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Lessons in biostatistics

Introduction

Diagnostic tests are important clinical tools. If that 
is possible, we have to use gold-standard tests for 
the diagnosis of diseases. However, a gold-stand-
ard test either does not exist or is very difficult or 
expensive to perform for certain disease condi-
tions (1). Therefore, we have to use alternative di-
agnostic tests as surrogates for gold-standard 
tests.

While interpretation of a test with binary results is 
straight forward, interpretation of a test with con-
tinuous results is not that simple. For instance, as-
sume that the test is for discrimination of only two 
states, “diseased” (D+) and “non-diseased” (D–), 
and that the higher test values are more likely 
among D+ persons. For discrimination of D+ and 

D– people, we need to set a cut-off value; test re-
sults equal to or greater than this value are consid-
ered positive (T+), otherwise they are negative (T–). 
The choice of the cut-off value determines the 
rates of true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) test results (2). 
The sensitivity (Se) of a test is defined as the prob-
ability of a positive test (T+) in a diseased person 
(D+), that is (3):

Se = TP
TP + FN

The test specificity (Sp) is defined as the likelihood 
of a negative test (T–) in a person without the dis-
ease (D–), that is (3):
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Sp = TN
TN + FP

Therefore, a sensitive test has a low FN rate – a 
negative result (T–) is very likely TN. Therefore, a 
sensitive test can be used to rule out a disease 
condition. Similarly, having a low FP rate, a specific 
test can be used to rule in a disease.

In a test with continuous (or multiple) results, eve-
ry possible test value can be considered a cut-off 
point. This cut-off value determines the test Se 
and Sp. However, for a given test, we cannot in-
crease the Se and Sp concomitantly; Se will be en-
hanced at the expense of Sp and vice versa. De-
creasing the cut-off value to increase the test Se 
causes the Sp to decrease. If you want to have a 
more specific test (by increasing the cut-off value), 
you will have a less sensitive test.

Receiver Operating Characteristic (ROC) 
curve analysis

One of the most commonly used methods to ana-
lyze the effectiveness of a diagnostic test is receiv-
er operating characteristic (ROC) curve analysis (4-
6). Use of this method dates back to World War II 
when the ability of radar operators (receivers) was 
tested to determine whether a blip on the radar 
screen represented an object (signal, a TP result) 
or noise (a FP result), hence, the name (7). Several 
years later, the method was found useful in many 
other scientific disciplines including diagnostic 
medicine where a physician should discriminate a 
TP from a FP test result. The ROC curve offers a 
graphical illustration of the above-mentioned 
trade-off between a test Se and Sp and depicts TP 
rate (Se) against FP rate (1 - Sp) for each cut-off val-
ue (7).

The general structure of a ROC curve is simple. The 
curve is confined in a unit square (Figure 1). The 
left-lower corner (Se = 0, Sp = 1) corresponds to 
the highest possible test cut-off value. As the cut-
off value decreases, the test Se increases and Sp 
decreases, moving on the curve from the left-low-
er corner up and to the right to ultimately reach 
the right-upper corner of the square where Se = 1 
and Sp = 0, corresponding to the lowest possible 

test cut-off value. In theory, we can think of a con-
tinuous curve with infinite number of points. How-
ever, in real world, a ROC curve is constructed 
based on a few discrete points. Although we can 
connect these points using various methods (line 
segments, spline, curve fitting, etc.), the curve is 
not differentiable and thus, in practice it is not 
possible to determine the exact slope at any point. 

In a perfect test, both Se and Sp are equal to 1. The 
ROC curve corresponding to a perfect (i.e. the 
gold-standard) test is a line segment connecting 
the left-lower corner to the left-upper corner and 
to the right-upper corner (a curve coinciding with 
the left and top sides) of the unit square (8). On the 
other hand, the ROC curve corresponding to a test 
with no diagnostic value is the line segment con-
necting the lower-left corner to the right-upper 
corner – the 45° diagonal line (Figure 1). In prac-
tice, the curve lies somewhere between these two 
extremes. The area under the ROC curve (AUC) 
varies between 0.5 (for the 45° diagonal line repre-
senting an uninformative test) and 1.0 for a perfect 
test. 

