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MODELLING OF AN ARTIFICIAL NEURAL NETWORK FOR 
ELECTRICAL DISCHARGE MACHINING OF HOT PRESSED 
ZIRCONIUM DIBORIDE-SILICON CARBIDE COMPOSITES 

Summary 

Modelling is carried out to map the relationship between the input process parameters 
and the output response, considered in the machining process. To represent real-world 
systems of considerable complexity, an artificial neural network (ANN) model is often 
utilized to replace the mathematical approximation of the relationship. This paper explains the 
methodological procedure and the outcome of the ANN modelling process. The percentage of  
SiC in the workpiece material, the product of thermal conductivity and the melting point of 
the tool material, the pulse on time, and the pulse off time are considered as input parameters, 
while the material removal rate (MRR), the tool wear rate (TWR), roughness, roundness, 
taper angle and overcut are considered as output responses. The network is trained initially 
with one neuron in the hidden layer, i.e.,-a 4-4-6 topology is considered for training. In the 
subsequent phases, the number of hidden neurons in the hidden layer is increased gradually 
and then the network is tested with two hidden layers with the same number of hidden 
neurons in the second hidden layer. A feed forward back propagation neural network model 
with one hidden layer having 35 neurons is found to be the optimum network model (4-35-35-
6). The model has the mean correlation coefficient of 0.92408. 

Key words: artificial neural network (ANN), composite, electrical discharge machining 
 (EDM), machining, modelling, silicon carbide (SiC), zirconium di boride (ZrB2) 

1. Introduction 

The present manufacturing environment is characterized by complexity, inter-
disciplinary manufacturing functions and an ever growing demand for new tools and 
techniques to solve difficult problems. A neural network is used to capture the general 
relationship between variables of a system that are difficult to relate analytically. Neural 
network described as a brain metaphor of information processing or as a biologically inspired 
statistical too1 [22]. It has the capability to learn or to be trained for particular task, its own 
computational capabilities and the ability to formulate abstractions and generalizations. 
Neural network has an organization similar to that of a human brain and it is a network made 
up of processing elements called neurons. Neurons get data from the surrounding neurons, 
perform some computations and pass the results to other neurons. Connections between the 
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neurons have weight associated with them. In the neural network, the knowledge is stored in 
its interconnection weights in an implicit manner; learning takes place within the system and 
plays the most important role in the construction of a neural network system. The neural 
network system learns by determining the interconnection weights from a set of given data 
[23]. A mathematical model was proposed to analyse the impacts of combustion parameters 
on pollutant production and combustion process efficiency. The influence of the air excess 
factor, fuel droplet size, fuel spray angle, and intensity of the swirl of combustion air on the 
reduction in the amount of CO, NO, soot, SOx and in the heat flux released to furnace walls is 
investigated[16]. Karsaj et al. [7] used a free energy-based formulation incorporating the 
effect of kinematic hardening. The computational algorithm was also implemented at the 
material point level of a shell finite element which allows the use of complete three-
dimensional constitutive laws. Robustness and efficiency of the proposed algorithm are 
demonstrated by numerical examples. Lela et al. [11] proposed three different models, namely 
regression analysis (RA), support vector machines (SVM), and Bayesian neural network 
(BNN), to examines the influence of cutting speed, feed, and depth of cut on surface 
roughness in the face milling process. All models show a relative prediction error of less than 
8% and the best prediction of surface roughness is made by the BNN model with the average 
relative prediction error of 6.1%.  

The derived mathematical model was validated and tested which enabled the calculation 
of machining time required for complex cylindrical part production  in a given experimental 
set-up condition. For real-time systems, Bashiri and Miremadi[1] proposed a schedulability 
condition, that guarantees a desired level of performability in various working conditions. The 
proposed condition is evaluated on a hard real-time system that employs the rate-monotonic 
(RM) scheduling algorithm and uses the re-execution mechanism to improve the reliability. 
Evaluation results reveal that by employing the schedulability condition, the level of 
performability of the system is always higher than the desired performability.  

