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AN ANALYTICAL SOLUTION TO FREE RECTANGULAR PLATE 
NATURAL VIBRATIONS BY BEAM MODES – ORDINARY AND 

MISSING PLATE MODES 

Summary 

Relatively simple analytical procedures for the estimation of natural frequencies of free 
thin rectangular plates, based on the Rayleigh quotient and the Rayleigh-Ritz method, are 
presented. First, natural modes are assumed in the usual form as products of beam natural 
modes in the longitudinal and transverse directions, satisfying the grillage boundary conditions. 
Based on a detailed FEM analysis, the missing of some natural modes, defined as a sum and a 
difference of the cross products of beam modes, is noted. The frequencies of these modes are 
very similar and identical in some special cases, manifesting in such a way a double frequency 
phenomenon. These families of natural mode shapes form a complete natural frequency 
spectrum of a free rectangular plate as a novelty. The reliable approximation of natural modes 
enables the application of the Rayleigh quotient for the estimation of higher natural frequencies. 
The application of the developed procedure is illustrated by the case of a free thin square plate. 
The obtained results are compared with those determined by FEM and also with rigorous ones 
from the relevant literature based on the Rayleigh-Ritz method. The achieved accuracy is 
acceptable from the engineering point of view. Furthermore, the same problem is solved by the 
Rayleigh-Ritz method using approximate natural modes as mathematical ones. Direct and 
iterative procedures are presented. A small number of mathematical modes and iteration steps 
are sufficient to achieve reliable results. 

Key words: rectangular plate, natural vibration, Rayleigh quotient, Rayleigh-Ritz 
 method, mode shapes, frequency spectrum 

1. Introduction 

A rectangular plate is a common structural element used in many engineering structures. 
The dynamic behaviour of thin and thick plates is analysed by the Kirchhoff [1] and the 
Mindlin theory [2]. For instance, the deck plating of a ship and the bulkhead grillages 
between cross girders are considered as thin plates, [3]. Also, Very Large Floating Structures 
(VLFS) like floating airports, artificial islands, etc. are analysed as large thin plates, [4]. 
Thick plates are usually used in mechanical engineering as engine supports. 
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Vibration of a thin rectangular plate is a classical problem analysed in a large number of 
papers and has already been solved [5], while the vibrations of thick plates are still being 
investigated [6], [7]. In both cases, the analytical solution is achieved for a rectangular plate 
which is simply supported at least at two opposite edges. For some of the other combinations 
of simply supported and clamped edges, a rather complex, closed form solution is achieved, 
[8]. In addition, for all combinations of boundary conditions (simply supported, clamped, and 
free), a very complex approximate solution is presented in [9]. Because of that, numerical 
methods are preferable, as for instance the Rayleigh-Ritz method, or, more often, FEM due to 
its simplicity. 

An analytical solution to free vibrations of a rectangular plate simply supported at two 
opposite edges is presented by Leissa, [10]. The problem of mixed boundary conditions 
(simply supported (S), clamped (C), and free (F)) is analysed by the Rayleigh-Ritz method 
assuming the plate deflection as products of beam natural modes. The clamped and simply 
supported plate boundary conditions are completely satisfied, while the free edge conditions 
are only approximated, which reduces the accuracy of results. It is concluded that the 
additional symmetry of the square plate increases confusion when identifying natural modes. 
Certain vibration modes have not been discovered in the relevant literature. 

The natural response of rectangular plates with free edges is analysed by Mizusawa, 
[11], by means of the Rayleigh-Ritz method with B-spline functions. The effects of Poisson's 
ratio on the natural frequencies of free-edge square plates are investigated. Malik and Bert 
[12] applied the differential quadrature element method to vibration analyses of plates with 
free boundary conditions, while Wang et al. [13] utilized a similar approach to both static and 
dynamic considerations of the above problem. In order to overcome the difficulty of 
implementing the free boundary conditions in the discrete singular convolution (DSC), Wei 
and his collaborators, [14] and [15], developed the method of matched interface and boundary 
(MIB), capable to analyse the first few natural frequencies. Also, the DSC method is applied 
by Wang and Xu [16] and comparisons with the above solutions are provided. Furthermore, in 
the context of applicability of related mathematical models to the analysis of the dynamic 
response of very large floating structures (VLFS), Wang et al. [17] highlighted some 
problems in obtaining accurate modal stress-resultant distributions in freely vibrating plates 
analysed by conventional methods. Namely, they showed that if one adopts the classical thin 
plate theory and the Galerkin method with commonly used modal functions consisting of the 
products of free-free beam modes, the natural boundary conditions are not satisfied at the free 
edges. Moreover, they indicated the persistence of the mentioned problem in the adoption of 
the refined Mindlin plate theory and the use of the NASTRAN software [18] (utilizing the 
finite element method) or the Ritz method. Furthermore, Wang et al. [17] demonstrated that a 
modified version of the Ritz method, which involves the penalty function for the enforcement 
of the natural boundary conditions, does not solve the problem when the plate is relatively 
thin due to the so-called artificial stiffening of the plate. In order to overcome the above 
problem, Wang et al. [19] proposed a mesh-free least squares-based finite difference method 
(LSFD) for evaluating vibration solutions of completely free plates, adopting not the classical 
but the Mindlin plate theory. 

