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Abstract: A novel least squares optimization of parameters in Hill enzyme kinetics has been developed. The method is based on transformation 
into “Michaelis-Menten like” type of equation with guaranteed convergence and the initial guess equal to zero. By using this approach, a three 
parameters non-linear optimization problem is transformed into a one-dimensional search for Hill’s coefficient (exponential parameter n). 
Numerical experiments illustrating feasibility of the method and quality of the solution are presented. 
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INTRODUCTION 
INEARIZATION of kinetic equations in order to deter-
mine kinetic parameters by the linear least squares is 

still in use for chemical and enzyme kinetics. However, lin-
ear optimization has serious drawbacks like redistribution 
of points and changing error statistics. Moreover, for the 
Hill model[1] linearization requires an initial guess for the 
parameter Vmax , which is an added complication. 
 

THEORY 
There are multiple forms of Hill kinetics. We will analyze the 
one described by the following equation which resembles 
Micheaelis-Menten equation but for the parameter n: 
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where S is a concentration of substrate, v is velocity of re-
action, Vmax is saturation velocity, Kd is apparent dissocia-
tion constant, and n is Hill coefficient. Another form of 
Equation (1) has a KA, which is ligand concentration at half 
saturation. The relationship between these two constants 
is Kd =(KA)n. 

 In order to determine Vmax, Kd, and n from a collected 
series of measurements, v as a function of S is fitted to the 
model. Linearization transforms Equation (1) as follows: 
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 The Equation (5) shows that the intercept in this plot 
log(v/(Vmax –v)) vs. log(S) is –log(Kd) with slope n. The con-
struction of the plot requires an initial value for Vmax. 
 It is well known that linearization does not yield a 
correct estimate of parameters and strongly recommends 
the use of non-linear optimization techniques (see Wong[2] 
for extensive discussion of this fact for Michaelis-Menten 
kinetics). However, he recommends general non-linear 
optimization routines which require a good initial guess and 
careful balancing of parameters. Jeričević and Kušter[3] 
proposed a specialized nonlinear estimation method valid 
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only for the Michaelis-Menten model. This proposed 
alternative method has guaranteed convergence with an 
initial guess of KM equal to zero and has no problem 
balancing the parameters. The main idea of the approach is 
to first reduce the dimensionality of the problem (by 
eliminating the linear parameter Vmax from the normal 
equations) and then find the root of resulting non-linear 
equation. The work presented here is an application of a 
similar idea to the Hill equation. 
 Normal equations[4] are developed using the least 
squares formalism: 
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where δi is error between the experimental vi and theoret-
ical thvi value of dependent variable for experimental point 
i. The associated value of independent variable is Si and N 
is number of experimental points.  
 Taking the derivative of the Equation (6) with respect 
to Vmax (knowing it will be zero at the minimum) yields: 

  
 +  + 

 
    

  
 2 max

1 1max

2 0
n nN N
i i

i i n n
i i d i d i

V S S
δ v

V K S K S
 (7) 

 Taking the derivative of the Equation (6) with respect 
to Kd (again knowing it will be zero at the minimum) yields: 
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 Taking the derivative of the Equation (6) with respect 
to n (again knowing it will be zero at the minimum) yields: 
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 Combining the Equations (7) with (8), and Equation 
(8) with (9) removes linear parameter Vmax and yields two 
nonlinear equation in Kd and n. By this procedure three pa-
rameters non-linear optimization problem is transformed 
into finding the solution of the system of two nonlinear 
equations: f(Kd,n) shown as Equation (11) and g(Kd,n) 
shown as Equation (13). 
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 The root can be found iteratively using Newton-
Raphson metod[5] and Jacobian matrix J(Kd,n) shown as 
Equation (14): 
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 Although the above system consisting of Equations 
(15) and (16) with good initial guess can be solved this way, 
it is much more complicated then the single equation used in 
Michaelis-Menten kinetics, repeated here for convenience: 
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 Besides of complexity for Hill equation, the more se-
rious problem is a requirement for good initial guess for 
two parameters: Kd, and n. For that reason, we also devel-
oped a simpler approach, namely, for each guess of n, the 
system was transformed into Michaelis-Menten like one, 
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using simple substitution X=Sn. That transforms the prob-
lem into systematic, stepwise one-dimensional search for 
optimal n, using guaranteed convergence of Michaelis-
Menten in each step for different guesses of n. 
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RESULTS AND DISCUSSION 
Simulated data were constructed using different levels (0, 
1, 5, and 10 percent) absolute error of Vmax value. The noise 
was normally distributed with zero mean and added to the 
theoretical data. Each noise level was generated inde-
pendently and then used to illustrate our procedure (see 
Table 1). The recovered and true values for parameters Kd 
and Vmax with error statistics[6] are shown in Table 2. Graph 
of model data and simulated points with the corresponding 
noise levels used in Table 1 and 2 are shown in Figure 1.  
 Table 1. demonstrates that transforming Hill equa-
tion into Michaelis-Menten allows the least squares estima-
tion of parameters Kd and Vmax for selected n. In other 
words, doing one-dimensional search for n by optimizing 
Michaelis-Menten with guaranteed convergence in each 
step will yield the optimal value for n. The purist still may 
wish to use Newton-Raphson method for the few final im-
provement iterations. The Newton-Rapson method for the 
Hill equation as outlined in Equations (14–16) will converge 
if parameters n and Kd from one-dimensional search are 
used as initial guesses. At that point, the closeness to the root 
will assure the convergence of Newton-Raphson method. 

 By combining a previously published[3] method that 
has guaranteed convergence for optimizing Michaelis-
Menten kinetics with one dimensional search for the Hill 
coefficient n, our results show it is possible to construct a 
very robust and accurate non-linear optimization targeted 
to the Hill equation. The method also has the advantage of 
simplicity and speed. Guaranteed convergence algorithms 
are particularly important in analyzing large data sets from 
data intensive methods like sensor data.[7] 
 

CONCLUSION 
A specialized least squares algorithm for determining the 
parameters in the Hill equation using experimental meas-
urement in enzyme kinetics was developed. The algorithm 
is simple, fast, and numerically stable. It transforms the 
nonlinear problem of optimizing three parameters into an 
efficient one dimensional search for Hill coefficient n. 
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Table 2. Recovered parameters for n=2. True values are 
Kd =4 and Vmax=10 

% error Kd error Kd Vmax error Vmax 
Graph 
symbol 

0 4.000   2 ×10–6 10.000   7 ×10–7 line 

1 4.001 0.061   9.995 0.027 circle 

5 4.432 0.252 10.009 0.105 square 

10 3.262 0.544   9.623 0.263 triangle 

 

Table 1. The least squares sum for simulated data with 
various error levels. Three guesses for parameter n are 
shown, true value is n=2) 

% error n =1.5 n =2 n =2.5 

0   2.846     4 ×10–10   1.905 

1   0.996     0.4906   2.423 

5 11.153   7.007   7.674 

10 57.202 53.886 55.462 

 

 

Figure 1. Plot of data summarized in Tables 1 and 2. Line is 
theoretical data (n=2, Kd =4, Vmax=10). Circles are data with 
1 % error, squares are data with 5 % error and triangles are 
data with 10 % error. 
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