In the past decade, neural networks have proven to be highly flexible modelling tools 
with capabilities for learning the mathematical mapping between input variables and output 
features for nonlinear systems [3]. Lina et al. [13] established the relationship between 
machining forces and wear of a tool wear made of an aluminium metal matrix composite by 
using a multiple regression analysis (MRA) and a generalized radial basis function (GRBF) 
neural network. Liao and Chin [12] used a generalized back-propagation (BP) neural network 
with two-hidden layers to establish a model for the grinding process. Then, this algorithm, 
together with the Boltzmann factor, was used to find global optimal settings for the grinding 
process. It was found that the implemented neural network approach yields a more accurate 
process model than the regression method. Lee et al. [10] used an abductive network for the 
modelling of drilling processes; this network was composed of a number of functional nodes 
which were self-organized to form the optimal network architecture by using a predicted 
squared error criterion. Ko and Cho [9] introduced Two neural networks: one for estimating 
the tool wear length, and the other for mapping input and output relations from the 
experimental data obtained during cutting in the face milling operation. Zuperl [24] et al 
combined neural networks, fuzzy logic and the particle swarm optimization (PSO) 
evolutionary strategy in modelling and adaptively controlling the process of ball-end milling. 
The adaptive control system was developed to control the cutting force and maintaining 
constant roughness of the surface being milled. A mathematical model of thermo-mechanical 
processes, such as welding and heat treatment processes, was created by Urevc et al. [21]. In 
this model, the temperature-dependent thermal and mechanical material parameters are 
identified from given experimental data obtained for an austenite stainless steel; then, the 
adequacy of the adopted model and of identified material parameters was shown by 
simulating numerically a three pass butt welding experiment where good agreement between 
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the calculated results and data from the literature was found. Finally annealing of the welded 
plate to relieve residual stress was simulated numerically. Gjeldum et al. [4] proposed a 
mathematical model for MRR based on the input parameters such as pulse maximum current, 
pulse pause time, rotation speed, length of discharge area, and cutting radius.    

Rangwala and Dornfeld [15] applied neural networks to integrate information from 
multiple sensors in order to recognize the occurrence of tool wear in a turning operation. The 
superior learning and noise suppression abilities of these networks enable high success rates 
in recognizing tool wear under a range of machining conditions. Tarng et al. [18 and 19] 
employed back propagation (BP) on the neural networks used for monitoring tool wear and 
breakage in turning or drilling processes. Cariapa et al. [2] used neural networks in predicting 
and controlling polishing operations and showed that neural networks with one hidden layer 
learn faster than those with two hidden layers.   

In the electrical discharge machining (EDM) process, both Kao and Tarng [6] and Liu 
and Tarng [14] employed feed-forward neural networks with hyperbolic tangent functions and 
adductive networks for the on-line recognition of pulse-types. Based on their results, 
discharge pulses have been identified and then employed for controlling the EDM machine. 
Meanwhile, Katz and Naude [8] used back propagation errors in neural networks for 
improving the geometric shape of EDM products based on the coupling feature design in the 
EDM process. Tarng et al. [20] utilized a feed forward neural network to associate the cutting 
parameters with the cutting performance. Subsequently a simulated annealing (SA) algorithm 
was applied to the neural network to solve the optimal cutting parameters for wire electrical 
discharge machining (WEDM) process based on a performance index within the allowable 
working conditions.  In this study, the modelling of the effects of pulse on time, pulse off time 
and tool materials characteristics in the EDM process of ZrB2 –SiC is carried out using 
ANNs. The influence of each parameter on machinability behaviour is determined by 
applying desirability functional analysis (DFA). 

2.  Design of experiments 

Workpieces of different volume proportions of ZrB2 and SiC (15, 20, 25 and 30% of 
SiC with ZrB2) are manufactured using the powder metallurgy technique. Electrodes made of 
tungsten; niobium, tantalum, graphite and titanium are selected for this study. Electronica 
small sinker 500 x 300 series machine was used for experimentation. The specification of this 
machine is max working current – 35 A, work table size -500 x 300 mm, Power supply-3 
phase, 415 VAC, 50 Hz. The experiment is set as a full factorial experiment. Table 1 gives the 
details of experimental design. Each tool performs nine operations on a particular workpiece. 
In total, there are 45 operations conducted on each workpiece. MRR, TWR, roughness, 
roundness, taper angle and overcut are considered as output responses. EDM condition for the 
experiment is shown in Table 2.  

Table 1  Experimental conditions 

Polarity Workpiece : Positive
Tool           : Negative

Open circuit voltage 100 V
Discharge current 2 A
Workpiece dimension 65 x 65 x 4.2 mm
Tool diameter 2 mm
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Table 2  Design of experiments 

Factor/Level 1 2 3 4 5 

Pulse on (µs) 4 7 10 - - 

Pulse off (µs) 1 3 5 - - 

Workpiece (No) 
85%ZrB

2
-

15%SiC (1) 
80%ZrB

2
-

20%SiC (2) 
75%ZrB

2
-

25%SiC(3) 
70%ZrB

2
-

30%SiC (4) 
- 

Tool (No) Graphite(1) Titanium(2) Niobium(3) Tantalum(4) Tungsten(5) 

In this study, five tool materials are selected for experiments. The tools of 2 mm in 
diameter, made from different materials were fabricated using different techniques like wire 
cut EDM, diamond grinding and extrusion process. Fig.3.1 shows a photographic image of 
the tools. 