In the Rayleigh-Ritz method, natural modes are presented by polynomials with a large 
number of terms, which results in a rather time-consuming procedure. It is more effective to 
assume physical natural modes as a series of mathematical modes. For this purpose, products of 
beam natural modes in the longitudinal and transverse directions, satisfying the grillage 
boundary conditions, are usually used. In this case, one mathematical mode is dominant in each 
natural frequency. However, the FEM vibration analysis of a free square plate shows that there 
are some missing modes of specific shapes, which cannot be approximated by the product of 
beam modes successfully since none of the mathematical modes is dominant in this case. 
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Due to the above reason, an analytical investigation into natural vibrations of free thin 
square and rectangular plates is carried out in [20] . Two additional families of missing mode 
shapes are identified and described by the sum and the difference of beam natural modes, 
respectively. The Rayleigh quotient is used not only for the first but also for the higher modes, 
[21]. In such a way, a complete and denser spectrum of natural frequencies is obtained. 

In the present paper, the theory presented in [20] is summarised and the natural 
vibration analysis of a free rectangular plate is performed by the Rayleigh-Ritz method using 
approximate natural modes as mathematical ones. A direct numerical procedure and an 
iterative procedure are presented. The application is illustrated by the case of a square plate. 

2. Natural vibrations of free beam 

Natural modes of a free beam can be used in the vibration analysis of a free plate for the 
construction of mathematical modes. Due to practical reasons, it is suitable to distinguish 
between symmetric and antisymmetric modes. By satisfying the boundary conditions at beam 
ends x a  , one obtains the following frequency equation for the symmetric modes, [20] 
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The normalized symmetric and antisymmetric modes read 
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Functions X0 and X1 represent rigid body modes, i.e. the beam translation and rotation. 
Index m is the number of vibration nodes in a vibration mode. Mode functions Yn for the y 
direction with the argument n y , where b y b   , can be written in an analogous way. 

3. Determination of free plate natural frequencies by the Rayleigh quotient 

3.1 General 
The lowest natural frequency of a vibrating system can be determined in a relatively 

simple way by the Rayleigh quotient, (RQ) [5]. This approximate method involves the 
determination of the kinetic and potential (strain) energies of the considered system by using 
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the assumed mode shape function which has to satisfy the geometric boundary conditions. 
Accuracy of the method depends on the success of approximation of the real physical natural 
mode by the assumed mathematical one. If it is possible to approximate successfully higher 
natural modes as the first one, the application of the Rayleigh quotient can be extended to the 
estimation of higher natural frequencies. 

Strain energy of a vibrating plate, Fig. 1, is derived by integrating the work of bending 
and torsional moments on the corresponding curvature over the plate area, [5]. The resulting 
expression can be written in a suitable form for further use 
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2 2 2 22 2(1 ) d d
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where  ,W W x y  is the natural mode,  3 212 1D Eh      is the flexural rigidity, E  and 
  are Young’s modulus and Poisson’s ratio, respectively. The first two terms are related to 
the bending in the x and the y direction, respectively, the third term takes the bending 
contraction into account, while the fourth term is a consequence of torsion. 

