
K. Punitha, B. Latha Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy sustava s Naive Bayes ...

Tehnički vjesnik 23, 6(2016), 1795-1804 1795

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)
DOI: 10.17559/TV-20151219112129

SAMPLING IMBALANCE DATASET FOR SOFTWARE DEFECT PREDICTION USING
HYBRID NEURO-FUZZY SYSTEMS WITH NAIVE BAYES CLASSIFIER

K. Punitha, B. Latha

Original scientific paper
Software defect prediction (SDP) is a process with difficult tasks in the case of software projects. The SDP process is useful for the identification and
location of defects from the modules. This task will tend to become more costly with the addition of complex testing and evaluation mechanisms, when
the software project modules size increases. Further measurement of software in a consistent and disciplined manner offers several advantages like
accuracy in the estimation of project costs and schedules, and improving product and process qualities. Detailed analysis of software metric data also gives
significant clues about the locations of possible defects in a programming code. The main goal of this proposed work is to introduce software defects
detection and prevention methods for identifying defects from software using machine learning approaches. This proposed work used imbalanced datasets
from NASA’s Metrics Data Program (MDP) and software metrics of datasets are selected by using Genetic algorithm with Ant Colony Optimization
(GACO) method. The sampling process with semi supervised learning Modified Co Forest method generates the balanced labelled using imbalanced
datasets, which is used for efficient software defect detection process with machine learning Hybrid Neuro-Fuzzy Systems with Naive Bayes methods.
The experimental results of this proposed method proves that this defect detecting machine learning method yields more efficiency and better performance
in defect prediction result of software in comparison with the other available methods.

Keywords: Genetic algorithm with Ant Colony Optimization (GACO); NASA’s Metrics Data Program (MDP); Semi supervised learning Modified Co
Forest method; Software defect prediction (SDP)

Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy
sustava s Naive Bayes klasifikatorom

 Izvorni znanstveni članak
Predviđanje grešaka u računalnom programu (SDP-software defect prediction) je težak zadatak kad se radi o projektima računalnog programa. Taj je
postupak koristan za identifikaciju i lokaciju neispravnosti iz modula. Taj će zadatak postati skuplji uz dodatak složenih mehanizama za ispitivanje i
ocjenjivanje kad se poveća veličina modula programa. Daljnje konsistentne i disciplinirane provjere programa nude nekoliko prednosti, na pr. točnost u
procjeni troškova i programiranja projekta, povećanje kvalitete postupka i proizvoda. Detaljna analiza metričkih podataka programa također može
značajno pomoći u lociranju mogućih grešaka u programskom kodiranju. Osnovni je cilj ovoga rada predstaviti metode za detekciju i otkrivanje grešaka u
programu primjenom postupaka strojnog učenja. U radu su korišteni nebalansirani nizovi podaka iz NASA-inog Metrics Data Programa (MDP) i
programska metrika niza podataka izabrana je primjenom Genetičkog algoritma metodom Optimizacije kolonije mrava (Ant Colony Optimization -
GACO). Postupak uzorkovanja metodom Modified Co Forest - polu-nadgledanog učenja, generira balansirano označene nizove podataka koristeći
nebalansirane nizove, a primjenjuje se za učinkoviti postupak otkrivanja greške u programu s Hibridnim Neuro-Fuzzy sustavima za strojno učenje po
Naive Bayes metodama. Eksperimentalni rezultati predložene metode dokazuju da je ova metoda za otkrivanje greške u računalnom program učinkovitija
od drugih postojećih metoda, s boljim rezultatima u predviđanju greške.

Ključneriječi: Genetički algoritam s optimizacijom kolonije mrava (GACO); NASA-in Metrics Data Program (MDP); modificirana Co Forest metoda
polu-nadgledanog učenja; predviđanje greške u računalnom programu (SDP)

1 Introduction

The software defect prediction is considered as a
crucial activity in the process of decision support in the
field of software quality assurance [1÷4].

In a view to apply defect prediction schemes in the
process of assuring quality software products, several
types of machine learning classification algorithms have
been adopted for predicting the software defect [5]. The
process of defect prediction has been utilizing various
machine learning approaches including Logistic
Regression [6], Decision Trees [7], Neural Networks [8]
and Naive-Bayes [9]. The two important data quality
aspects such as class imbalance and noisy data set
attributes [10] generally influence the performance of
classification.

The imbalanced aspects of the datasets holding
software defect have lesser defective modules than the
defect-free datasets [11]. As many of the datasets are
found to be prone to non-defect type, prediction of
software defect using models based on the imbalance
characteristics becomes impractical. There is a decreased
performance of software defect prediction owing to the
noisy attributes of the datasets [12]. The presumption of

noise prone data points having malicious aspects present
in the datasets is impossible as the data modelling is based
on the simple method. In the field of machine learning
techniques, feature selection plays a key role by involving
the learning task that enables the process of predicting
datasets possessing high dimensional and noisy attributes.
Most feature selection algorithms involve local search
rather than the global search throughout the process. This
is due to the reason that the issues in the feature selection
methods are found in the regions ranging from sub-
optimal and near optimal ends. Hence, finding the
solutions in the regions ranging between near-optimal and
optimal solutions becomes very difficult by means of
feature selection techniques.

In contrast to feature selection, the method of genetic
algorithm enables the capability of global by considering
the entire region of search space. This aspect eventually
results in the substantial increase in the capacity to obtain
high-quality solutions in a given time period. The present
work deals with the method of modified co-forest
possessing multi-class classification datasets. This method
helps in resolving the problem of imbalance dataset
during the process of predicting the software defects by
means of employing semi-supervised learning. This

Sampling imbalance dataset for software defect prediction using hybrid neuro-fuzzy systems with Naive Bayes classifier K. Punitha, B. Latha

1796 Technical Gazette 23, 6(2016), 1795-1804

effective method of final defect prediction involves the
process of converting the unlabelled data into balanced
labelled data. By combining Genetic Algorithm method
with Ant Colony Optimization (GACO) and Bagging
technique helps in improving the overall accuracy of
predicting the software defects. The method of GACO
offers the task of region selection as that of the feature
selection technique whereas the bagging technique solves
the problem of handling the class imbalance. The reason
for selecting the bagging technique is attributed to the
efficient handling of class imbalance problem while
occurring in the process of dataset selection. The hybrid
method of Fuzzy Naive Bayes classifier learning helps in
prediction of the noisy defects present in the software
modules. This is done by utilizing the selected modules of
software data matrices with the help of the GACO as
important technique in the method of software detection
and prediction.