   
 Fig. 1  Photographic image of the tools Fig. 2  Workpiece after grinding and square cut 

ZrB2-SiC composites were hot pressed in an organ atmosphere to a disc of 100 mm in 
diameter and thickness of 5 mm. The temperature during pressing was maintained at 2000°C 
with a pressure of 30 MPa. The compaction was done for a period of 60 min. The hot pressed 
disc surfaces did not have uniform surfaces and may have contained graphite particles. In 
order to overcome that problem, these discs were subjected to the sand blasting process. After 
that, the discs were subjected to the diamond load grinding to obtain coplanar surfaces. A 
square block of 65 mm was engraved from the disc using the WEDM process to facilitate the 
clamping positional accuracy of the hole. Fig.2 shows a square shaped workpiece. 
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3. Output responses  

MRR is calculated based on the weight by using equation 1. Machining time was 
measured using a stop watch.  = 	 		 		 	 	 	 		 	 		 .  (1) 

There are four methods known to evaluate the tool wear rate by means of measuring 
weight, shape, length, and total volume. In this study, the tool wear rate is evaluated by means 
of weight measurement (equation 2).  	 = 	 		 		 	 	 	 		 	 		   (2) 

Roughness, roundness, taper angle and overcut are measured by means of image 
processing techniques. The procedure of measuring these parameters is explained by 
Sivasankar et al [17]. 

4. Back propagation neural network 

The back propagation algorithm (BP) has made it possible to design multi-layer neural 
networks for numerous applications, such as adaptive control, classification of sonar targets, 
stock market prediction and speech recognition. Also, back propagation neural network 
(BPNN) has the advantage of quick response and high learning accuracy. Thus, an ANN with 
the back propagation algorithm has been applied here to model the output responses related to 
input parameters of the EDM process of ZrB2-SiC composites. The algorithm of the back 
propagation program is shown in Fig. 3. 

 
Fig. 3  Flow diagram for the selection of optimum ANN architecture 
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5. Model description 

In the development of a multi-layer neural network model, several decisions regarding 
the number of neuron(s) in the input layer, the number of hidden layer(s), the number of 
neuron(s) in the hidden layer(s), and the number of neuron(s) in the output layer and optimum 
architectures have to be made. Based on the experimental condition, the pulse on time, the 
pulse off time, the tool material and the vol. % SiC are given as input parameters to the 
present ANN model.  The output parameters are MRR, TWR, roughness, roundness, overcut 
and taper angle. The input/output dataset of the model is illustrated schematically in Fig. 4. 

 
Fig. 4  Schematic illustration of the ANN model for the EDM of ZrB2-SiC Composites 

6. Neural network design and training 

The generalization capability of the neural network mainly depends on: (i) the selection 
of appropriate input/output parameters of the system, (ii) the distribution of the dataset and 
(iii) the format of the presentation of the dataset to the network.  In this study, the total 
number of experimental results is 180 (45 x 6 = 180 total) datasets among which 150 datasets 
(more than two-thirds) have been considered for training, and 30 datasets for testing. Before 
training the network, the input/output datasets were normalized within the range of   ± 1.  

7. Data normalization 

Higher value input variables may tend to suppress the influence of smaller value ones. 
To overcome this problem, the neural networks were trained with the normalized input data, 
leaving it to the network to learn the weights associated with the connections emanating from 
these inputs. The raw data to be used by neural networks were scaled in the range 1 to +1 to 
minimize the effects of magnitude between inputs and also to aid the backpropagation of the 
learning algorithm. The normalized values (Xn) for each raw input/output dataset (di) were 
calculated using equation 3 
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where dmax and dmin are the maximum and the minimum values of raw data. 
The standard multi-layer feed forward backpropagation hierarchical neural networks 

were designed in the MATLAB (version 7.10.0) Neural Network Toolbox. The networks 
consist of three layers: the input, the hidden layer, and the output layer. Now, the designed 
network has four input neurons and six output neurons. Kumaran et al. (2010) gave a step by 
step description of how neural network works. In the network, each neuron receives the total 
input from all of the neurons in the proceeding layer as expressed in equation 4.  

1( )n n
j ij i

i

net W X   (4) 

where netj is the total or net input, n
iX  is the output of the node j in the nth layer, and n

ijW  
represents the weights from node i in the (n-1)th layer to node j in the nth layer. A neuron in 
the network produces its input by processing the net input through an activation (transfer) 
function which is usually nonlinear. There are several types of activation functions used for 
BP. However, the most often used function is the tan-sigmoid transfer function which is 
assigned to hidden layer(s) for processing the inputs as in the equation shown below 
(equation 5). Purelin is a transfer function calculating the  output of a hidden layer from its net 
input which is assigned to the output layer as in equation 6. 