 
Fig. 1  Particulars of a thin rectangular plate 

The kinetic energy takes quite a simple form 

2 21 d d
2

b a

b a

K mW x y
 

    (6) 

where m h  is the mass per unit plate area and   is the natural frequency. 
It is well-known that the assumed mode shape function in the form of separated 

variables )()(),( yYxXyxW   captures all possible natural modes of a rectangular plate with 
any combination of simply supported and clamped edges. However, that is not the case if 
vibrations of a free plate are analysed. In order to investigate this fact, the FEM vibration 
analysis of a free square plate is performed and the first 24 natural modes are shown in Fig. 2. 
If the plate mode is assumed in the form )()()( yYxXxW nmmn  , where m and n are the 
numbers of beam vibration nodes, then the plate mode shape function has to manifest m + n 
cross straight lines of zero displacement, Fig 3. Such a mesh can be noticed only in the 
modes 1, 8, and 17, and roughly in the modes 4, 5, 6, 7, 11, 12, 15, 16, 20, 21, and 24 in 
Fig. 2. As for all other remaining modes, it is necessary to find out another type of the plate 
mode shape functions. 
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Fig. 2  Natural modes of a free square plate, FEM 

 
Fig. 3  An ordinary natural vibration mode of a free rectangular plate 
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3.2 Ordinary natural modes of a free plate 
In the usual procedure of the plate vibration analysis, the method of separation of 

variables is used, i.e. ( , ) ( ) ( )mn m nW x y X x Y y . Eq. (5) for the strain energy takes the form 
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For the coordinate function mX , and analogously for nY , the beam mode functions (3) and 
(4), which satisfy the grillage boundary conditions, are usually used. In this case, all the 
integrals in (7) can be solved analytically as shown in [20]. By substituting the corresponding 
expressions for symmetric modes, Eq. (3) into (7), one obtains 
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In the case of uniform mass distribution, the expression for the plate kinetic energy (6) takes a 
very simple form  
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Due to the energy balance, U = K, the natural frequency can be determined by the Rayleigh 
quotient 

2
2 2
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m a b
   (11) 

In the case of antisymmetric beam modes mX  or/and nY , the same structure of 
expressions (8) and (9) for the strain energy are valid, but the corresponding hyperbolic 
function th(.) has to be replaced with cth(.). Hence, the kinetic energy (10) is valid for all 
single and double symmetric and antisymmetric plate modes. 

3.3 Missing natural modes of a free plate 
Observing the shape of modes 2 and 3 in Fig. 2, one can notice that the former is similar 

to a hyperbolic paraboloid (saddle), while the latter is similar to an elliptical paraboloid. 
These paraboloids are mathematically described in a normalized form as 
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where parameters a and b are the plate dimensions as shown in Fig. 1. In both cases, cross-
sections of paraboloids, parallel to the planes x 0 z and y 0 z, are parabolas. 

Based on the noted similarity of modes 2 and 3 to paraboloids, Fig. 2, one can write 

2 2 2 2W X Y    (13) 
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since the shapes of the beam functions 2X  and 2Y  look like parabolas 2x  and 2y  in (12). 
Moreover, numerical examples show that the missing modes can be assumed in a more 
complex general form 

mn kl m n k lW X Y sX Y    (14) 

where 1s  is the sign for the definition of the elliptical and the hyperbolic mode shape.  
By substituting (14) into (5), one obtains the following expression for the strain energy 
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Expansion of Eq. (15) leads to the form of separated integrals 
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where 12 s  is taken into account. Also, two zero terms in (16), due to the orthogonality of 
the beam modal functions, are omitted. 

On the other hand, by substituting (14) into (6), the kinetic energy reads 
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where one term is excluded due to the orthogonality of the beam modal functions. 
All the integrals in Eq. (16) and (17) can be solved analytically by employing the beam modal 
functions mX  and nY , Eq. (3) and (4). Solutions of typical integrals are given in [20]. Hence, 
one finds the expression for the kinetic energy 

21
4mn kl mn klK m ab   (18) 

Finally, the balance of the strain and kinetic energy leads to 

2 4 mn kl
mn kl

U
m ab
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   (19) 

3.4 Natural vibrations of a square plate 
Reliability of the developed theory and the accuracy of numerical results are checked in 

the case of natural vibrations of a free thin square plate, where a b . Dimensionless 
frequency parameter is specified as  

2

2
(2 )b mΩ

D
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  (20) 
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The frequency parameter (20) for ordinary plate natural modes, nmmn YXW  , by 
employing (11), is presented in the form  

2
4( ) um n mn

bΩ X Y
a

   
 

 (21) 

where mnu  is defined by (9). 
In a similar way, the frequency parameter for the missing plate natural modes, Eq. (14), 

by taking into account Eqs. (16) and (19), can be presented in the form 

2
4 2( )m n k l mn kl

bΩ X Y X Y abI
a 

    
 

 (22) 

where mn klI   is the surface integral in expression (16). 
It is necessary to point out that expressions (21) and (22) are valid only for elastic beam 

modes. If a rigid body mode is involved, expressions for the frequency parameter have to be 
derived from the very beginning of energy formulation. 