The research strategy as reported earlier [13]
suggested the need for utilizing several machine learning
algorithms for the performance stability in spite of
employing various imbalance levels for identifying the
prediction datasets having the software defect. The
primary case study was performed on the NASA MDP
dataset from open repository by means of the multivariate
binary logistic regression for both forward and backward
feature selection. The performance analysis results also
have shown the instability with the imbalance of about
80%. The method of feature selection approach integrated
with data sampling technique has been proposed [14]
which enables to resolve the problems such as high
dimensional defects and class imbalance existing in data
repositories in the process of software quality modelling.
The process of choosing a data subset having required
aspects so as to either maintain or enhance the quality of
prediction models is termed the feature selection. The
data sampling task aims to identify the well balanced
dataset with instances of either adding or removing the
data. The integration of both these techniques would
result in incorporating three various approaches as given
below:
• Performing Sampling before Feature Selection,

however Retaining the Unsampled Data Instances.
• Performing Sampling before Feature Selection,

Retaining the Sampled Data Instances,
• Performing Sampling after Feature Selection.

By considering nearly 6 real-world software datasets,
the empirical study has been performed. This is conducted
by employing the selection approach of hybrid correlation
based feature selection with the technique of random
under sampling method which incorporates the filter-
based (there is an absence of learning algorithm in the
process of selection) feature subset for performing the
study. The study results have deduced that it follows the
selection Approach 1 in which the sampling is performed
before feature selection in which the unsampled data
instances are retained. Further, this approach is observed
to perform well when compared to the rest of the other
approaches.

The software defect prediction using the method of
dictionary learning has also been described earlier [15].
This technique utilizes the metric features which have

been derived out of the open source software by learning
the sparse representation coefficients from the multiple
dictionaries (including total dictionary and defective
module and defective-free module sub-dictionaries).
Moreover, this technique has also considered the problem
of misclassification cost of defective modules as it would
lead to incur higher risk cost which is relatively critical
than the defective-free modules. This shortcoming has
necessitated the introduction of a cost-sensitive
discriminative dictionary learning (CDDL) approach to
classify and predict the software defect systems. The
performance evaluation is done by comparing the
techniques in resolving the test data which is most
commonly derived from the datasets of NASA projects.
The performance evaluation results have also confirmed
the efficiency of CDDL approach outperforming other
related state-of-the-art techniques for defect prediction.

In the area of Software Engineering, the method of
software defect prediction (SDP) is still emerging as a
potential field of research as it aims to identify the
software modules which are prone to defects. The
efficient allocation of restricted testing resources helps in
SDP to identify the defect-prone modules. It is known that
SDP requires acceptable and sufficient local data within a
company, however there are few instances in which local
data has not been available as in case of pilot projects.
Such projects or companies having no local data can
utilize the approach of the cross-project defect prediction
(CPDP) by making use of the external data for enabling
the performance of the classifiers.

The critical challenge in employing CPDP approach
lies on variation in the distributions considered between
test and training data. This can be overcome by choosing
the source data instances which are almost like target data
for dealing with the classifiers’ building. It is usual that
the software datasets possess the problem of class
imbalance that specifies the lesser defective class to clean
class ratio. This lesser ratio would generally affect the
classifier performance. Hence, a novel method of hybrid
classification called Hybrid Instance Selection [16] was
proposed in which the Nearest-Neighbor (HISNN) was
introduced by selective learning of both local knowledge
(via k-nearest neighbour) and global knowledge (via
Naıve Bayes). There are also examples showing strong
local knowledge that is identified through nearest -
neighbours carrying the label of the same class. The
previous reported works had employed either low PD
(probability of detection) or high PF (probability of false
alarm) which are considered impractical in real-world
software systems. The experimental results had specified
the higher performance of HISNN generates when
compared to the overall performance of high PD and low
PF.

The prediction of software quality has been given by
the new approach [17] in which the Support Vector
Machine (SVM) is adopted for classifying the software
modules in accordance to the complexity metrics. The
conventional models for predicting software quality have
not performed well in SDP as only limited information
pertaining to software complexity metrics was available
during the life cycle of early software systems. It is well-
known that SVM typically performs well ahead than other
models as it can resolve even high-dimensional spaces

K. Punitha, B. Latha Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy sustava s Naive Bayes ...

Tehnički vjesnik 23, 6(2016), 1795-1804 1797

under the situation having small insignificant training
samples. This drives the need for incorporating the SVM-
based software classification model as its features are
more suitable for early prediction of the software quality
even under the condition of only a small number of
sample datasets available in the search space. The
performance results based on experiments based on data
corresponding to a Medical Imaging System software
metrics confirmed that the proposed SVM prediction
model facilitates better prediction of software quality
when compared to other commonly used software quality
prediction models.

Input The labelled set 𝑠𝑠𝑗𝑗 , the unlabeled set 𝑢𝑢𝑗𝑗 within class

𝑗𝑗the confident threshold 𝜃𝜃, the number of random
trees N

Step 1 Construct a random forest with N random trees
𝑅𝑅 = {𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑁𝑁} in class 𝑗𝑗

Step 2 Repeat the step 3 to 9 until none of the random trees
of 𝑅𝑅changes

Step 3 Update the number of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖(𝑖𝑖 = 1, 2, . . .) of
each labeled and unlabelled dataset in class 𝑗𝑗

Step 4 For each random tree 𝑟𝑟𝑛𝑛𝑖𝑖𝑖𝑖 𝑅𝑅, do step 5 to 9
Step 5 Construct associated ensemble 𝑅𝑅−𝑛𝑛 within class 𝑗𝑗
Step 6 Use 𝑅𝑅−𝑛𝑛to label all the unlabeled data, and estimate

the labeling confidence
Step 7 Add the unlabelled data whose labelling confidences

are above threshold 𝜃𝜃 to a newly labeled set 𝑠𝑠𝑗𝑗,𝑖𝑖
′

Step 8 Under sample 𝑠𝑠𝑗𝑗,𝑖𝑖
′ to make (1) holds. If it does not hold,

skip step 9
Step 9 Update 𝑟𝑟𝑛𝑛by learning a random tree using 𝑠𝑠𝑗𝑗 cup 𝑠𝑠𝑗𝑗,𝑖𝑖

′
Output A balanced labelled dataset is generated by the

majority voting from all the component trees within
the class 𝑗𝑗

Figure 1 Block diagram of the proposed methodology

2 Proposed methodology

The effectiveness of Software defect prediction
models is largely shaped by the class distribution of the
training Datasets. Class distribution is defined as the
number of instances of every class in the training dataset.
If the number of instances that belongs to one class is
much higher than the number of instances belonging to

another class, then the problem is called class imbalance
problem. The class with more instances is known as
majority class and the one with lesser instances is known
as minority class.