The AUC can be considered an index of discrimi-
nating ability of a test (1,8). Mathematically, the 
area is equivalent to the probability that the test 
result measured in a randomly selected D+ person 
is higher than that measured in a D– person (7). A 
test with an AUC of 0.5 is equivalent to tossing a 
coin – an uninformative test. AUC is particularly 
useful when two or more diagnostic tests are com-
pared. Having a higher AUC, a test with a ROC 
curve that lies completely above another curve, is 
clearly a better one (Figure 1). The methods for the 
calculation of the AUC are mainly based on a non-
parametric statistical test, the Wilcoxon rank-sum 
test, proposed by DeLong et al. and Hanley et al. 
(8-10). The proposed methods can be used to test 
if the AUC of a curve is significantly higher than 0.5 
(the AUC of an uninformative test), or to compare 
AUCs of two or more tests.

Criteria for selecting the most 
appropriate cut-off value

Choosing an appropriate cut-off value is of para-
mount importance in using a test effectively. Sev-
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eral criteria, mostly based on ROC analysis, have so 
far been proposed for choosing the most appro-
priate cut-off value (2,5,11-13). Each point on a ROC 
curve corresponds to a cut-off value and is associ-
ated with a test Se and Sp. Locating the cut-off 
point thus requires a compromise between Se and 
Sp. In some cases, Se is more important than Sp, 
for example when a disease is highly infectious or 
associated with serious complications. On the oth-
er hand, in certain circumstances, Sp may be pre-
ferred over Se, say when the subsequent diagnos-
tic testing is risky or costly (2). If there is no prefer-
ence between Se and Sp, nonetheless, a reasona-
ble approach would be to maximize both indices.

The lowest cut-off value corresponds to a Se = 1 
and Sp = 0. As the cut-off value increases, the test 
Se decreases and the test Sp increases until a cut-
off value corresponding to a test Se = 0 and Sp = 1. 
Over this interval, there is a cut-off value where 
the test Se is equivalent to the test Sp. One of the 

frequently used criterion for determination of the 
test cut-off value is the one corresponding to this 
particular point, where Se = Sp. This point is math-
ematically the intersection of the line connecting 
the left-upper corner and the right-lower corner of 
the unit square (the line Se = Sp), and the ROC 
curve (Figure 1). This point of the curve is where 
the product of these two indices (Se x Sp) is maxi-
mum – the area of the shaded rectangle in Figure 
1 is maximum when its sides (Se and Sp) are equal, 
a square.

Another approach to maximize both Se and Sp 
would be to maximize their summation (Se + Sp). 
At this point, the Youden’s index (Se + Sp – 1) is 
also maximum (11,14-16). This is a commonly used 
technique to determine the most appropriate cut-
off value and corresponds to a point on the ROC 
curve with the highest vertical distance from the 
45° diagonal line (the ROC of an uninformative 
test). At this point, the difference between the test 
TP rate (Se) and FP rate (1 – Sp) is maximum too 
(15).

The ROC of a perfect test passes through the left-
upper corner of the unit square, the point where 
both Se and Sp are equal to 1 (a perfect test; the 
gold-standard). The closer a curve to this point, 
the better is a test. No surprise, another common 
criterion for choosing the most appropriate cut-off 
value is selecting the point on the ROC curve with 
the minimum distance from the left-upper corner 
of the unit square (8,15,16).

Although the aforementioned criteria are based 
on various assumptions and their usefulness is 
merely dependent on the validity of the presump-
tions made in the practical setting, some research-
ers prefer one method to another. For example, 
Perkins and Schisterman recommend the use of 
the Youden’s index and warn about the use of the 
point with the minimum distance from the left-up-
per corner (16). Nonetheless, selection of the crite-
rion to be used should be based on the situation 
the test to be applied and the importance of the 
test Se compared to Sp. For example in designing 
a screening test, we need a high enough Se, say 
0.8 or more, to reduce the FN rate. Otherwise, 
many diseased persons will be missed.

