches (face
surfaces), or the non-homogeneity of the interior points’
distribution and density.

Industrial design and CAGD of non-homogeneous hyper-
patches on the base of their creative representations can lead
to more complex results with respect to their applicability in
simulation of some physical processes as magnetism, elec-
tricity, heating, pressure or deformations of solids, where
the possibility to control the distribution of the interior solid
points appears.

Fig. 1

In the first two types of the hyperpatch creative representa-
tions the created hyperpatches are homogeneous, and there
can be distinguished several types of created solids with re-
spect to the different types of generating principles in the
form of the classes of geometric transformations. In the
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Fig. 1 there are illustrations of some solids generated by
different classes of geometric transformations, a solid of
revolution created from the basic region with the bound-
ary in an asteroidal curve, a conical solid created from the
region with the boundary in the form of a Limacon of Pas-
cal subdued to the class of scalings with the centre in the
conical solid vertex, while the scaling ratio 2 > 1. Frustum
of the conical solid is created from the basic curve segment
in the form of the sinusoidal curve segment subdued to a
class of translations, and scalings with the given centre and
the ratio h < 1.

In these two types of the created hyperpatches the intrin-
sic geometry is defined implicitly by the basic figure and
the generating principle, and hyperpatch intrinsic geomet-
ric properties can be calculated from their analytic repre-
sentations by means of the differential geometry. The par-
tial derivatives of the vector function representing analyti-
cally the created hyperpatch with respect to all three vari-
ables and the mixed partial derivatives of the second and the
third order can be used to determine the coefficients of thre
first and the second fundamental forms of the created hy-
perpatch, and the density of distribution of the hyperpatch
interior points.

The analytic representation of a hyperpatch — solid cell S is
a vector function

r(u,v, W) = (x(u,v, W)a y(u7v1 W)1 z(u,v, W)a h(“a") W))

defined on the region Q = [0,1]* (where x,y,z,h are ho-
mogeneous coordinate functions of three variables that are
at least C? continuous on the region Q, while the partial
derivatives of the function h(u,v,w) with respect to the all
three variables u,v,w are equal to 0 on [0, 1]*), which is a
local homeomorphic mapping of the region €2 on the hyper-
patch S. Composite solids can be obtained as compositions
of several elementary hyperpatches — solid cells.

There exist 3 isoparametric systems of surface patches (ex-
actly one of the parameters u, v, w is constant) forming a net
of isoparametric surface patches of a hyperpatch. Boundary
surface patches (facets) correspond to the constant values of
parameters equal to O or 1. If there are two of the param-
eters u,v,w equal to some constant values, we can speak
about isoparametric curve segments of a hyperpatch, if the
values are equal to 0 or 1, about boundary isoparametric
curve segments (edges). Two isoparametric surface patches
from different systems intersect in an isoparametric curve
segment, two isoparametric curve segments from different
systems intersect in a hyperpatch point. In the hyperpatch
point there are all three parameters constant and we denote
them as parametric (curvilinear) coordinates of the hyper-
patch point. Points with parametric coordinates (not) equal
to 0 or 1 are (interior) exterior points of the hyperpatch (in
details in [2], [5]).
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A hyperpatch boundary according to [2] consists of 6
boundary surface patches — face surfaces of a hyperpatch,
12 boundary curve segments — edge curves of a hyperpatch,
and 8 corner points — vertices of a hyperpatch.

3 Hyperpatches created by classes of geomet-
ric transformations

Let the hyperpatch S be created from a basic figure in the
form of a surface patch U analytically represented by the
point function

p(u,v) = (§(u,v), w(u,v), §(u,v), n(w,v))

defined on the region ® = [0, 1], where &,y,{,n are ho-
mogeneous coordinate functions of two real variables that
are at least C continuous on the region ® (while the partial
derivatives of the coordinate function n(u,v) with respect
to the both variables u and v are equal to zero on @ ), which
is a local homeomorphic mapping of the region @ on the
surface patch U.