 ( ) 1 range 1,1
x x

x x x
e ef
e e





 
   

 
 (5) 
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2  range 1,1
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 (6) 

The weights are dynamically updated using the BP algorithm. The network has been 
trained with the Levenberg-Marquardt algorithm. This training algorithm is selected due to its 
high accuracy in a similar function approximation. In order to estimate the performance of the 
network, the mean square error (MSE), which is obtained using equation 7, has been used. 

1 1

( )
p k

p pk pk
p k

E d o
 

   (7) 

where dpk and opk are the desired and the calculated output for the kth response, 
respectively. The ‘k’ denotes the number of neurons in the network output and ‘p’ is the total 
number of instances (epochs). The number of iterations (epochs) to be executed is an 
important parameter in the case of the BPNN training. After training, the network has been 
denormalized and compared with the experimental data. The denormalized values (xi) for 
each raw output dataset was calculated as per equation 8.  

max min
min

( 1)( )
2

n
i

X d dX d 
   (8) 

where dmax and dmin are the maximum and minimum values of raw data.  
For testing the prediction ability of the model, the prediction error (PE) in each output 

node has been calculated as per equation 9.In order to determine the optimal architecture, the 
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mean PE is calculated for converged architectures, and the one that shows a higher correlation 
coefficient value and the minimum average PE is selected as the optimal architecture.  

PE % = 	 		 	× 100 (9) 

8. Testing and performance of the BPNN model 
An ANN with the BPNN algorithm has been adopted here for modelling. The optimization 

of the layer and the number of neurons in the network is done by evaluating the performance 
of different architectures. Twenty five different architectures are evaluated and the best 
performance architecture is the one with four layers with 4-35-35-6 neurons in the layers. The 
performance capability of each network has been examined based on the correlation 
coefficient and the convergence of entire dataset within a specified error range between the 
network predictions and the experimental values using the test and the entire dataset. In order 
to determine the optimum structure of neural network, the rate of error convergence is 
checked by changing the number of hidden neurons and the number of hidden layers. In 
Table 3, one can note that the network with 35 neurons in each hidden layer has produced the 
best performance for each of the output parameters (4-35-35-6), because the mean correlation 
observed is high (92.408%). The correlation coefficient (R) for each response is calculated by 
using the following equation (10) 

     2 22 2

n xy x yR
n x x n y y




  

  

   
 (10) 

Table 3  Performance value and the status of convergence of different network architecture 
Sl. 
No. 

Network 
Architecture 

Performance 
(M.S.E) 

Status of 
convergence 

1 4-4-6 0.0365 Not converged 
2 4-8-6 0.0284 Not converged 
3 4-12-6 0.0453 Not converged 
4 4-16-6 0.0432 Not converged 
5 4-20-6 0.0437 Not converged 
6 4-24-6 0.0307 Not converged 
7 4-28-6 0.0234 Not converged 
8 4-32-6 0.0321 Not converged 
9 4-36-6 0.0213 Not converged 
10 4-40-6 0.0546 Not converged 
11 4-44-6 0.0612 Not converged 
12 4.-48-6 0.0232 Not converged 
13 4.-52-6 0.0242 Not converged 
14 4-10-10-6 0.0536 Not converged 
15 4-15-15-6 0.0653 Not converged 
16 4-18-18-6 0.0432 Not converged 
17 4-20-20-6 0.0354 Not converged 
18 4-22-22-6 0.0303 Not converged 
19 4-25-25-6 0.0213 Not converged 
20 4-28-28-6 0.0201 Converged 
21 4-32-32-6 0.0165 Converged 
22 4-35-35-6 0.0124 Converged 
23 4-40-40-6 0.0231 Converged 
24 4-44-44-6 0.0452 Converged 
25 4-46-46-6 0.0354 Converged 
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Based on the optimized network parameters, an ANN model has been developed to predict 
the machinability behaviour of ZrB2-SiC composite in terms of MRR, TWR, roughness, 
roundness, taper angle and overcut. Table 3 shows the performance value and the status of 
convergence of different networks architectures. Out of the 25 networks, the 4-35-35-6 
architecture shows better performance than all other networks. The architectures, with more 
than 40 neurons in the hidden layers also show lower performance values than the 4-35-35-6 
network architecture. The performance capability of the converged network has been 
examined based on the correlation coefficient of the entire dataset within a specified error 
range between the network predictions and the experimental values using the test and the 
entire dataset. The results obtained for the architecture are shown in Table 4.The actual values 
of the tested values of the response are shown in Table 5, while the predicted values of the 
optimal network (4-35-35-6) and the prediction error from the experimental results are shown 
in Table 6. The mean prediction error obtained for the entire dataset by means of optimal 
network was 2.14 percent. 