Figure 1. The general structure of a ROC curve. The curve 
(dashed line) which lies completely above another curve (solid 
line), is clearly a better test because it has a higher area under 
the curve. Having the left-upper corner moving on ROC curve 
(solid line), the area of the shaded rectangular region is maxi-
mum when its sides (Se and Sp) are equal. Se – sensitivity. Sp 
– specificity.
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All these methods are simple to use. However, in 
all of the above-mentioned methods, we inclu-
sively assume that there is no difference between 
a FN and FP result. Neither do we consider the pri-
or probability of the disease in question. Taking 
into account these variables, expectedly, makes 
the equations more complex (and hopefully more 
precise). This leads us to a related topic – the 
Bayesian decision analysis (17).

Bayesian approach in determining the 
cut-off value

Using a Bayesian approach, the odds of a disease 
before and after a diagnostic test can generally be 
related as follows:

Post-test odds of D+ = Pre-test 
odds of D+ x Bayes factor,

where “Bayes factor” can be derived based on our 
assumptions. The Bayesian approach provides us 
with the information about how a test result 
would change the odds (and thus probability) of a 
disease (18).

The Bayes factor can be determined in various 
ways. For example, if we maximize the patient’s 
expected utility for determination of the Bayes 
factor in the above equation, we come up to a 
condition suggesting that the most appropriate 
cut-off value corresponds to a point on the ROC 
curve where the slope of the tangent line to the 
curve satisfies the following equation (2,5):

Slope of ROC curve = H
B

1– pr
pr

×

where pr represents the pre-test (prior) probability 
of the disease, H is the net harms of treating peo-
ple who do not have the disease (the harms of a FP 
result), and B the net benefit of treating those with 
the disease (in other words, the harms of a FN re-
sult).

The costs associated with harms of a FN and FP 
test result (B and H, respectively) and medical mis-
diagnosis have been the subject of growing num-
ber of articles (19). The Institute of Medicine (IOM), 
an American non-profit, non-governmental or-

ganization, reports that about 30% of health care 
costs spending in the US, around US$ 750 billion, is 
wasted on unnecessary services (20). In these 
types of analysis, a decision tree is constructed 
based on the available treatment options, and cur-
rent evidence about risks and benefits associated 
with each option (2,21). Based on this structure, we 
can then estimate the cost-effectiveness and ben-
efit-risk of making each decision and thus the 
probable outcome and harms associated with FN 
and FP results (21-23). Treatment protocols and 
screening programs are mainly shaped based on 
the results of such studies (24,25).

A limitation of Equation 1 is however that although 
it ascertains the slope at the most appropriate 
point, the point cannot always be easily located. In 
practice, as mentioned above, a ROC curve is con-
structed based only on a few discrete (non-differ-
entiable) points (it is really not a continuous curve), 
and thereby finding the point with the given slope 
on the curve is generally difficult, if not impossible; 
we arrive to an approximation at best. Although 
theoretically correct, the method is not quite 
handy. It would therefore be feasible if we can fig-
ure out the coordination (instead of the slope) of 
the point on a ROC curve corresponding to the 
most appropriate cut-off value through an analyti-
cal method.

Analytical method for the calculation of 
the test cut-off value

Previously, we proposed a test index, the so-called 
“Number Needed to Misdiagnose” (NNM) (26), 
which is the number of patients who need to be 
tested in order for one to be misdiagnosed by the 
test, as follows:

NNM = 1
FN + FP

 = 1
pr(1 – Se) + (1 – pr)(1– Sp)

where pr represents the pre-test probability of the 
disease. For example, a NNM of 20 for a test means 
that one out of 20 people tested is misdiagnosed 
(either FP or FN). The higher the NNM of a test, the 

(Equation 1)
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closer is the test to the gold-standard, hence, a 
better test.

To determine the most appropriate cut-off value 
we can try to maximize the NNM. In the calcula-
tion of the NNM, however, the cost of FN and FP 
results are assumed equal. The cost of making a 
wrong diagnosis (either FP or FN) is nonetheless 
different in general. Note that here, the “cost” is re-
ferred to all costs incurred – the financial cost, time 
wasted on inappropriate treatments, missing the 
opportunity to cure a diseased person with conse-
quences (complications, morbidities, disabilities, 
mortalities, etc.), and harms of treating people 
without disease with subsequent emotional harms 
to the patient, experiencing drug side effects, le-
gal issues, etc (27,28). To consider this issue, we can 
assume that the cost of a FN result (misdiagnosing 
a D+ person as D–) is C times the cost of a FP one 
(diagnosing a D– person as D+) and define “weight-
ed NNM” as follows:

Weighted NNM = 1
C × FN + FP

 = 1
C × pr(1 – Se) + (1 – pr)(1– Sp)

For example, if C = 5, then a FN result would cause 
five times more costs than a FP one; C = 1 means 
that costs for FN and FP results are equal. Then, to 
find the most appropriate cut-off value, we can 
maximize the weighted NNM – to take into ac-
count both closeness of the test results to the 
gold-standard results, and the costs of a misdiag-
nosis (either FP or FN).

To find an analytical solution for the problem, let 
f(x) and g(x) designate the probability density 
function of a hypothetical diagnostic test with 
continuous results for D+ and D– population (Fig-
ure 2), respectively. Let the mean and standard de-
viation (SD) of the distribution be 0, and 1 for D– 
people, and d and s for D+ population, respective-
ly. As it was mentioned earlier, Se and Sp are func-
tions of the cut-off value. For a cut-off value of x, 
Se and Sp can be calculated as follows:

Se(x) =  ∫ f(t) dt
+∞

x
 

Sp(x) =  ∫g(t) dt
–∞

x

To maximize the weighted NNM (Equation 2), the 
denominator of the equation, should be mini-
mized. Using basic calculus, to do so, the following 
equation should be solved:

 =  = 
∂Se
∂x

1
∂

∂x

∂Sp
∂x

–C × pr – (1 – pr) 0
Weighted NNM

Figure 2. The probability density functions of a continuous di-
agnostic test for diseased (f(x), red dashed line) and non-dis-
eased (g(x), blue solid line) persons. g(x) has a mean of 0 and 
a standard deviation of 1; f(x) has a mean of d and a standard 
deviation of s. The cut-off value is represented by the vertical 
dotted line. All test values equal or greater than this value are 
considered positive (T+), else they are considered negative (T–). 
Because f(x) and g(x) are probability density functions, the area 
under the curve for each of them is equal to one. The area un-
der f(x) to the right of the cut-off value (the pink region) is Se, 
and the area under g(x) to the left of the cut-off value (the light 
blue region) is Sp. This figure is drawn based on the first data 
set (N = 400) presented in the text. There are two x axes: the up-
per axis indicates serum osmolarity of the studied people; the 
lower axis represents the corresponding standardized values.
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(Equation 3)

(Equation 4)

(Equation 5)

and
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From Equations 3 and 4, we have: 

 = 
∂Se
∂x

 ∫  f(t) dt –  ∫  f(t) dt
+∞

x

x

+∞

lim x+∆x

∆x→0 ∆x
= – f(x)

 = 
∂Sp
∂x

 ∫  g(t) dt –  ∫  g(t) dt
lim

x+∆x

–∞ –∞

∆x→0 ∆x
= g(x)

 

The minus sign before f(x) is because Se is a de-
creasing function of x; Sp is increasing. Then, Equa-
tion 5 becomes:

C × pr × f(x) – (1 – pr) g(x) = 0

For simplicity, let g(x) has a normal distribution. 
Considering its mean and SD are 0 and 1, respec-
tively, we have (29):

g(x) = 1
√2π

e –x2
2

Let f(x) also has a normal distribution and taking 
into account its mean, and SD are d, and s, we have 
(29):

f(x) = 1
s√2π

e –(x – d)2

2s2

Solving Equation 7 for x:

C × pr
s√2π

e –(x – d)2

2s2 2– = 01– pr
√2π

e –x2

gives:

C × pr
2(s2 – 1) Ln 

s(1 – pr)
+ d2– d

x = 
s2 – 1

s

if s≠1. If s=1, then x becomes: 

C × pr
Ln 

(1 – pr)

x =          + 
d

2 d

This value corresponds to the most appropriate 
test cut-off value.