Natural vibrations of a square plate, Fig. 1, are calculated by FEM, using the 
NASTRAN software [18]. The first 24 natural modes are shown in Fig. 2, and the 
corresponding values of frequency parameter are listed in Table 1. Also, results from the 
relevant literature, determined by the more rigorous Rayleigh-Ritz method for the first 10 
modes, [22], are given for correlation. 

Values of the frequency parameter determined by the present procedure (PP) are 
included in Table 1, with the indication of the mode type. Additional explanation for each of 
the first 14 natural modes is given in [20].  

Analytically defined approximate natural modes are shown in Fig. 4. They are of the 
same global shape as those obtained numerically by FEM. The FEM natural frequencies are 
slightly underestimated, while those of the present procedure are overestimated, Table 1. 
Discrepancies of FEM results with respect to the rigorous solutions for the first 10 modes, 
[22], are within 0.5%, and those of the present procedure are within 6%. 
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Fig. 4  Analytical natural modes of a square plate 

Table 1  Frequency parameter  22Ω b m D   of a free square plate, approximate analytical solution 

Mode no. Mode type FEM Discrepancy, % RQ, PP Discrepancy, % RRM, Liew [22]
1 1 1X Y  1.3631 -0.11 1.4386 5.42 1.3646 
2 2 0 0 2X Y X Y  1.9827 -0.15 2.0186 1.66 1.9856 
3 2 0 0 2X Y X Y  2.4564 -0.11 2.4906 1.28 2.4590 
4 1 2X Y  3.5185 -0.21 3.6977 4.87 3.5260 
5 2 1X Y  3.5185 -0.21 3.6977 4.87 3.5260 
6 3 0 0 3X Y X Y  6.1772 -0.21 6.2488 0.95 6.1900 
7 3 0 0 3X Y X Y  6.1772 -0.21 6.2488 0.95 6.1900 
8 2 2X Y  6.4317 -0.32 6.8116 5.56 6.4526 
9 3 1 1 3X Y X Y  6.9930 -0.35 7.0710 0.76 7.0179 
10 3 1 1 3X Y X Y  7.7798 -0.50 8.1036 3.64 7.8190 
11 2 3X Y  10.6340  11.1865 (5.20)*  
12 3 2X Y  10.6340  11.1865 (5.20)*  
13 4 0 0 4X Y X Y  11.8280  12.0045 (1.49)*  
14 4 0 0 4X Y X Y  12.3720  12.4909 (0.96)*  
15 1 4X Y  13.2683  13.5016 (1.76)*  
16 4 1X Y  13.2683  13.5016 (1.76)*  
17 3 3X Y  15.3853  16.1765 (5.14)*  
18 4 2 2 4X Y X Y  16.2566  16.4035 (0.90)*  
19 4 2 2 4X Y X Y  16.9757  17.9472 (5.72)*  
20 0 5X Y  20.0104  20.2500 (1.20)*  
21 5 0X Y  20.0104  20.2500 (1.20)*  
22 5 1 1 5X Y X Y  20.5749  20.8477 (1.33)*  
23 5 1 1 5X Y X Y  21.5824  21.9931 (1.90)*  
24 4 3X Y  21.6451  22.5767 (4.30)*  
25 3 4X Y  21.6451  22.5767 (4.30)*  

* With respect to FEM 
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4. Free plate natural vibration analysis by the Rayleigh-Ritz method 

4.1 Direct procedure 
In the Rayleigh-Ritz method, a natural mode is assumed in the form of a series 

   
1

, , ,j j
j

W x y A Z x y




  (23) 

where jA  are the unknown constants and  ,jZ x y  are the appropriate deflection 
functions, which individually have to satisfy at least the geometric boundary 
conditions. Functions  ,jZ x y  are usually called mathematical modes, while  ,W x y  
is a physical mode. 