Table 4  Mean Correlation coefficient between the network predictions and the experimental values 
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1 4-4-6 0.0365 0.762 0.794 0.5031 5.24 
2 4-8-6 0.0284 0.7234 0.764 0.347 2.548 
3 4-12-6 0.0453 0.7844 0.713 0.3354 2.824 
4 4-16-6 0.0432 0.7987 0.8000 0.542 1.71 
5 4-20-6 0.0437 0.7485 0.738 0.687 2.1 
6 4-24-6 0.0307 0.7862 0.800 0.544 2.68 
7 4-28-6 0.0234 0.8341 0.812 0.354 6.84 
8 4-32-6 0.0321 0.8536 0.832 0.213 2.14 
9 4-35-6 0.0213 0.9015 0.890 0.176 5.24 
10 4-40-6 0.0546 0.8748 0.843 0.321 2.548 
11 4-44-6 0.0612 0.8458 0.8140 0.425 2.824 
12 4-48-6 0.0232 0.8920 0.824 0.325 1.71 
13 4-52-6 0.0242 0.8632 0.814 0.432 2.1 
14 4-10-10-6 0.0536 0.7909 0.783 0.635 2.14 
15 4-15-15-6 0.0653 0.7385 0.760 0.324 5.24 
16 4-18-18-6 0.0432 0.8002 0.792 0.432 2.548 
17 4-20-20-6 0.0354 0.8109 0.783 0.542 2.824 
18 4-22-22-6 0.0303 0.8408 0.8209 0.300 1.71 
19 4-25-25-6 0.0213 0.8943 0.87601 0.323 2.1 
20 4-28-28-6 0.0201 0.9134 0.89501 0.210 2.68 
21 4-32-32-6 0.0165 0.9232 0.91232 0.243 6.84 
22 4-35-35-6 0.0124 0.9137 0.92408 0.321 2.14 
23 4-40-40-6 0.0231 0.8901 0.90341 0.314 2.548 
24 4-44-44-6 0.0452 0.8530 0.87632 0.241 2.824 
25 4-46-46-6 0.0354 0.8322 0.85352 0.310 1.71 

Table 5  The actual value of responses for the tested input 
Ex.No MRR TWR Roughness Roundness Taper angle overcut 

1 1.045899 1.018797 7.065147 84.85563 5.681909 0.46992 
2 1.085849 1.070194 6.53382 100.8786 4.994312 0.624187 
3 0.967932 1.00063 5.232679 83.48449 5.279503 0.598114 
4 0.780454 1.085435 8.047817 79.33548 5.581564 0.634101 
5 0.553376 1.083306 7.521314 -179.099 5.571762 0.480875 
6 0.349042 1.012289 7.623175 39.60496 6.598838 0.742319 
7 0.417971 1.046649 6.234103 66.94923 6.462446 0.741111 

TRANSACTIONS OF FAMENA XL-3 (2016) 75



S. Sivasankar, R. Jeyapaul  Modelling of an Artificial Neural Network  
  for Electrical Discharge Machining of Hot Pressed  
  Zirconium Diboride-Silicon Carbide Composites 