Generality of the analytical method

Many of the aforementioned commonly used 
techniques in ROC analysis can be considered spe-
cial cases of the proposed analytical method 
(Equations 8 and 9). As an example, if we assume 
the pre-test probability (pr) is 0.5, if FN and FP 
costs are equal (C = 1), and if the dispersions (SDs) 
of the test values for diseased and non-diseased 
people are equal (s = 1), then the cut-off value pre-
dicted by the proposed analytical method (Equa-
tion 9 which assumes s = 1), reduces to:

x =    
d

2

the value that is obtained from one of the most 
commonly used approaches to ROC analysis, i.e., a 
point where Se = Sp.

It can also be shown that the optimum cut-off 
point derived from the proposed analytical meth-
od (Equation 8) has exactly the slope calculated by 
Equation 1. Using Equation 6, and substituting val-
ues for f(x) and g(x), the slope of ROC curve is:

∂Se
∂Sp

f(x)
g(x)

∂Se
∂ (1 – Sp)

1
s

Slope of ROC curve = 

= 

= =

e
[–(x – d)2 – s2 x2] 

2s2

–

Substituting x from Equation 8 (the coordination 
of the derived cut-off point) in the above equation 
yields:

1 – pr
pr

1
C

Slope of ROC curve = ×

But, 1/C is the cost of a FP result divided by the 
cost of a FN result, and equals H/B (Equation 1). 
Therefore, these two methods are technically 
equivalent. This means that maximizing either pa-
tient’s expected utility or weighted NNM results in 
the same cut-off value.

(Equation 6)

(Equation 7)

(Equation 8)

(Equation 9)
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The advantage of the proposed analytical method 
(Equation 8) over Equation 1, is however, its ease of 
use: although finding the point on a ROC curve is 
generally not possible and accurate solely based 
on the slope of the point (Figure 3), calculation of 
the cut-off value by the proposed analytical meth-
od (Equations 8 and 9) is straight forward – you 
just need to know the test result means in dis-
eased and non-diseased, SDs, pre-test probability 
of the disease (an estimate of the disease preva-
lence, if no other information is available), and an 
estimate of the costs of FN and FP test results 
(Equation 1 also needs the last two variables).

Example

To compare the results obtained from different 
methods for the derivation of the most appropri-
ate test cut-off value, we used the data set provid-
ed by Hooper et al., who studied the diagnostic ac-
curacy of calculated serum osmolarity to predict 
dehydration in people aged 65 years or more (30). 
They used the directly measured serum/plasma 
osmolality of 595 participants to determine if they 
had dehydration (serum/plasma osmolality > 300 
mOsm/kg) or not (considered the gold-standard 
test). They then calculated serum osmolarity for 
each participant based on their serum sodium, po-
tassium, glucose, and urea by an equation and 
used the calculated value as the test result. The 
calculated serum osmolarity was rounded off to 
the nearest integer value (31). Then, for each cut-
off value, the test was compared against the gold-
standard test result. The prevalence of dehydra-
tion among the studied population was consid-
ered 0.19 (30). Hooper et al. also estimated that the 
cost of a FN result (missing a dehydrated person 
and its health consequences) was five times the 
cost of a FP result (labelling a person as dehydrat-
ed, when he or she is actually not, resulting in a 
more blood test to directly measure serum osmo-
lality or encouraging them to drink more) (30).

We randomly divided the data set into a 400-per-
son and 195-person subsets. The groups sizes 
were arbitrary chosen. The first data set was used 
to calculate the cut-off values using the above-
mentioned techniques. The second data set was 

used to test the effectiveness of each method to 
classify the participants. SPSS® for Windows®, ver. 
17 (SPSS Inc, Chicago, IL, USA), was used for divid-
ing the data at random into the two subsets, and 
data analyses including ROC analysis.

Table 1 shows cut-off values derived by each of 
the previously described criteria. Theoretically, the 
intersection of the ROC curve (red solid line) and 
the line Se = Sp (Figure 3) corresponds to the point 
where Se = Sp. However, there is no point in our 
data set satisfying this equation and the closest 
point is where Se and Sp are 0.718 and 0.767, re-
spectively, corresponding to a serum osmolarity 
cut-off value of 298 mOsm/L. This point also has 
the minimum distance from the left-upper corner 
of the unit square (Figure 3, Table 1). A cut-off val-
ue of 299 mOsm/L maximizes the Youden’s index 
(Figure 3, Table 1).