The problem widens when the class under
consideration, i.e. the faulty class is denoted by fewer
instances. Here this work has been introduced for
addressing this imbalance problem defect detection and
prevention method and the flow diagram is given in Fig.
1.

2.1 Iterative Modified Co Forest method for sampling

 For solving the software defects in case of real-world
applications, the sampling of the labelled datasets is done
with respect to the method of normalization distribution.
It is easier to obtain the sample labels in few classes
whereas other classes are difficult to get in spite of the
classes being in similar significant level. In a view to deal
with the problem of imbalance classification in
approaches related to semi-supervised learning machine,
the space having low-dimensional features is assumed to
present several unlabelled samples around a labelled
sample. Therefore, in this work, some unlabelled samples
are selected in case of minority class for creating a
balanced dataset. This is explained by the description of
the sampling model employed in the proposed work as
given below:

Considering the multiclass classification scenarios; let
s = {s1, s2, ..., sn} represent the size set of labelled samples
in labelled dataset, where sj (j = 1, ..., n) is the number of
labelled samples in class j. In this work, a standard
variance var(s) is used for representing the dispersion
degree of the quantity of labelled samples in every class,
and the imbalance ratio var(s) can be defined as follows:

𝑣𝑣𝑣𝑣𝑣𝑣(𝑠𝑠) = �1
𝑛𝑛
∑ (𝑠𝑠𝑗𝑗 − 𝑠̅𝑠𝑛𝑛
𝑗𝑗=1)^2 �

1
2 (1)

where s̅ = �1

𝑛𝑛
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑠𝑠𝑗𝑗𝑛𝑛

𝑗𝑗=1 . In this work Co
Forest [18] is applied in order to limit the adverse effect
of imbalanced labelled dataset in the defect prediction
process. This proposed work is based on a popular
ensemble learning algorithm called Random Forest for
tackling the issues pertaining to the determination of the
most confident examples for labelling and producing the
final classification.
 The Algorithm of Modified Co Forest is proposed in
Algorithm 1. The proposed algorithm works as follows.
Let sj represent the labelled data set in class j and uj
represent the unlabelled data set. First, N random trees are
initialized from the training sets bootstrap-sampled from
the labelled data set sj in class j for the creation of a
random forest. Afterwards, in each learning iteration each
random tree is fine-tuned with the original labelled
examples sj and the newly labelled examples sj chosen by
its associated ensemble (i.e., the ensemble of the other
random trees with the exception of the current tree within
the class j). The learning process repeats all the labelled
samples in class j with labelled samples in other classes
till a certain stopping criterion is reached. At the end, the
prediction is made on the basis of the majority voting

Defect Prevention using defects
modification Root Cause Analysis

Training data sets

Sampling process using iterative
Modified Co Forest

Machine learning Hybrid Neuro-
Fuzzy Systems with Naïve Bayes Test data

Validation process

Feature selection using Genetic
Ant Colony Optimization

(GACO) and bagging

Sampling imbalance dataset for software defect prediction using hybrid neuro-fuzzy systems with Naive Bayes classifier K. Punitha, B. Latha

1798 Technical Gazette 23, 6(2016), 1795-1804

from the ensemble of random trees. It is to be noted that
in this way, Modified Co Forest is capable of exploiting
the advantages of both semi-supervised learning and
ensemble learning at the same time, as said in [19].

Algorithm 1: Sampling Modified Co Forest
The semi-supervised learning process will be useful

only if the following condition is satisfied.

,11

1
<< −

− j,i

j,i

j,i

j,i

w
w

ê
ê

 (2)

where j,iê and 1−j,iê represent the estimated multi class
classification error of the ith random tree in the jth and
(j−1)th class, respectively, and 𝑤𝑤𝑖𝑖 ,𝑗𝑗 and 𝑤𝑤𝑖𝑖,𝑗𝑗−1 represent
the total weights of its newly labelled sets
𝑠𝑠 𝑖𝑖,𝑗𝑗 and (𝐿𝐿𝑖𝑖,𝑗𝑗−1′) in the jth and (j−1)th class, respectively,
and 𝑖𝑖 ∈ {1, 2, . . . ,𝑁𝑁}.

2 .2 Feature selection using hybrid Genetic algorithm
 with Ant Colony Optimization (GACO) and bagging
 Technique

 From the datasets having balanced and labelled
samples, the method of feature selection is employed for
performing the software defect prediction using the
Bagging technique and Genetic Algorithm (GA)
combined with ACO (GACO). The aim of utilizing the
GACO is to identify the optimum solution among the set
showing likely potential solution. The probabilistic
technique inspired by means of the natural foraging
behaviour of ants enables the performance of cross
validation approach in ant population. This technique by
incorporating the genetic algorithm for the process of
feature selection as similar to ant population is termed the
genetic ant colony optimization. The reason for highly
efficient cross validation process depends on the nature of
the real ants identifying the shortest route by pheromone
deposition along the routing path which subsequently
offers improved fitness value in choosing the shortest
path.

2.2.1 Genetic Algorithm

 Accuracy of the final result of the defect prediction
process is improved on the basis of the number of selected
features and the feature cost, which is useful for
constructing a fitness function with the help of the GA.
Every chromosome is assessed by the following fitness
function equation.

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑊𝑊𝑎𝑎 ∗ 𝑎𝑎 + 𝑊𝑊𝑓𝑓 �𝑃𝑃 + �∑ 𝑐𝑐𝑖𝑖 ∗ 𝑓𝑓𝑖𝑖
𝑛𝑛𝑓𝑓
𝑖𝑖=1 ��

−1
 (3)

where ii is classification accuracy, 𝑊𝑊𝑎𝑎 is weight of
classification accuracy, 𝑓𝑓𝑖𝑖 is feature value, 𝑊𝑊𝑓𝑓 is feature
weight, 𝑐𝑐𝑖𝑖 is feature cost, P is constant.

2.2.2 Ant Colony Optimization (ACO)

ACO Graph representation. The problem

pertaining to the process of feature selection can also be
mentioned and resolved in the ACO based problem

solving method. It is known that graphical representation
of the problem is required by the ACO in which the
features are represented by the nodes. The edges between
the nodes represent the method of choosing the
subsequent feature. Then, the process of searching subset
possessing the optimal feature takes the form of an ant
traversed along the graphical representation where in the
traversal stopping criterion can be satisfied by the lesser
number of nodes which have spanned the path.