Geometric transformation that can be applied as a generat-
ing principle to the basic figure in the form of a hyperpatch
is represented by a regular square matrix of rank 4 with real
numbers as its elements

T=(aj) for ij=1,2,3,4.

Analytic representation of the class of geometric transfor-
mations that is a suitable generating principle applicable to
the basic figure in the form of a surface patch is a matrix
function derived from the matrix T in the form

T(w) = (aij(w)) for i,j=1,2,3,4,

which is a continuous function of one real variable defined
on the interval / = [0, 1], with the values in the set of all reg-
ular square matrices with real elements representing single
geometric transformations.

Analytic representation of the created hyperpatch is a point
function
r(u,v,w) = p(u,v).T(w)
= (é(u:v)v W(u:v)v C(u’v)a ﬂ(u,V))-T(W)-

defined and differentiable on the region Q@ = ® x I =0, 1]°.
Partial derivatives and the total differentials of the point
function are in forms
ru(u,v,w) = pu(u,v).T(w)

= (Bulu,v), Wu(1,v), Cu(1,v),0).T(w),
r,(u,v,w) = py(u,v).T(w)

= (§v(u,v),\yv(u,v),Cv(u,v),O).T(w),
r, (1, v,w) = p(u,v).T'(w)

= (é(u,v),\|l(u,v),C(u,v),n(u,v)).T’(w),

dr = r,du+r,dv+r,dw
= pu(u,v). T(w)du+ py(u,v).T(w)dv + p(u,v).T' (w)dw
= (pu(u,v)du + py(u,v)dv).T(w) + p(u,v).T (w)dw
=dp.T(w) + p(u,v).T'(w)dw,

ru(u,v,w) = puy(u,v).T(w)

= (Eun (4, V), Wuw (1, v), Guv (11, ), 0). T(w),
(4, v, w) = pu(u,v). T (W)

= (&u(u,v), Wu(u,v), Cu(u,v),0).T' (W),
(4, v, w) = py(u,v). T (W)

= (&v(u,), wu(1,v),8u(1,v),0).T (w),

Funw (U, v, W) = puy(,v).T' (W)
= (G (4,v), Wi (14, ), G (4,),0).T' (),
d*r = r,ma'u2 +radv? + FywdWw?
+ 2rdudy + 2ry,dudw + 2r,, . dvdw
= Pua(t,v). T(W)du + pyo(u,v). T(w)dV?
+p(u,v). T" (w)dw? + 2puy(u,v).T(w)dudv
+2pu(u,v).T' (w)dudw + 2p, (u,v).T' (w)dvdw
= (Puu(tt,v)du? + 2pu(u,v)dudy
+ pu (4, v)dv*)T(w) + 2(pu(u,v)dudw
+ py(u,v)dvdw).T'(w) + p(u,v). T" (w)dw?
= d%p.T(w) + 2dp.T' (w) + p(u,v). T" (w)dw?.

4 Interpolation hyperpatches

In the modeling of interpolation hyperpatches, the analytic
representation of a tri-cubic hyperpatch is in a form

r(u,v,w) = a333 W w + :7133;gu3v3w2 + ...+ ajgou + agoo

= 33
=YY, > F(u)F;(v)F(w)bij for (u,v,w) € [0, 1?
i=0 j=0k=0
where F;(u), Fj(v), Fe(w) are cubic interpolation polynomi-
als.

Geometric coefficients b;j define explicitly geometric
properties of the hyperpatch and they form a three-
dimensional matrix of the type 4x4x4, the map of the hyper-
patch. The elements of this map are quadruples of homo-
geneous coordinates of the hyperpatch points (real points
in E3), tangent vectors to the hyperpatch edges, twist vec-
tors to the hyperpatch faces, and vectors defining the dis-
tribution of points inside the hyperpatch — density vectors
(points in »E? at infinity).