The modal strain energy of a vibrating plate has to be equal to the kinetic energy. For an 
approximate natural mode, the difference has to be minimal. By substituting (23) into (5) and 
(6) and satisfying the condition 
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one arrives at the system of homogenous algebraic equations 
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are the elements of the modal stiffness and mass matrix, respectively. Once the spectrum of 
natural frequencies ...,2,1, pp  for a chosen number of terms in the series (23) is 
determined from the condition 

 0 2 0Det 0ij ijS M        , (28) 

the corresponding vector of constants Apj for each p  is obtained from (25) by assuming the 
unit value for one of the constants. An appropriate choice is to take App = 1 since it is expected 
to be dominant. 

The mathematical modes for a free plate in (23) are usually assumed in the form of a 
product of free beam natural modes, Eq. (3) and (4) 

    ,)()(),(,)()(),( jlkjinmi yYxXyxZyYxXyxZ   (29) 

where m, n = 1, 2... M and k, l = 1, 2... N. The indices i and j are prescribed to each combination 
of indices m and n, and k and l, respectively. By substituting (29) into (26), one gets  
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   

   

0

2(1 ) d d .

b a

ij m k n l nl m k n l mkij ij
b a

m k n l m k n l m k n lij ij

S D X X Y Y X X Y Y

X X Y Y X X Y Y X X Y Y x y

 

 
 

     

           

 
 (30) 

The beam modes are orthogonal and that is indicated in (30) by the Kronecker symbol. If 
l = n, then k = m and the first two terms in (30) are diagonal 

     ijnmnmijij YXYXyxfyxf 2222
21 ),(),(   (31) 

All integrals in (31) per x and y can be solved analytically. For the first two integrals, by 
employing the expressions from [20], one obtains 

  ijnmij
abII  44

21 4
)(   (32) 

The third and fourth terms in (30) generate a full matrix. 
By substituting the expressions (29) for the mathematical modes into (27), the mass matrix reads 

 0 d d
b a

ij m k n l ij
b a

M m X X Y Y x y
 

    (33) 

Due to the orthogonality of the beam natural modes, the mass matrix is diagonal 

0 2 2 d d
b a

ij m n ij
b a

M m X Y x y
 

    (34) 

After integration, according to the expressions given in [20], one gets 

ijij mabM 
4
10   (35) 

Hence, elements of the diagonal mass matrix are the same for all modes. 
If the matrix equation of natural vibrations (25) for the p-th mode is multiplied by the 

vector  T
piA  from the left side, taking (35) and 1ppA  into account, one obtains 

     0
4
120  pjpjppjijpi AAmabASA   (36) 

The first and the second term in (36) are the condensed stiffness and the mass of the p-th 
mode, respectively, as a result of the modes coupling. Equation (36) can be written in the 
algebraic form 

0
4
1

1

22

1 1

0  
 

n

j
pjppj

n

i

n

j
ijpi AmabASA   (37) 

Expression (37) can be used for the benchmarking of results. 

4.2 Iterative procedure 
The eigenvalue formulation for determining a direct solution to the plate natural 

vibration, Eq. (25), is specific since the diagonal terms of stiffness matrix are predominant, 
while the mass matrix is diagonal. In that case, the procedure for the eigenvalue solution can 
be simplified by employing an iterative procedure. 
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The matrix equation of natural vibration (25) with the full stiffness matrix and diagonal 
mass matrix can be presented in the expanded form 

 0
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1

2000
2

0
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2
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
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
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






n

i

nnninn

iniiii

ni

ni
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A
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
















 (38) 

where, according to (35), 4/mabM  . 
The natural frequency of the i-th mode consists of two parts. 

   2*202
iii    (39) 

where 0
i  is the approximate value of natural frequency and *

i  is the correction due to the 
coupling of mathematical modes. The approximate natural frequency is determined by setting 

the diagonal element of the i-th equation in (38) to zero, i.e.   MS iii /020  , Eq. (11). 