Heuristic attractiveness. In the proposed work, the
performance of the classifier algorithm is considered with
respect to the available heuristic information for selecting
the feature datasets. The heuristic attractiveness tends to
build the probabilistic transition rule by merging the
pheromone levels in traversal and nodes. This enables the
representation of the probability of ant k including its
feature i in the resulting solution at the given time step of
t:

𝑃𝑃𝑖𝑖𝑘𝑘(𝑡𝑡) = �
[𝜏𝜏𝑖𝑖(𝑡𝑡)𝛼𝛼.[𝜂𝜂𝑖𝑖]𝛽𝛽]

∑ 𝜏𝜏𝑢𝑢(𝑡𝑡)𝛼𝛼.[𝜂𝜂𝑢𝑢]𝛽𝛽𝑢𝑢𝑢𝑢𝑗𝑗𝑘𝑘

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 if 𝑖𝑖ϵ𝐽𝐽𝑘𝑘 (4)

where Jk denotes possible feature datasets that can be
included in the partial solution; τi and ηi are respectively
the pheromone value and heuristic desirability that is
associated with feature i. α and β are two parameters
which help in determining the relative importance
between pheromone value and heuristic information.

Pheromone update rule. Once all the ants have
finished their solutions, triggering of pheromone
evaporation on all nodes is done, and then in accordance
with Eq. (3) each ant k deposits a quantity of pheromone,
Δ(𝑖𝑖𝑖𝑖), on each node that it has utilized,

Δ𝜏𝜏𝑖𝑖
𝑗𝑗(𝑡𝑡) = � 𝜙𝜙. 𝛾𝛾. (𝑉𝑉𝑗𝑗(𝑡𝑡)) + 𝜑𝜑(𝑛𝑛−[𝑉𝑉𝑗𝑗(𝑡𝑡)])

𝑛𝑛
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑉𝑉𝑗𝑗(𝑡𝑡) (5)

where 𝑉𝑉𝑗𝑗(t) the feature subset is discovered by ant 𝑗𝑗 at
iteration t, and |𝑉𝑉𝑗𝑗(t)| is feature subset length. The
pheromone is updated based on both the measure of the
classifier performance, ((t)), and feature subset length. 𝜑𝜑
and 𝜙𝜙 are two parameters that do the control of the
relative weight of classifier performance and feature
subset length 𝜙𝜙 ∈ [0,1] and 𝜑𝜑 = 1−𝜑𝜑.

2.2.3 Bagging approach

 The Bagging approach, otherwise named as bootstrap
aggregating method has been reported [20] which has
aimed at combining the classifications of stochastically
generated training sets for overall improvement of the
classification performance. This is done by the bagging
classifier by means of differentiating the training set into
several other training sets using the random sampling
method. This in turn leads to the construction of sampling
models with respect to the newly identified training sets.
Finally, the classification result is achieved by electing
the models based on votes. This tends to limit the
variance thus offering to avoid the problem of over-
fitting. The detailed description of the process of bagging
technique is explained as given below.

K. Punitha, B. Latha Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy sustava s Naive Bayes ...

Tehnički vjesnik 23, 6(2016), 1795-1804 1799

 Given a standard training set D of size n, bagging
builds m new training sets Di, each of size n' < 𝑖𝑖𝑖𝑖, by
sampling from D uniformly and with replacement. By
doing the sampling with replacement, few observations
may be iterated in each Di. If n' = n, then for large n the
set Di is anticipated to have the fraction (1 − 1/e) of the
unique examples of D, the rest being duplicates. This kind
of sample is referred to as a bootstrap sample. The m
models are fitted by making use of the above m bootstrap
samples and merged by doing the average of the output
(for regression) or voting (for classification). Bagging
results in improvements for unstable procedures [20],
which consist of neural network, classification and
regression trees, and subset selection in linear regression.

Steps for proposed feature selection GACO Algorithm 2:
Step 1: Initialization process.

Determine the population of ants.
Cross validate the GA with population of ants to find
the fitness value for best path in graph
representation.
Set the intensity of pheromone trial associated with
any feature.
Determine the maximum of allowed iterations.

Step 2: Solution generation and evaluation of ants.
Assign ant to features and evaluate the mean square
error (MSE) of the classifier.
If an ant is not able to decrease the MSE of the
classifier in ten successive steps, it will finish its
work and exit.

Step 3: Evaluation of the selected subsets.
Sort selected subsets according to classifier
performance and their length. Then, select the best
subset.

Step 4: Check the stop criterion.
Exit, if the number of iterations is more than the
maximum allowed iteration, otherwise continue.

Step 5: Pheromone updating.
Step 6: Generation of new ants.
Step 7: Go to 2 and continue.

2.3 Defect prevention

 The process of defect prevention plays an important,
crucial role in any of the software projects. It must be
noted that the project team used to concentrate much on
defect detection and prevention in most of the present
software organizations. This implies the need for
considering the defect prevention as an important
component requiring attention. Hence, it is necessary to
bring and establish the measures for defect prevention
even at the initial stages of the project till its completion
and execution. On account of cost reduction to minimal
due to the necessary prevention measures, the advantages
owing to the entire cost saving strategy become
remarkably higher when compared to the expenses
sustained during defect solving at the final stage. This
makes it clear that the prevention of the defects at an
initial stage is considerably better in terms of saving cost,
time and the required resources. The basic information on
techniques and processes related to defect injection offers
the efficient prevention of the defect. On practical
application of the awareness on defect prevention, the
quality of software products will be substantially

improved which subsequently would improve the
efficiency of overall production.

2.3.1 Defect prevention using defects Modification

Requests Root Cause Analysis Scheme

 The prime challenge in conducting any method of
software defect measurement remains on identifying the
defect properties for a minimal set as it offers the facile
classification approach. While performing the complete
mapping of the overall activities during the development
process, the overhead which is being added becomes
minimal in the development process. In order to establish
the instruments for measuring the casual relationship
between the software defects, root cause analysis (RCA)
utilizes the modification request based two main
classification methods such as Defect Type and Defect
Trigger. The process of defect type characterizes the
defect dataset based on the nature of the variation to
properly solve the defect. This parameter measures the
overall progress of the product during the entire process
of development. The aspects of defect trigger follow the
defect characterization based on the catalyst which is
responsible for causing the defect and hence leads to the
failure. This parameter helps in yielding the measure of
the verification process. The present work proposes the
method of RCA that plays a significant role during the
prediction analysis of defects in the software systems. The
RCA deals with finding the basic reason for the defect so
as to initiate remedial action for removing the entire root
cause of the defect. This is possible by analysing all
known defects at the time specified [21]. This requires
qualitative analysis which can be restricted only by the
investigation carried out by the human range of abilities.
The results of the qualitative analysis become the reliable
feedback source to the next upcoming software
developers as it offers the improvement in both quality
and the productivity of the real-world software
applications [22].