Let the basic figure of a hyperpatch be an ordered grid of
64 real points in ..E>. The basic grid of points defines im-
plicitly also the curvature of edges and faces, and density of
the hyperpatch, i. e. distribution of the interior points.
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Analytic representation of the created hyperpatch is a point
function
3133

Z z Z BukF(u)F (V)Fk(w)

k=0i=0 j=0

r(u,v,w) =

for (u,v,w) €[0,1].

The first partial derivatives of the point function are in the
forms

or 339

S_M(u’v, W) = ru(u,v, W) = 2 2 2 Biij}I(M)Fj(V)Fk(W),
k=0i=0 j=0

r 3 3.3

g(u,V,W) = rv(u,v, W) = 2 z z Biiji(u)Fj;(v)Fk(w)a
k=0i=0 j=0

or 3933

S—;(u,v, w) =ru(u,v,w) = Y Y Y BijFi(u)Fi(v)F(w)
k=0i=0 j=0

and determine for the curvilinear coordinates (a,b,c) €
[0,1]? tangent vectors to the isoparametric curve segments
in the regular point P(a,b,c) = r(a,b,c).

The mixed second partial derivatives of the point function
are in the forms

&r
%(uav) W) - r:V(uavy:")
3
=Y Y > BiuF u)Fj(v)Fe(w),
k=0i=0 j=0
&r
W (u1 V, W) et l.uW(uy V, W)
e
=Y. >, Y BiiF{ (W) Fi(vs)F,(w),
k=0i=0 j=0
&*r

(u,v,w) = 1y (u,v,w)

3 353
= z Z 2 B,-jk[«’,-(u)f'}{(v)Fk'(W)

k=0i=0j=0

Svdw

" and determine for the curvilinear coordinates (a,b,c) €
[0, 1]? the twist vectors to the isoparametric surface patches
in the regular point P(a,b,c).

The mixed third partial derivative of the point function is in
the form
&r
Sudvdw

(ua", W) = ruvw(u,v, W)
3 A6 8
=Y X Y BijF (u)Fj(v)Fi(w)
k=0i=0 j=0

and determines for the curvilinear coordinates (a,b,c) €
[0,1]? the density vector in the regular point P(a, b, c).

The total differentials of the point function are in forms

dl‘—z 2 2 Buk(F (u)F (V)Fk( )

k=1i=1 j=I
+ Fi(u)Fj(v) F(w) + Fi(u)F; (v) (W),
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3:-3:.3
d’r=73 3 3 Bij(F (w)Fj(u)F(w)d’u

k=1i=1j=1

+ Fi(u)F} (V) Fe(w)d®v + +Fi(u) F;(v) F{' (w)d*w

+2(F; (u)F;(v) Fi(w)dudv + F; (u) F;(v) F;(w)dudw

+ Fi(u)F(v)F{(w)dvdw) + F/ (u) F; (v) F (w)dudvdw).

5 Hyperpatch first differential form

We can describe geometrically not only the boundary of the
hyperpatch as a three-dimensional region in the extended
Euclidean space ..E?, but also the geometry of the hyper-
patch interior points.

P(a,b,c)=r(a,b,c) Fu

Fig. 2

At any regular point r(a, b,c) = P(a,b,c) of the hyperpatch
there is defined a unique tangent trihedron % formed by
the three tangent planes to the isoparametric surface patches
of the hyperpatch in this point (Fig. 2). Each of the tangent
planes is defined by two tangent vectors to the isoparamet-
ric curve segments in their common point P(a, b, c)

Tuv(ru(aa b,C), rv(a,b, C)),
Tw(ru(a,b,c),ry(a,b,c)) tu(ry(a,b,c),rw(a,b,c)).

The tangent planes intersect in the common regular point
P(a,b,c), each two of them having a pierce line in the tan-
gent line to the isoparametric curve segment

Ty N Tuw = by Tuy NV Tyw = oy Tuw NTyw = ty-

Twist vectors r,(a,b,c),r,(a,b,c),ry(a,b,c) to the
isoparametric surface patches characterize implicitly their
geometric shape, curvature, convexity or concavity.