Figure 3. The ROC curve constructed based on the first data set 
(N = 400) presented in the text: the real data set are present-
ed as red solid curve; the values predicted from the proposed 
mathematical model are presented as the blue dashed curve. 
The arrows indicate points corresponding to cut-off values de-
rived by various methods (Table 1). The green dashed line is the 
tangent line with a slope of 0.853. Note that the tangent line in-
tersects the ROC curve at two points. Se – sensitivity. Sp – speci-
ficity.

M
axim

um
 vertical distance

1.0

1.0

0.9

0.9

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1
0.0

0.0
Se

1 – Sp

Analytical method (C= 5)

Max. weighted
NNM (C = 5)

Max.
Youden's
index

Se≈Sp

M
inim

um
 distance



Biochemia Medica 2016;26(3):297–307		  http://dx.doi.org/10.11613/BM.2016.034 

304

Habibzadeh F. et al.	 Determination of test cut-off value

Because there was no other information about the 
participants, the best estimate for the pre-test 
probability was the prevalence of dehydration, 
0.19. Based on Equation 1, the slope of the tangent 
line to the ROC curve at the most appropriate cut-
off point is 0.853 (Figure 3, green dashed line), pre-
suming that H/B equals to 1/5, i.e., the costs of 
harms of a FN result is five times the harms of a FP 
result (30). However, because of the discrete (non-
differentiable) data set, we could not find the cor-
responding point solely based on knowing its 
slope (without curve fitting). To figure out the 
point of interest according to an instruction de-
scribed previously (4), we passed a line with the 
slope through the left-upper corner of the unit 
square and moved it toward the ROC curve (red 
solid line) until it first intersected the curve. How-
ever, the line intersected the curve at two points 
(Figure 3); practically, it was very hard to locate the 
point of interest visually with enough accuracy.

The mean serum osmolarity (the test) in the first 
group (N = 400) was 292.3 (SD 8.2) mOsm/L in 322 
participants without dehydration (D–), and 302.2 
(SD 8.0) mOsm/L in 78 patients with dehydration 
(D+). Using the analytical method we proposed 
(Equation 8), we have:

d = 
302.2 – 292.3

8.2
= 1.21 and s = 

8.0
8.2

= 0.98

Assuming that the pre-test probability (an esti-
mate of the prevalence of dehydration) is 0.19, if 

the cost of a FN result is five times the cost of a FP 
result (C = 5), Equation 8 yields x = 0.463 corre-
sponding to a cut-off value of 296.1 (292.3 + 0.463 
x 8.2) mOsm/L for the serum osmolarity that cor-
responds to a Se of 0.777 and a Sp of 0.678 (Figure 
3, dashed blue curve). Based on the calculation, 
the closest available cut-off value in our data set is 
297 mOsm/L, corresponding to a test Se of 0.795 
and a Sp of 0.693 (Table 1). This is where weighted 
NNM is also maximum (Figure 3, Table 1). 

Let the cost of labelling a person as dehydrated, 
when he or she is actually not, (FP result) be ap-
proximately US$ 100 (more blood test to directly 
measure serum osmolality, encouraging them to 
drink more, waste of time), and the cost of missing 
a dehydrated person and its health consequences 
be about US$ 500. If we use the above-mentioned 
cut-off values to test the second data set (N = 195) 
and calculate the costs incurred by FN or FP test 
results as cost of FN plus cost of FP, the cut-off val-
ue obtained by the analytical method and maxi-
mizing the weighted NNM (which in this case are 
the same) is associated with lower costs compared 
to other methods (Table 1).

Conclusions

The proposed analytical method gives a cut-off 
value that depends on the pre-test probability of 
the disease of interest. In the absence of any previ-
ous information or test results in a person, the pre-

Criterion Cut-off value 
(mOsm/L) Se Sp

Cost of misdiagnosis 
(US$) in the second data 

set (N = 195)

Se = Sp 298 0.718 0.767 10,500

Maximum Youden’s index 299 0.667 0.845 11,300

Minimum distance from the left-upper corner of the 
unit square 298 0.718 0.767 10,500

Slope of the ROC curve (slope = 0.853, C = 5) ?* ?* ?* ?*

Analytical method (C = 5) 297 0.795 0.693 9800

Maximum weighted NNM (C = 5) 297 0.795 0.693 9800

*Cannot be located accurately (see the tangent line in Figure 3).