Ex.No MRR TWR Roughness Roundness Taper angle overcut 
8 2.181339 1.005055 7.886682 132.2382 2.707276 0.397083 
9 0.973873 1.014343 9.325849 135.8369 1.136477 0.181976 
10 0.976746 1.001733 9.028151 118.0327 3.23885 0.211941 
11 1.657861 1.005864 12.80665 123.2341 1.230785 0.145051 
12 0.459418 1.008207 7.280956 109.407 3.852926 0.15913 
13 1.947682 1.012802 6.377133 407.0044 3.515488 0.279902 
14 0.483159 1.001031 5.629013 136.7531 5.350721 0.599603 
15 0.543978 1.066087 14.54474 203.1373 4.33298 0.264018 
16 0.896047 1.018174 9.590224 72.72493 5.491963 0.72368 
17 0.715599 1.033229 7.114989 70.67075 5.730673 0.6244 
18 0.339785 1.071455 7.581819 56.19326 6.676842 0.76019 
19 2.207994 1.003442 9.125514 129.7458 2.504823 0.297056 
20 0.939778 1.015785 9.32216 131.849 3.362519 0.426932 
21 0.427303 1.005561 6.778119 103.8383 2.981467 0.200074 
22 0.554861 1.00003 13.15121 101.0213 3.441843 0.251972 
23 1.82323 1.00841 6.776501 154.4601 4.155108 0.236064 
24 0.485076 1.01147 5.796068 153.4353 5.347471 0.604555 
25 0.529735 1.002335 8.403999 232.8799 5.384952 0.334023 
26 0.369114 1.00013 13.09564 186.4577 5.252543 0.387108 
27 1.030794 1.060648 6.386874 78.93812 6.026337 0.523916 
28 0.862509 1.044027 7.68026 86.48564 3.003193 0.53217 
29 0.654967 1.062575 8.705852 108.221 2.467499 0.195002 
30 0.339989 1.033229 7.271856 172.068 6.582019 0.844152 
31 0.456973 1.049395 7.927389 187.5236 2.689895 0.584988 
32 1.794957 1.004349 6.22574 63.86913 3.054973 0.11798 
33 2.170367 1.011061 5.203064 177.199 1.718313 0.079963 
34 1.033762 1.060648 6.162325 44.1092 1.274006 0.190038 
35 0.841712 1.014652 7.56707 114.1762 2.153177 0.202127 
36 0.716745 1.033229 7.552726 20.5633 4.492675 0.190148 
37 1.550319 1.009428 6.461773 132.6367 5.948445 0.166151 
38 0.433078 1.049395 5.662207 142.1318 6.441709 0.143225 
39 1.847393 1.001934 4.868083 461.6762 1.8938 0.418941 
40 1.120359 1.01147 7.551064 124.967 5.900054 0.430125 
41 1.776164 1.060648 8.274899 271.3755 5.734346 0.272521 
42 1.229525 1.062575 9.499401 130.8801 2.426718 0.365596 
43 0.9091 1.070194 8.115488 130.267 4.321396 0.23652 
44 0.679081 1.083424 5.427597 371.3116 3.641154 0.168998 
45 1.017651 1.012494 8.284349 134.7461 3.376914 0.286051 
46 0.551713 1.032908 5.389261 132.1984 3.157726 0.479038 
47 1.22927 1.012494 5.374818 135.1184 3.416941 0.480019 
48 0.603142 1.02046 6.024034 96.28669 4.463554 0.419141 
49 2.0704 1.02622 7.849264 141.6982 1.596625 0.593089 
50 2.057111 1.010959 10.05901 144.5325 2.056398 0.62647 
51 1.890865 1.036871 5.78474 95.50459 6.381973 0.342246 
52 1.172742 1.008919 11.45136 110.8623 5.7144 0.063991 
53 0.901901 1.001332 5.952797 191.7697 5.896619 0.340065 
54 1.383536 1.012494 8.81219 83.25519 0.650336 0.498835 
55 0.767173 1.00053 4.913989 90.19084 1.242525 0.782666 
56 0.509131 1.019212 12.73368 81.32699 6.250367 0.157848 
57 2.066277 1.004652 5.362898 221.1032 0.360596 0.383126 
58 1.508088 1.060648 5.096977 81.41493 3.120982 0.559439 
59 0.310935 1.036871 9.542096 153.7442 3.487626 0.503136 
60 1.898994 1.01942 5.014154 109.288 4.114316 0.336973 
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Table 6  Response values obtained by the optimal network and prediction error 

Ex.No MRR P.E TWR P.E Roughness P.E Roundness P.E Taperangle P.E Overcut P.E 
1 1.045 0.086 0.117 1.845 7.111 -0.649 91.751 -8.126 5.681 0.016 0.470 -0.017
2 1.087 -0.106 0.117 6.559 6.361 2.645 110.687 -9.723 4.961 0.667 0.624 0.030
3 0.968 -0.007 0.117 0.063 5.268 -0.675 92.050 -10.26 5.270 0.180 0.598 0.019
4 0.781 -0.070 0.117 7.871 8.045 0.035 73.567 7.271 5.556 0.458 0.634 0.016
5 0.553 0.068 0.117 7.690 7.146 4.990 114.444 163.9 5.558 0.247 0.480 0.182
6 0.349 0.012 0.117 1.214 7.405 2.862 41.786 -5.507 6.596 0.043 0.742 0.043
7 0.418 -0.007 0.117 4.457 6.250 -0.255 64.288 3.975 6.466 - 0.741 0.015
8 2.184 -0.122 0.117 0.503 7.781 1.340 131.138 0.832 2.720 - 0.398 -0.231
9 0.974 -0.013 0.117 1.414 9.321 0.052 141.106 -3.879 1.137 - 0.182 -0.013