2.4 Software defect prediction

 The process of predicting the software defects
involves identifying the defective modules present in the
software. The high quality software can be developed
only when the end product is found to have only few
defects. The method of early prediction and detection of
software defects would ultimately enable the
minimization of the development costs, resolving load
and bring about the software having high reliability. Thus,
the approach of analysing the defect prediction becomes
significant in reaching the best quality in software
systems. The well-known crucial problem lies on the
software quality and reliability in the filed of the software
defect prediction schemes.

2.4.1 Software defect prediction using Hybrid Fuzzy Naïve

Bayes Classifiers

 The approach related to fuzzy classifiers utilizes the
classifier neuro-fuzzy systems for getting fuzzy classifiers
from the datasets used for the learning techniques
working based on the neural network. These classifiers

Sampling imbalance dataset for software defect prediction using hybrid neuro-fuzzy systems with Naive Bayes classifier K. Punitha, B. Latha

1800 Technical Gazette 23, 6(2016), 1795-1804

are widely applied for predicting the software defects
owing to some similarities between a neuro-fuzzy
classifier and a Naive Bayes classifier in terms of
structure. The underlying principle behind this classifier
further reinforces the idea of mapping the features of the
software code for further improving the potential of the
software defect prediction.

2.4.1.1 Fuzzy classifier

Fuzzy rules are appropriate for representation of the
classification knowledge. It is chiefly the abstraction from
numbers to linguistic attributes which makes them easy to
be read and to be interpreted. In addition to this, fuzzy
rules are employed in a very intuitive and comprehensible
fashion for classifying new datasets. The fundamental
idea of fuzzy classification systems is the description of
the areas of the input space, to which various class labels
are allocated, by invariable cluster prototypes. These
prototypes are defined by several numbers of fuzzy sets
which indicate them in the different dimensions of the
domain taken under consideration. That is, a specific
cluster β labelled with class c is defined by a fuzzy
classification rule r of the form [23]: if A1 is µ1 and A2 is
µ2 and . . . and An is µn then pattern (A1, A2, ..., An) belongs
to class c, where the µj are fuzzy sets that describes the
cluster β write to attribute Aj. Additionally, few
approaches present so-called rule weights 𝑊𝑊𝑟𝑟, whose
intention is indicating the "importance" or "reliability" of
a rule. The degree of fulfilment of a rule is computed
from the membership degrees of the antecedents with a t-
norm, usually Tmin or >Tprod. For instance, if the t-norm
Tprod is applied, the degree of fulfilment or activation o(𝜔𝜔)
of rule r at 𝜔𝜔 ∈ Ω is defined as:

).() ,... ,(
)(

)(
1

1
11

j
ijj

n
k j

n
inni aAaAaAor

Or
=====

=

∏ =
µ

ω
 (6)

For computing the output of a fuzzy classification

system, as a first step, the degree of fulfilment of each
rule in the rule base is computed. Later, for each class, the
sum, the maximum or the average of the (possibly
weighted) rule activations is calculated. The output class
is decided by a winner-takes-all principle, i.e., the class
with the highest accumulated (weighted) activation is
predicted.

2.4.1.2 Neuro-fuzzy method

Rule induction in systems such as Neuro Fuzzy
Classification, which begin with a fixed number 𝑝𝑝𝑗𝑗 of
manually, defined or equally spaced fuzzy sets as a
partitioning of the domain of attribute, is simple: First the
rule antecedents are built. After this ends, the sample
cases are investigated in turn. For each case the fuzzy sets
are analysed and for each dimension that a fuzzy set is
chosen, which provides the highest membership degree.
Then a rule is developed for each distinct choice of fuzzy
sets, which in turn becomes the antecedent of the rule.
The consequent of a rule is decided from the classes of all
sample cases that are covered by the rule. In Neuro Fuzzy
Classification the activations of the rule are summed per

class over the (covered) sample cases and then the class
with the highest activation sum is selected as the
consequent. In the learning phase the fuzzy partitioning of
the input dimensions is brought into use (i.e., the
parameters of the fuzzy sets are altered) for optimizing
the location and extension of the clusters. Generally
observed issues of neuro-fuzzy classifiers are either a
huge number of rules (that are difficult to be read and
interpreted) or a sparse covering of the input space (at
times resulting in inadequate generalization).

2.4.1.3 Naive Bayes classifier

Naive Bayes classifiers [24] are an old and popular
kind of classifiers, i.e., of programs which assign a class
from a predetermined set to an object or case which is
under consideration on the basis of the values of attributes
utilized for describing this object or case. They do so by
making use of a probabilistic approach, i.e., they attempt
to calculate conditional class probabilities and then do the
prediction of the most probable class. To be more
specific, let C represent a class attribute with a finite
domain of m classes, i.e., dom(C) = {𝑐𝑐1, ..., 𝑐𝑐m}, and let
𝐴𝐴1, ..., 𝐴𝐴𝑛𝑛 be a set of (other) attributes that is used for
describing a case or an object of the domain considered.
These other attributes may be symbolic, i.e., dom(A) =

}, ..., ,{)()(
1

j
mj

j aa or numeric, i.e., dom(Aj) = ℝ. For

simplicity, the notation j
ija for a value of an attribute 𝐴𝐴𝑗𝑗 is

used, with no dependence on whether it is a symbolic or a
numeric one. With this notation, a case or an object can
be defined by an instantiation 𝜔𝜔 =) ..., ,(1

1
n
ini aa of the

attributes 𝐴𝐴1, ..., 𝐴𝐴𝑛𝑛 and thus the universe of discourse is
Ω = dom(A1) × ... × dom(An). For a given instantiation 𝜔𝜔,
a Naive Bayes classifier seeks to calculate the conditional
probability,

) ..., ,|()|(1
11

n
inniii aAaAcCcC ===== ω (7)

for all 𝑐𝑐𝑖𝑖 and then predicts the class 𝑐𝑐𝑖𝑖 for which this
probability is the highest. Of course, it is generally
impossible to save all of these conditional probabilities in
an explicit manner, such that a simple lookup would be
the only thing necessary for finding the most probable
class.