Table 1. Test cut-off values calculated based on the first group data set using different criteria
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test probability can be estimated as the preva-
lence of the disease of interest. According to the 
proposed method, the cut-off value is higher in 
places where the disease is less prevalent.

Taking the pre-test probability (or prevalence) of 
the disease of interest into account would result in 
major clinical implications. The appropriate cut-off 
point depends on the place where the test is go-
ing to be used. For example, considering Equation 
8, the cut-off value for serum osmolarity for the di-
agnosis of dehydration in a tropical region, where 
the prevalence of the disease is high, should be 
lower (a more sensitive test) than that in a cold re-
gion, where the prevalence of dehydration is low-
er – we need a more sensitive test to diagnose de-
hydration in an endemic area. Even in a given 
place, the appropriate cut-off value depends on 
the group of people who need to be tested. For 
example, the cut-off value for a group of athletes 
exercising (higher risk/prevalence of dehydration) 
should be lower than that in general population.

The cut-off value is also different for the diagnosis 
of diseases with different prevalence rates in a re-
gion. As an example, if in a region the prevalence 
of dehydration is different from the prevalence of 
diabetes insipidus, if we want to use serum osmo-
larity as a diagnostic test, we need to set two dif-
ferent cut-off values for the diagnosis of these two 
conditions. This finding supports the importance 
of the recommendations of the Clinical and Labo-
ratory Standards Institute (CLSI) and the Interna-
tional Federation of Clinical Chemistry (IFCC) C28-
A3 guideline published in 2008, stating that the 
reference intervals for laboratory analyses should 
be validated locally, using specimens taken from 
healthy local people (32,33). Reference intervals 
are different from clinical decision limits; while the 
former is based on the test results in the normal 
population, the latter is a cut-off value derived 
from one of the above-mentioned methods and is 
based on test results distribution in both the nor-
mal and diseased population (32). Equations 8 and 
9 clearly describe this association.

Employing a Bayesian approach, the post-test 
(posterior) probability of a disease depends on the 
pre-test probability of the disease and the test re-

sult. The post-test probability of a disease after the 
patient is tested can however be considered the 
pre-test probability of the next test to be done. 
Based on what has been presented, the cut-off val-
ue of the second test should be different for two 
patients suspicious for the same disease but hav-
ing different results on their first test, hence differ-
ent post-test probabilities.

In our analytical method to derive Equations 8 and 
9, we assumed the test results followed a normal 
distribution for D+ and D– persons. This assump-
tion, though supported by extensive data from 
psychophysical and medical studies (9), may not 
be true in general. Nevertheless, we have shown 
that the analytical method proposed, which is 
based on maximizing the weighted NNM, is math-
ematically equivalent to Equation 1, the derivation 
of which is based on maximizing the patient’s ex-
pected utility (2,5). As maximizing either of pa-
tient’s expected utility or the weighted NNM 
would result in the same result, it seems that maxi-
mizing the weighted NNM (Equation 2) is the best 
available method for determination of the most 
appropriate test cut-off value. This can easily be 
done by having an estimation of the pre-test prob-
ability of the disease, the relative cost of a FN to FP 
test result (C), and Se and Sp values for each cut-
off point, which are readily available in most statis-
tical software output. Using the weighted NNM 
mentioned above also abolishes the presumption 
of normal distribution of test values in diseased 
and non-diseased people.

Only by taking the pre-test probability (preva-
lence, in lack of other information) of the disease 
of interest in the study population into account, 
and considering the cost (not just financial) of FN 
and FP results, we can find the most appropriate 
cut-off value for a diagnostic test. All these make it 
imperative to study more on the prevalence (as an 
estimate of the pre-test probability in lack of any 
information) and the cost of FN and FP test results 
in various populations. Besides the specimen to be 
analyzed, future autoanalyzers need to be fed 
with an estimate of pre-test probability (based on 
the previous test results), the disease of interest, 
and the associated cost of misdiagnosis. They are 
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also equipped with a global positioning system so 
that they can retrieve important relevant data 
(e.g., prevalence of a disease) to determine if a test 
is positive or not for a certain disease.
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