Furthermore,  20
i  is inserted into (38), the unit value is chosen for the dominant constant, 

1iiA , the i-th row is excluded from (38) and the i-th column, with the known elements 

iiik AS 0 , 1, 2,...k n  is transferred from the left to the right hand side. As a result, the 
following reduced nonhomogeneous matrix equation is obtained 

 
 

 
 

20 0 0 0 0 0
11 12 1, 1 1, 1 1

20 0 0 0 0 0
21 22 2, 1 2, 1 2

20 0 0 0 0 0
1,1 1,2 1, 1 1, 1 1,

20 0 0 0 0 0
1,1 1,2 1, 1 1, 1 1,

0 0 0 0
1 2 , 1 , 1

i i i n

i i i n

i i i i i i i i n

i i i i i i i i n

n n n i n i

S M S S S S

S S M S S S

S S S M S S

S S S S M S

S S S S






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, 1 1,

, 1 1,

20 0
,
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n n i
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 

 

 
    
    
    
    
          
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    
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         

 

 

 (40) 

Solving (39) and adding 1iiA , the vector of coefficients of the i-th mode is defined. By 
substituting (39) into the i-th equation in (38), the additional part of the natural frequency is 
obtained 

   ij

n

j
ijiji SA

M
  



11
1

02*  (41) 

Now,      2)1(*202)1(
iii    from the first step is inserted into (40) and new values of 

the constants vector  )1(
ijA  are determined from (40). The iteration is continued until the 

stabilization of )(k
i  is achieved. 
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4.3 Illustrative example 
Natural frequencies of a free square plate are determined by the Rayleigh-Ritz method 

in two ways: 
1. Direct procedure, 25 ordinary and missing modes from Table 1, (DP-OMm), 
2. Iterative procedure, 25 ordinary and missing modes from Table 1, the first step, 

(IP-OMm). 

Table 2 presents a comparison between the results obtained for the first 10 modes and 
with those from [22], which are calculated by the Rayleigh-Ritz method, taking a large 
number of power series terms into account. The IP-OMm values, determined by only one 
iteration step, are very close to the DP-OMm values, and, for some modes, are slightly more 
accurate. Differences in the values of both frequency parameters with respect to the rigorous 
solution, Liew [22], are within 1%. The diagram in Fig. 5 shows that the accuracy of IP-OMm 
frequency parameters with one iteration step is considerably increased with respect to the 
approximate analytical RQ solution. It is interesting that, observing the structure of the 
stiffness matrix, one can notice that each mode is coupled with only a few other modes. 

 
Fig. 5  Differences between various frequency parameters and the RRM values of a free square plate 
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Table 2  Frequency parameter  22Ω b m D   of a free square plate, rigorous solutions, 25 approximate 
modes from Table 1 

Mode no. DP-OMm Difference, % IP-OMm Difference, % RRM, Liew, [22]
1 1.3682 0.264 1.3680 0.249 1.3646 
2 2.0051 0.982 2.0051 0.982 1.9856 
3 2.4760 0.691 2.4760 0.691 2.4590 
4 3.5524 0.749 3.5503 0.689 3.5260 
5 3.5524 0.749 3.5503 0.689 3.5260 
6 6.2347 0.722 6.2345 0.719 6.1900 
7 6.2347 0.722 6.2345 0.719 6.1900 
8 6.5160 0.982 6.5112 0.908 6.4526 
9 7.0689 0.727 7.0689 0.727 7.0179 
10 7.8918 0.931 7.8883 0.886 7.8190 

In order to investigate the convergence of frequency parameters determined by the 
Rayleigh-Ritz method and analytical mathematical modes, DP-OMm, three sets of the mode 
series up to the maximal numbers of mode indices M=N=4, 5, and 6 are taken into account. 
Ordinary modes which are constitutive parts of missing modes are excluded from the analysis 
in order to avoid their double contribution. The obtained results are listed in Table 3 and 
shown in Fig. 6, and the convergence of the procedure is obvious. The diagram of the DP-
OMm values in Fig. 5, determined by the 25 ordinary and missing modes, is close to the 
diagram of DP-OMm values in Fig. 6, obtained by using up to M=N=5 modes. 

 
Fig. 6  Convergence of the DP-OMm procedure 
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Table 3  Frequency parameter  22Ω b m D   of a free square plate, DP-OMm, convergence analysis 

Mode 
No. 