2.4.1.4 Hybrid Neuro-Fuzzy Systems with Naive Bayes

classifiers for defect prediction

The mapping of a Naive Bayes classifier can be done
to a neuro-fuzzy classification system, in case the 𝑖𝑖𝑖𝑖 −
prod is utilized and few limitations are laid on the fuzzy
sets and the rule weights. Particularly, the fact that
probability distributions/density functions are normalized
to 1 is to be taken care of, i.e.,

 ∑x(𝑥𝑥) = 1 or ∫x

1(𝑥𝑥) = 1.

For simplifying the following explanation, let us first
assume that there is an analogy to a Naive Bayes classifier
with only one cluster 𝛽𝛽𝑖𝑖 per class, defined by a (fuzzy)

K. Punitha, B. Latha Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy sustava s Naive Bayes ...

Tehnički vjesnik 23, 6(2016), 1795-1804 1801

rule. With this limitation, the membership functions µ𝑟𝑟𝑖𝑖,
can be used for defining the probability density functions
𝑓𝑓 for each attribute 𝐴𝐴𝑗𝑗 given the class:

())(: i
j

ijj
j

ijjri cC|aAfax ====µ (8)

In this proposed system it is assumed that a class is
defined by more than one rule. With this the limitations of
Naive Bayes classifiers are taken over and hence gains
flexibility in order to describe the conditional
distributions.
 Intuitively, each class is split into a set of subclasses,
each of which is defined by a separate (fuzzy) rule.
Nonetheless, the fact has to be admitted that for ensuring
interpretability, neuro-fuzzy systems also pose restrictions
which are not observed in Naive Bayes classifiers. On the
contrary, in a Naive Bayes classifier there are always as
many (independent) distribution functions per dimension
of the input space as there are classes available, in a
neuro-fuzzy system the number of fuzzy sets per
dimension is determined by the selected fuzzy partition. If
there is only one rule per class available, this is no actual
restriction, as in most of the classification issues the
number of classes is not very large.
 With the presence of more than one rule per class,
this restricts the degrees of freedom. It should not be
taken as a setback, though, since too many attributes of
freedom intend to result in overfitting and therefore poor
generalization abilities. With more than one rule per class
present, the requirements that the fuzzy sets have to meet
are, of course, similar as above. Only the derivation of the
rule weights is little more complicated, as this work has to
take the prior probability for each class 𝑐𝑐𝑖𝑖 into
consideration and the conditional probability that a
sample case for this class belongs to the cluster 𝛽𝛽𝑖𝑖𝑘𝑘, i.e.,
the kth cluster defining class 𝑐𝑐𝑖𝑖 which is denoted by rule
𝑟𝑟𝑖𝑖𝑘𝑘. For the sake of simplicity this proposed work uses two
rule weights: 𝑤𝑤𝑟𝑟𝑖𝑖𝑘𝑘

class, which indicates the prior
probability of class 𝑐𝑐𝑖𝑖, and 𝑊𝑊𝑟𝑟𝑖𝑖𝑘𝑘

cluster, which again states
the conditional probability of cluster 𝛽𝛽𝑖𝑖𝑘𝑘 given that the
case belongs to class 𝑐𝑐 .
 A Naive Bayes classifier can be mapped onto a
neuro-fuzzy classifier. Additionally, it is possible to make
use of more than one cluster (i.e., more than one rule) per
class for describing more complicated distributions and so
this work may receive a more powerful classifier for
predicting the defects from the software product module.
With this mapping, neuro-fuzzy learning techniques can
be utilized for learning and optimizing a Naive Bayes
classifier. As obvious, the learned probability distribution
functions need not match with the standard maximum
likelihood prediction results, as the aim of the employed
learning algorithms is the minimization of the number of
misclassifications and not finding the maximum
likelihood prediction.

 3 Experimental results

 This section explains the data sets, learning
algorithms, and evaluation criteria that have been used in
this proposed work. The data sets selected differ in data
sizes, and programming languages. The selected learning

algorithm does the defect prediction in the various kinds
of datasets used in this work.

 3.1 Data sets

 The data that is used in this study was provided by the
NASA MDP repository. This repository currently
includes 13 data sets that are intended for software
metrics research. The given 4 of these data sets were
utilized in this work: the brief details of them are
illustrated in Tab. 1. Each of the MDP data sets denotes a
NASA software system/subsystem and consists of the
static code metrics and the respective fault data for each
of the comprising modules.

Table 1 Datasets from NASA MDP used in proposed software defect
detection process

Data Language Examples No. of
attributes

Defect
percentage

PC1 C 1107 21 6,940
PC2 C 5589 26 0,423
PC3 C 1563 37 10,230
PC4 C 1458 37 12,200

The data that is used in this research are gathered

from the NASA MDP repository. NASA MDP repository
is a database which is a storage of problem, product, and
metrics data [25]. The primary aim of this data repository
is providing project data to the software community
[26÷28]. While doing so, the Metrics Data Program
gathers artefacts from a huge NASA dataset, does the
generation of metrics on the artefacts, and then again
generates reports which are made available to the public
free of cost. The data which are made available to general
public have been sanitized and authorized for publication
by the Metrics Data Program Web site by officials who
represent the projects from where the data originated.

Table 2 Software Metrics in PC1, PC2, PC3 and PC4 dataset used in
proposed methodology

Code Attributes NASA MDP dataset
PC1 PC2 PC3 PC4

LOC counts LOC total √ √ √ √
LOC blank √ √ √ √
LOC code and comment √ √ √ √
LOC comments √ √ √ √
LOC executable √ √ √ √

Halstead content √ √ √ √
difficulty √ √ √ √
effort √ √ √ √
Error est √ √ √ √
length √ √ √ √
level √ √ √ √
Prog time √ √ √ √
volume √ √ √ √
Num operands √ √ √ √
Num operators √ √ √ √
Num unique operands √ √ √ √
Num unique operators √ √ √ √

McCabe Cyclomatic complexity √ √ √ √
Cyclomatic density √ √ √ √
Design complexity √ √ √ √
Essential complexity √ √ √ √

Programming language C C C C
Number of code attributes 37 77 37 37
Number of modules 1059 4505 1511 1347
Number of fault-prone modules 76 23 160 178
Percentage of fault-prone modules 7,18 0,51 10,59 13,21

Sampling imbalance dataset for software defect prediction using hybrid neuro-fuzzy systems with Naive Bayes classifier K. Punitha, B. Latha

1802 Technical Gazette 23, 6(2016), 1795-1804

In this work four software defect prediction data sets
from NASA MDP are used. Individual attributes per data
set, along with few general statistics and descriptions, are
given in Tab. 2. These data sets have large number scales
of line of code (LOC), various software modules coded
attributes chosen by programming language C.