Any change in the hyperpatch interior point distribution is
reflected in the change of the density vector ru.(a,b,c).
This geometric characteristics will be denoted as density of
the interior point distribution. In some applications the den-
sity vectors in the vertices of the hyperpatch are defined di-
rectly in the hyperpatch basic figure as the geometric coef-
ficients b;jx, and define thus the interior points distribution
implicitly. The density vectors in the interior points can be
explicitly calculated from the third mixed partial derivative
of the hyperpatch point function.
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Definition 1.

Density of the interior point distribution is defined by the
density function

ruvw(ur v, W) e (xuvw(u, v, W)’ yuvw(u, v, W), Zuvw(us Vv, W)a O)

that is a vector function defined on the region Q = [0,1]*.
Value of the density function in the hyperpatch regular point
P(a,b,c) is the density vector oriented towards the interior
of the tangent trihedron.

Loci of the density function expresses the homogeneity of
the interior point distribution with respect to the coordinate
planes. Constant density function defines a homogeneous
distribution in the hyperpatch with respect to all coordinate
axes.

Definition 2.

Lete! = (1,0,0,0),e? = (0,1,0,0) and ¢* = (0,0,1,0) be
the unit vectors in the direction of the coordinate axes. The

scalar product
s = rw(u,v,w).e, i=1,2,3

is denoted as the ratio of the hyperpatch homogeneity with
respect to the coordinate plane (e/eX),i # j #k, j.k=
1,2,3. For s' = const we speak about homogeneous distri-
bution with respect to the coordinate plane (e/e*). Hyper-
patch is said to be homogeneous, if it is homogeneous with
respect to all coordinate planes.

Definition 3.

Hyperpatch first differential form denoted as @ (u,v,w) is
the square of the first total differential of the hyperpatch
analytic representation, the point function

r(u,v,w) = (x(u,v,w), y(u,v,w), z2(u,v,w), h(u,v,w))
at least C* continuous on the region Q = [0, 1]
D (u,v,w) = (dr)? = (r,du+r,dv+ r.dw)?.
Hyperpatch first differential form can he expressed as
the sum of the first fundamental forms @; (u,v), @1(u,w),
@1 (v,w) of the hyperpatch 3 isoparametric surface patches
subtracted by the sum of the first fundamental forms of
the hyperpatch isoparametric curves @ = 2du? + r2dv? +
r2dw*:
D (u,v,w) = (r,du+r,dv+ r.dw)? =
= (r2du® + 2r,rdudv + rldv?)

+ (r2du® + 2r,rydudw + r2dw?)

+ (r?dv? 4 2r,rdvdw + r2dw?)

— (22du® + r2dv? + ridw?)

=Q1(,v) + @1 (u,w) + @1 (v,w) — 0.

Let us denote coefficients of the uv-isoparametric surface
patch first fundamental form by E = rﬁ,F = G = r%,
and similarly coefficients of the uw-isoparametric surface
patch first fundamental form by E =r2 F* =r,r,,G* =12,

and coefficients of the vw-isoparametric surface patch first

fundamental form by G = r2, F** = r,r,,,G* =12

Then we can write the following formula
@, (u,v,w) = — (Edu* + Gdv* + G*dw?)
+ (Edu® + 2F dudw + Gd\?)
+ (Edu® + 2F*dudw + G*dw?)
+ (Gdv* + 2F**dvdw + G*dw?).
The discriminant of the hyperpatch first differential form is

a positive number expressed in a hyperpatch regular point
as the value of the determinant

B B

D=det|{ F G. F* ) = [r,rory)?,
F* F** G*

where [r,r,r,] is the mixed triple scalar product of the first

partial derivatives of the hyperpatch point function with re-

spect to the variables u,v,w.

The first differential form of the hyperpatch created from
the basic surface patch by the class of geometric transfor-
mations can be calculated as

(dr)? = (dp.T(w) + p(u,v). T (w)dw)?
= (dp.T(w))?* + 2dp.p(u,v). T(w).T' (w)dw
+ (p(u,v).T' (w)dw)?
=@ (u,v).T?(w)
+ 23/01 (4, v)p(u,v). T(w).T' (w)dw
+ p2(u,v). T? (w)dw?.