10 0.977 -0.026 0.117 0.173 9.246 -2.413 91.794 22.23 3.252 - 0.212 -0.028
11 1.660 -0.129 0.117 0.583 13.74 -7.288 113.384 7.993 1.213 1.445 0.145 0.035
12 0.459 0.091 0.117 0.814 7.046 3.227 69.922 36.09 3.873 - 0.159 0.082
13 1.947 0.035 0.117 1.264 5.988 6.102 414.245 -1.779 3.499 0.469 0.280 -0.035
14 0.484 -0.174 0.117 0.103 5.628 0.018 255.277 -86.67 5.371 - 0.601 -0.233
15 0.544 -0.004 0.117 6.199 14.80 -1.755 206.422 -1.617 4.327 0.138 0.264 0.007
16 0.898 -0.218 0.117 1.785 9.551 0.409 81.961 -12.70 5.460 0.582 0.723 0.094
17 0.716 -0.056 0.117 3.216 7.258 -2.010 71.687 -1.438 5.725 0.099 0.624 0.064
18 0.339 0.231 0.117 6.669 7.221 4.759 40.358 28.18 6.693 - 0.760 0.025
19 2.207 0.045 0.117 0.343 8.918 2.274 135.164 -4.176 2.506 - 0.297 0.019
20 0.941 -0.130 0.117 1.554 9.400 -0.835 110.529 16.17 3.368 - 0.427 -0.016
21 0.426 0.305 0.117 0.553 6.629 2.200 95.741 7.798 2.960 0.720 0.200 0.037
22 0.555 -0.025 0.117 0.003 14.24 -8.279 106.929 -5.848 3.450 - 0.252 -0.011
23 1.832 -0.481 0.117 0.834 6.688 1.306 341.048 -120.8 4.149 0.147 0.236 0.027
24 0.483 0.428 0.117 1.134 5.607 3.262 257.894 -68.08 5.371 - 0.606 -0.239
25 0.530 -0.050 0.117 0.233 8.305 1.178 125.499 46.11 5.422 - 0.334 0.007
26 0.369 0.031 0.117 0.013 13.48 -2.935 131.173 29.65 5.261 - 0.387 0.028
27 1.031 -0.020 0.117 5.718 6.279 1.689 77.267 2.117 6.027 - 0.524 -0.016
28 0.862 0.059 0.117 4.217 7.552 1.670 82.906 4.139 3.038 - 0.532 0.032
29 0.655 -0.005 0.117 5.889 8.684 0.251 117.949 -8.989 2.475 - 0.195 0.001
30 0.339 0.291 0.117 3.216 7.131 1.937 43.189 125.1 6.682 - 0.844 0.018
31 0.457 -0.006 0.117 4.707 8.197 -3.401 185.894 0.869 2.702 - 0.585 -0.002
32 1.793 0.109 0.117 0.433 6.175 0.815 60.166 5.798 3.047 0.261 0.118 -0.017
33 2.169 0.063 0.117 1.094 5.040 3.134 183.906 -3.785 1.719 - 0.080 -0.046
34 1.034 -0.023 0.117 5.718 6.049 1.839 45.129 -2.312 1.275 - 0.190 0.020
35 0.843 -0.153 0.117 1.444 7.562 0.067 106.161 7.020 2.158 - 0.202 0.063
36 0.716 0.104 0.117 3.216 7.592 -0.520 60.744 395.4 4.465 0.616 0.190 0.078
37 1.567 -1.076 0.117 0.934 6.093 5.707 250.166 -88.61 5.956 - 0.166 0.091
38 0.433 0.018 0.117 4.707 5.722 -1.056 86.274 39.30 6.441 0.011 0.143 0.157
39 1.849 -0.087 0.117 0.193 4.742 2.590 444.368 3.749 1.907 - 0.419 -0.014
40 1.120 0.032 0.117 1.134 7.756 -2.714 140.113 -12.12 5.882 0.306 0.430 0.029
41 1.790 -0.779 0.117 5.718 8.178 1.171 121.332 55.29 5.709 0.442 0.272 0.191
42 1.231 -0.120 0.117 5.889 9.748 -2.617 241.212 -84.30 2.448 - 0.365 0.163
43 0.909 0.011 0.117 6.559 7.668 5.514 91.187 170.0 4.372 - 0.236 0.220
44 0.679 0.012 0.117 7.700 5.361 1.227 317.360 14.53 3.635 0.169 0.169 -0.001
45 1.017 0.064 0.117 1.234 8.287 -0.032 121.417 9.892 3.381 - 0.286 0.018
46 0.552 -0.052 0.117 3.186 4.863 9.765 131.618 0.439 3.160 - 0.479 0.008
47 1.229 0.022 0.117 1.234 4.811 10.49 143.593 -6.272 3.418 - 0.480 0.004
48 0.600 0.521 0.117 2.005 5.780 4.051 198.158 -105.8 4.469 - 0.420 -0.205
49 2.071 -0.029 0.117 2.555 7.536 3.991 171.469 -21.01 1.601 - 0.593 0.015
50 2.056 0.054 0.117 1.084 9.767 2.903 174.841 -20.97 2.047 0.457 0.626 0.075
51 1.892 -0.060 0.117 3.556 5.724 1.050 125.770 -31.69 6.347 0.548 0.342 0.072
52 1.173 -0.022 0.117 0.884 11.20 2.195 113.850 -2.695 5.702 0.217 0.064 -0.014
53 0.902 -0.011 0.117 0.133 5.796 2.634 195.398 -1.892 5.884 0.214 0.340 0.019
54 1.375 0.617 0.117 1.234 8.640 1.954 82.749 0.608 0.626 3.742 0.499 -0.033
55 0.757 1.326 0.117 0.053 4.642 5.535 212.670 -135.8 1.201 3.342 0.786 -0.426
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Ex.No MRR P.E TWR P.E Roughness P.E Roundness P.E Taperangle P.E Overcut P.E 
56 0.506 0.615 0.117 1.885 13.16 -3.348 58.100 28.56 6.384 - 0.158 -0.096
57 2.067 -0.035 0.117 0.463 4.859 9.396 205.186 7.199 0.361 - 0.383 0.033
58 1.514 -0.392 0.117 5.718 5.043 1.059 285.685 -250.9 3.131 - 0.561 -0.279
59 0.311 -0.021 0.117 3.556 9.840 -3.122 164.371 -6.912 3.481 0.190 0.503 0.027
60 1.897 0.105 0.117 1.905 4.942 1.439 111.147 -1.701 4.090 0.591 0.337 -0.008