3.2 Performance measurement

 In this work, the accuracy of predicting the number of
defects by making use of machine learning prediction
systems is evaluated. Here two levels of data like training
and testing data for the final prediction are used. The
input attributes (input data) are considered as contiguous
values, whereas the output takes discrete or continuous
values based on the classifier employed. Software defect
predictor performance of the proposed scheme based on
Accuracy, precision and recall, is defined as

correct. are that prediction of precentage the

Accuracy

=

=
+++

+
=

FNTNFPTP
TNTP

 (9)

Where: TP – TruePositive, TN – TrueNegative, FP –
FalsePositive and FN – FalseNegative.

3.3 Prediction accuracy

 From the accuracy graph, the novel hybrid Neuro-
Fuzzy Systems with Naive Bayes algorithm yielding
different accuracy on PC1, PC2, PC3 and PC4 datasets is
shown.

Fig. 2 shows the proposed defect prediction method
has high accuracy value in all of the datasets which have
been used in this work rather than the other available
prediction techniques.

Figure 2 Prediction Accuracy result of the proposed and existing

method

3.4 Precision

Precision and recall are then defined as

.Prescision
FPTP

TP
+

= (10)

From Figs. 3, 4, and 5, the result indicates the novel

hybrid machine learning algorithm precision, recall and
F- measure values from the 4 different datasets utilized in
this work. The proposed hybrid machine learning defect
prediction method gives better precision, recall and F-

measure value compared to other existing BmSVM
methods.

Figure 3 Precision result of proposed and existing defect prediction

methods

3.5 Recall

.Recall
FNTP

TP
+

= (11)

Recall in this context is also known as the true

positive rate or sensitivity, and precision is also called as
positive predictive value (PPV); other related measures
that are used in classification are true negative rate and
accuracy. True negative rate is also known as specificity.

.rate negative True
FPTN

TN
+

= (12)

Figure 4 Recall of Proposed and Existing defect prediction methods

3.6 F-measure

 The F-measure calculates some average of the
information retrieval precision and recall metrics.

𝐹𝐹 = 2 × Recall × Precision

Precision +Recall
 (13)

Figure 5 F-measure of proposed and existing defect prediction methods

75,00%

80,00%

85,00%

90,00%

95,00%

PC1 PC2 PC3 PC4

ac
cu

ra
cy

Hybrid BmSVM

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

PC1 PC2 PC3 PC4

pr
ec

is
io

n

Hybrid BmSVM
Proposed Method

70,00%

75,00%

80,00%

85,00%

90,00%

PC1 PC2 PC3 PC4

R
ec

al
l

Hybrid BmSVM
Proposed Method

65,00%

70,00%

75,00%

80,00%

85,00%

90,00%

PC1 PC2 PC3 PC4

F-
m

ea
su

re

Hybrid BmSVM
Proposed Method

K. Punitha, B. Latha Izbor neuravnoteženog niza podataka za predviđanje grešaka u računalnom programu primjenom hibridnih neuro-fuzzy sustava s Naive Bayes ...

Tehnički vjesnik 23, 6(2016), 1795-1804 1803

4 Conclusion and future work

 In this proposed work, a novel defect prediction
model on the basis of the machine learning methods is
used. Software defect prediction is useful for developers
for the identification of defects in accordance with the
current software metrics with novel hybrid machine
learning Hybrid Neuro-Fuzzy Systems with Naive Bayes
technique. The goal of this work is the analysis of the
classification performance of novel hybrid for Neuro-
Fuzzy Systems with Naive Bayes classifiers. PC1, PC2,
PC3 and PC4 datasets were employed for the evaluation
of the machine learning algorithm that is utilized in this
software defect prediction process. The experimental
results of the proposed method are analysed by making
use of performance parameters like precision, recall and f-
measure. These performance parameters are also helpful
in evaluating the defect prediction efficiency of the
proposed methods applying software metrics of the
balanced dataset in software defect prediction process and
this method’s performance results are also compared with
the other existing methods like hybrid BmSVM. The
comparison result proves that this proposed hybrid
learning method for defect prediction is far more efficient
in comparison to the other available methods. The future
work is aimed at establishing an improved method for
predicting the software quality by means of combining
various classifiers on the basis of different software
measures and different voting schemes and then the effect
of classifier with different feature selection methods is
analysed. It is also aimed at finding out whether the cost
sensitive learning algorithms can be utilized in order to
build better defect prediction models.

5 References

[1] Naik, K.; Tripathy, P. Software Testing and Quality

Assurance. John Wiley & Sons, Inc. (2008). DOI:
10.1002/9780470382844

[2] McDonald, M.; Musson, R.; Smith, R. The practical guide
to defect prevention. // Control. (2007), pp. 260-272.

[3] Catal, C. Software fault prediction: A literature review and
current trends. // Expert systems with applications. 38,
4(2011), pp. 4626-4636. DOI: 10.1016/j.eswa.2010.10.024

[4] Menzies, T.; Zach, M.; Turhan, B.; Cukic, B.; Jiang, Y.;
Bener, A. Defect prediction from static code features:
current results, limitations, new approaches. // Automated
Software Engineering. 17, 4(2010), pp. 375-407. DOI:
10.1007/s10515-010-0069-5

[5] Mues, C.; Baesens, B.; Lessmann, S.; Pietsch, S.
Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings. //
IEEE Transactions on Software Engineering. 34, 4(2008),
pp. 485-496. DOI: 10.1109/TSE.2008.35

[6] Denaro, G., Estimating software fault-proneness for tuning
testing activities. // Proceedings of the 22nd International
Conference on Software engineering (ICSE '00), (2000),
pp. 704-706. DOI: 10.1145/337180.337592

[7] Khoshgoftaar, T. M.; Seliya, N. Tree-based software quality
estimation models for fault prediction. // Proceedings
Eighth IEEE Symposium in Software Metrics, (2002), pp.
203-214. DOI: 10.1109/METRIC.2002.1011339