6 Volume and density of distribution of the
interior points

The volume of the hyperpatch represented analytically by
the point function
r(u,v,w) = (x(u,v,w), y(u,v,w), 2(u,v,w), h(u,v,w))

defined and at leat C* continuous on the region Q = [0, 1]%,
is the value of the triple integral

Vz/f/Q \/Wdudvdwz// Q|(r,,rvrw)|dua'vdw

where D(u,v,w) is the function of the discriminant of the
hyperpatch first differential form.

The mixed triple scalar product of the tangent vectors to
the isoparametric curve segments in the regular point of the

19
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hyperpatch can be expressed in the following forms
Yl = (X T P oty
= (N vy B =] ST X ) L

and can be calculated from the coefficients of the first fun-
damental forms of related surface patches determined by
pairs of the isoparametric curve segments of the hyper-
patch, @ (u,v),®;(u,w), 1 (v,w) (Fig.3).

Fig. 3

The angle that forms the vector product of tangent vectors
r,and r, (normal vector to the isoparametric surface patch)
with the third tangent vector r,, is denoted o, while

|ty x 1| = VEG - F2,

a=LF X0, 0], cose=

.
VEG - F2.\/G*

The similar relations are valid also for other two tangent
vectors and their related angles B and y with the vector prod-
uctsir, X'ry, and £, X,

ey % 1] SR Y~ T2

P={Llr. xr,)0l, coshs : .
VGG* — F**2 \/E
e x5l = VEG* — F*2,

n)
Y=|4(rw X 1u),n|, cosy= VEG —F2AC

We can calculate (for o, B,y # 5)
1 18 1 1
" cos?o. - cos*P  cos®y

= slz((EG - FY)G* + (GG* — F*?)E + (EG* - F*?)G)

1
= 5(3EGG" — G*'F%—EF™2 - GF*)

and express the mixed triple scalar product s for the calcula-
tion of the hyperpatch volume V in the case of the nonzero
value of &
\/(7EGG* — G*F2 — EF*2 — GF*2)
lsl = h 2
1 1 1
cos’B  cos®y’

1 el
Ve / / / Is|dudvdw.
0o Jo JO
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~ cos®o.

Changing the position of the point on the hyperpatch for
variable curvilinear coordinates (u,v,w) € Q = [0,1]* we
receive a function in three variables defined on Q. If the
value of angle o, B, or 7y equals to 0 or , we speak about
weakly dense distribution of points in the direction of the
concerned tangent vector.

For the constant values of all angles o= =y=0 or m, and
therefore constant function i(u,v,w) = 3, the mixed triple
scalar product of the tangent vectors to the isoparametric
curve segments of the hyperpatch can be calculated from
the expression

s \/ (3EGG* — G*F? — EF*2 — GF*2)

3

1
- \/ EGO* = <(GPFE + EF™2 1672

and we speak about weakly dense distribution of hyper-
patch interior. Geometric interpretation is obvious: if all
angles are of the same zero value, the tangent vectors form
an orthogonal reper, and the tangent trihedron is rightan-
gled.

For the extreme values o, B,y = g the number 4 streams to

infinity, lim;_.s = 0, and we speak about dense distribu-
tion of points in the direction of the related tangent vector.

Fig. 4

In the Fig.4 there is an illustration of the Bezier approxi-
mation hyperpatch determined by the grid of 4 x 4 x 4 real
points in the space. An interpolation hyperpatch created
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from the basic grid of 8 real corner points — vertices, 24
tangent vectors to the isoparametric boundary curve seg-
ments — edges, 24 twist vectors to the boundary isopara-
metric surface patches — facets and 8 density vectors in the
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vertices determining the distribution of the interior points
in the neighbourhood of the corresponding vertices is illus-
trated, while the data vectors (tangent, twist and density)
are depicted in the figure in one of the vertices.
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