9. Influences of parameters on the machinability behaviour of the composite 
One of the best techniques to optimize quality characteristics is the desirability function. 

It is defined as a function which transforms a set of properties into a single objective called 
“desirability”. The global knit quality index is calculated using the desirability function, an 
individual index “di” measuring the requirement degree of each property. This index, varying 
between 0 corresponding to a null satisfaction, and 1 corresponding to total requirements [5], 
depends on the following three factors:-, 

1. The objective given to each property in the global knit quality definition such as 
maximize, minimize, or reaching a target value. 

2. The acceptance interval [B, A] defining the lower and upper limits for each property in 
which the requirement is satisfied and the value of s is chosen by the investigator. 

3. The consumer requirement level.  
In this study, minimization of outputs like roughness, roundness, tool wear rate, taper 

angle, and overcut has to be carried out. These responses are normalized using equation 11. 
The objective function of material removal rate is maximization, so the value of MRR is 
normalized using equation 12.          
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In this case, the weights are assigned equally. Since the r desirability functions d1…… dr 
are on the [0, 1] scale, they can be combined to achieve the global desirability function (D). 
One method of doing this is by using the geometric mean		 
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The geometric mean has the property of showing that if any one model is undesirable 
(dr = 0), the global desirability is also unacceptable (D = 0). Once D has been defined and the 
prediction equations for each of the r equations have been computed, the global desirability can 
be used to optimize or rank the predictors. These functions are on the same scale and are 
discontinuous at the points A, B. The values of s can be chosen so that the desirability criterion 
is easier or more difficult to satisfy. All the responses are given equal weightage of 0.16666. 
Global desirability (D) values of all the experiments are calculated by substituting ‘w’ values in 
the equation (13). The tools are ranked based on the global desirability values with equal 
weights. Figure 5 presents the main effect plot drawn by taking the average of global 

78 TRANSACTIONS OF FAMENA XL-3 (2016)



Modelling of an Artificial Neural Network   S. Sivasankar, R. Jeyapaul 
for Electrical Discharge Machining of Hot Pressed  
Zirconium Diboride-Silicon Carbide Composites 

Desirability value corresponding to each tool, pulse on time, pulse off time and workpiece. This 
plot shows that GR is the best tool and the workpiece with 25% SiC is the best workpiece. This 
plot also shows that the pulse on time of 7μs and the pulse off time of 1μs are the best values.  

 
Fig. 5  Main effects plot of global desirability 

10. Conclusion 

DFA confirmed that all the tools, except tantalum, produce a better MRR with the 
workpiece of 30 vol. % of SiC. Tantalum produces a higher MRR with the workpiece of 25 
vol. % of SiC.  Graphite produces a higher MRR with all the workpieces. After graphite, 
niobium produces the second highest MRR. The feed forward neural network is trained with 
data samples using the standard back propagation algorithm. Percentage of SiC in the 
workpiece material, the product of thermal conductivity and the melting point of the tool 
material, the pulse on time and the pulse off time are considered as input parameters while 
MRR, TWR, roughness, roundness, taper angle and overcut are considered as output 
responses. Using input/output data of the experiments, the model is trained and tested. The 
network consists of one input layer with four neurons representing the four input parameters 
and one output layer with six output neurons indicating the six output parameters. The 
weights are randomly generated for the first iteration. The network is trained using the 
Levenberg - Marquardt algorithm. The network is trained initially with one neuron in the 
hidden layer i.e., the 4-4-6 topology is considered for training. The feed forward back 
propagation neural network model with one hidden layer having 35 neurons is found to be the 
optimum network model (4-35-35-6). It has the mean correlation coefficient of 0.92408. 
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