[8] Park, B.-J.; Oh, S.-K.; Pedrycz, W. The design of
polynomial function-based neural network predictors for
detection of software defects. // Information Sciences. 229,
(2013), pp. 40-57. DOI: 10.1016/j.ins.2011.01.026

[9] Menzies, T.; Greenwald, J.; Frank, A. Data Mining Static
Code Attributes to Learn Defect Predictors. // IEEE
Transactions on Software Engineering. 33, 1(2007), pp. 2-
13. DOI: 10.1109/TSE.2007.256941

[10] Khoshgoftaar, T. M.; Van Hulse, J.; Napolitano, A.
Comparing Boosting and Bagging Techniques with Noisy
and Imbalanced Data. // IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans. 41, 3
(2011), pp. 552-568. DOI: 10.1109/TSMCA.2010.2084081

[11] Tosun, A.; Bener, A.; Turhan, B.; Menzies, T. Practical
considerations in deploying statistical methods for defect
prediction: A case study within the Turkish
telecommunications industry. // Information and Software
Technology. 52, 11(2010), pp. 1242-1257. DOI:
10.1016/j.infsof.2010.06.006

[12] Kim, S.; Zhang, H.; Wu, R.; Gong, L. Dealing with noise in
defect prediction. // Proceeding of the 33rd International
Conference on Software Engineering, (2011), pp. 481-490.
DOI: 10.1145/1985793.1985859

[13] Grbac, T. G.; Mausa, G.; Basic, B. D. Stability of Software
Defect Prediction in Relation to Levels of Data Imbalance.
// SQAMIA. (2013), pp. 1-10.

[14] Gao, K.; Khoshgoftaar, T. M.; Napolitano, A. Combining
Feature Subset Selection and Data Sampling for Coping
with Highly Imbalanced Software Data. // The 27th
International Conference on Software Engineering and
Knowledge Engineering (SEKE 2015). Wyndham
Pittsburgh University Center, Pittsburgh, USA, July 6 - July
8, 2015. DOI: 10.18293/SEKE2015-182

[15] Jing, X. Y.; Ying, S.; Zhang, Z. W.; Wu, S. S.; Liu, J.
Dictionary learning based software defect prediction. //
Proceedings of the 36th International Conference on
Software Engineering, (2014), pp. 414-423. DOI:
10.1145/2568225.2568320

[16] Ryu, D.; Jang, J. I.; Baik, J. A Hybrid Instance Selection
Using Nearest-Neighbor for Cross-Project Defect
Prediction. // Journal of Computer Science and Technology.
30, 5(2015), pp. 969-980. DOI: 10.1007/s11390-015-1575-5

[17] Xing, F.; Guo, P.; Lyu, M. R. A novel method for early
software quality prediction based on support vector
machine. // ISSRE 2005. 16th IEEE International
Symposium on Software Engineering. 31, 4(2005), pp.
340-355.

[18] Li, M.; Zhou, Z. H. Improve computer-aided diagnosis with
machine learning techniques using undiagnosed
samples. // IEEE Trans. Syst. Man Cybern., Part A, Syst.
Hum. 37, 6(2007), pp. 1088-1098. DOI:
10.1109/TSMCA.2007.904745

[19] Zhou, Z.-H. When semi-supervised learning meets
ensemble learning. // Proceedings of 8th International
Workshop on Multiple Classifier Systems, Reykjavik,
Iceland, (2009), pp. 529-538. DOI: 10.1007/978-3-642-02326-
2_53

[20] Breiman, L. Bagging predictors. // Machine Learning. 24,
2(1996), pp. 123-140. DOI: 10.1007/BF00058655

[21] Yu, W. D. A software prevention approach in coding and
root cause analysis. // Bell Labs Technical Journal. 3,
2(1998), pp. 3-21. DOI: 10.1002/bltj.2101

[22] Laitenberger, O.; Leszak, M.; Stoll, D.; El-Amam, K.
Causal analysis of review success factors in an industrial
setting. // Proceedings of the 6th IEEE International
Symposium on Software Metrics, West Palm Beach, FL,
1999.

[23] Höppner, F.; Klawonn, F.; Kruse, R.; Runkler, T. Fuzzy
Cluster Analysis. Kluwer, Amsterdam, Netherlands (1998).

[24] Langley, P.; Sage, S. Induction of Selective Bayesian
Classifiers. // Proc. 10th Conf. on Uncertainty in Artificial
Intelligence (UAI’94, Seattle, WA, USA), Morgan
Kaufman, San Mateo, CA, USA. (1994), pp. 399-406. DOI:
10.1016/b978-1-55860-332-5.50055-9

Sampling imbalance dataset for software defect prediction using hybrid neuro-fuzzy systems with Naive Bayes classifier K. Punitha, B. Latha

1804 Technical Gazette 23, 6(2016), 1795-1804

[25] Gray, D.; Bowes, D.; Davey, N.; Sun, Y.; Christianson, B.
Reflections on the NASA MDP data sets. // IET Software.
6, 6(2012), pp. 549-558. DOI: 10.1049/iet-sen.2011.0132

[26] Crawford, B.; Soto, R.; Johnson, F.; Misra, S.; Paredes, F.;
Olguín, E. Software Project Scheduling using the Hyper-
Cube Ant Colony Optimization algorithm. // Tehnicki
vjesnik-Technical Gazette. 22, 5(2015), pp. 1171-1178,
DOI: 10.17559/TV-20140519212813

[27] Popovic, T. Getting ISO 9001 certified for software
development using scrum and open source tools: a case
study. // Tehnicki Vjesnik-Technical Gazette. 22, 6(2015),
pp. 1633-1640, DOI: 10.17559/TV-20140704180948

[28] Varajao, J; Dominguez, C.; Ribeiro, P.; Paiva, A. Critical
success aspects in project management: similarities and
differences between the construction and software industry.
// Tehnicki Vjesnik-Technical Gazette. 21, 3(2014), pp.
583-589.

Authors’ addresses

K. Punitha, Research scholar
Anna University,
Sardar Patel Road, Chennai 600025, Tamil Nadu, India
E-mail: researchpunitha@gmail.com
Mobile: +91 9443916174

Dr. B. Latha, Professor & Head
Sri Sai Ram Engineering College,
Sai Leo Nagar, West Tambaram,
Chennai 600 044, Tamil Nadu, India
E-mail: latha.it@sairam.edu.in
E-mail: sivasoorya2003@yahoo.com
Mobile: +91 984028435

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [595.276 841.890]

>> setpagedevice