M=N=4 M=N=5 M=N=6 RRM 
Ω % Ω % Ω % Liew, [22] 

1 1.3714 0.501 1.3667 0.153 1.3667 0.153 1.3646 
2 2.0051 0.981 2.0051 0.981 1.9994 0.697 1.9856 
3 2.4755 0.671 2.4755 0.671 2.4713 0.501 2.4590 
4 3.5587 0.928 3.5486 0.642 3.5457 0.558 3.5260 
5 3.5587 0.928 3.5486 0.642 3.5457 0.558 3.5260 
6 6.2347 0.722 6.2339 0.709 6.2232 0.537 6.1900 
7 6.2347 0.722 6.2339 0.709 6.2232 0.537 6.1900 
8 6.5121 0.923 6.5121 0.923 6.4815 0.448 6.4526 
9 7.0710 0.756 7.0684 0.720 7.0684 0.720 7.0179 
10 7.9537 1.723 7.8853 0.849 7.8853 0.849 7.8190 

If frequency parameters are determined by the Rayleigh-Ritz method in the usual way 
by employing only ordinary mathematical modes, almost the same accuracy is achieved as in 
the case of DP-OMm provided that the same number of series terms is taken into account. 
However, the application of the one step iteration procedure results in a scarce spectrum of 
natural frequencies due to missing modes. 

5. Conclusion 

An analytical solution to rectangular plate natural vibrations can be achieved in a 
relatively simple way only in the case of at least two opposite simply supported edges. For all 
other combinations of boundary conditions, a numerical procedure, such as the Rayleigh-Ritz 
method or FEM, is used. In order to reduce the number of polynomial terms in the usual 
application of the Rayleigh-Ritz method, the beam mode functions Xm and Yn, satisfying the 
grillage boundary conditions, are often used as coordinate functions in the form of products, 

mn m nW X Y , which makes the separation of variables possible. 

As shown in this paper, for a free rectangular plate, the modes mn m nW X Y  are only 
one family of possible modes shapes. Two additional mode families of the type 

lknmklmn YXYXW   are identified by analysing the complete natural response determined 
by FEM. These missing natural modes generate two very close frequency spectra, 
increasing in such a way the density of the resulting natural spectrum. If Poisson's ratio is 
zero and if there is no torsion, two frequency spectra are identical. This phenomenon of 
double frequency spectrum is also known in the natural vibrations of the simply supported 
Timoshenko beam, [23]. 

In the case of free square plate natural vibrations, the missing natural modes start from 
the very beginning of the frequency spectrum, while in that of a rectangular plate, they are 
shifted to higher frequencies by the increased value of the plate aspect ratio a/b. By 
recognizing the missing modes, the confusion of the square plate mode identification is 
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cleared up. Natural frequencies determined by the Rayleigh quotient are approximate since 
the assumed modes are close but not equal to the real natural modes. However, their accuracy 
is acceptable for a preliminary design purpose. 

Accuracy of the estimated natural frequencies can be increased by employing the 
Rayleigh-Ritz method and the approximate ordinary and missing modes as the mathematical 
ones in the governing series. In that way, the mass matrix is diagonal due to the orthogonality 
of the constitutive beam modes, while the stiffness matrix is full with dominant diagonal 
elements. As a result, only a slightly higher number of mathematical modes than the number 
of the desired accurate natural frequencies have to be taken into account. Moreover, the one 
step iteration procedure gives highly accurate results making in such a way the presented 
method superior to the known solutions. 

The presented procedure can be used for the hydroelastic analysis of very large floating 
structures (VLFS), which behave as a sheet in the sea waves, [24]. An analytical formulation 
of the assumed modes simplifies the determination of hydrodynamic coefficients, i.e. added 
mass and hydrodynamic damping. This is illustrated in the case of a transient response of a 
very large floating airport with length and breadth of LxB=5x1 km, caused by the take-off and 
landing airplane loads, [25]. 

The analytical solution to  free plate natural vibrations outlined in the paper can be 
readily applied in the qualitative analysis of complex fluid-structure interaction phenomena 
such as aeroelasticity (divergence and flutter of compliant flat plates), [26], and aeroacoustics 
(vibro-acoustic formulations of baffled flat plates), [27]. 
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Nomenclature 

,  ,  a b h  plate length, breadth, 
thickness U  strain energy 

iA  series coefficient mnW  plate natural modes 

D  flexural rigidity ,  m nX Y  beam natural modes 
E  Young’s modulus Z deflection function 

K  kinetic energy ,  m n   coefficient of trigonometric 
and hyperbolic functions 

m  mass per unit area   Poisson’s ratio 
0
ijM  elements of modal mass 

matrix   natural frequency 

0
ijS  elements of modal stiffness 

matrix   
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