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SUMMARY 

This study attempts to determine the optimal production run time for an economic production 

quantity (EPQ) model with a Poisson breakdown rate, the rework of nonconforming items, and 

multi-delivery of finished products. It is assumed that nonconforming items can be randomly 

produced and repaired through a rework process added at the end of the production process. 

Production equipment is subject to a random breakdown, which follows a Poisson distribution. 

When a breakdown occurs, the machine immediately goes under repair and adopts an 

abort/resume inventory control policy. Under this policy, the production of the interrupted lot 

instantaneously resumes when the machine is repaired and restored. Upon completion of the 

rework process, n fixed quantity installments of the finished batch are delivered to the customer 

at a fixed interval of time. Mathematical modelling together with a numerical analysis is used in 

this study. Theorems on the convexity of the expected system cost function and bounds of 

production uptime are proposed and proved. A recursive searching algorithm is developed to find 

the optimal replenishment uptime within the bounds. Finally, a numerical example is provided to 

demonstrate the practical usage of the study results. 

KEY WORDS: economic production quantity, breakdown, multi-delivery, rework, abort-resume 

policy, optimization. 

1. INTRODUCTION 

The economic production quantity (EPQ) model is often adopted by manufacturing firms to 

deal with the most economic, non-instantaneous replenishment issues [1-4]. A classic EPQ 

model assumes that all items produced are of perfect quality. However, in real-life production 

systems due to process deterioration or various uncontrollable factors, a generation of 

defective items is inevitable. Therefore, many studies have been carried out to enhance the 
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classic EPQ model by addressing the issues of imperfections in the quality of products and 

quality assurance matters [5-12]. 

In addition to the defective rate, random breakdown is another inevitable critical reliability 

factor that can be very disruptive when it occurs, especially in a highly automated production 

environments. Groenevelt et al. [13] presented two production control policies to deal with the 

breakdown; first one suggests that the production of an interrupted lot is not resumed (called 

‘no resumption’ or ‘NR policy’) after a breakdown; and the second policy considers that the 

production of an interrupted lot will be immediately resumed (called ‘abort-resume’ or ‘AR 

policy’) after a breakdown is fixed, and if the current on-hand inventory is below a certain 

threshold level. Kuhn [14] investigated a dynamic lot sizing model with exponential machine 

breakdowns. Two different situations were examined. In case study one, after a machine 

breakdown the setup is totally lost and new setup cost is incurred. In case study two, the cost 

of resuming the production run after a failure might be substantially lower than the 

production setup cost. The study showed that, in the first case, the cost penalty for ignoring 

machine failures would be noticeably higher than that of the classical EPQ model. For the 

second case, a conditional resumption, based on the sizes of future demands versus the 

incomplete lot sizes, was recommended. Kuhn also suggested a stochastic dynamic 

programming model for finding optimum lot sizing decisions for both cases. Makis and Fung 

[15] examined an economic manufacturing quantity (EMQ) model with inspections and 

random machine failures. Effects of breakdowns of an optimal lot size and optimal number of 

inspections were studied. The formula for the long-run expected average cost per unit time 

was obtained, and the optimal production and inspection policy that would minimize the 

expected average costs were derived. Giri and Dohi [16] presented the exact formulation of 

stochastic EMQ model for an unreliable production system. Their EMQ model was formulated 

on the basis of the net present value (NPV) approach and, by taking limitation on the discount 

rate, a traditional long-run, average cost model was obtained. The criteria for the existence and 

uniqueness of an optimal production time and its computational results were provided to 

show that the optimal decision based on the NPV approach is superior to that based on the 

long-run average cost approach. Chiu [17] examined the production run time problem with 

random machine breakdowns under abort/resume policy and reworking of defective items 

produced. Mathematical modelling and derivation of the production-inventory cost functions 

for both systems with/without breakdowns were presented. These functions were integrated 

and the long-run average cost per unit time was obtained. Theorems on convexity and on 

bounds of run time were proposed and proved. A recursive searching algorithm was 

developed for locating optimal run time. There are additional studies [18-23] that address 

different issues of production systems with breakdown. 

Another unrealistic assumption of the classic EPQ model is ‘continuous inventory issuing 

policy’ for satisfying product demand. In real supply chains environments, it is common to 

adopt a multi-delivery policy for transporting finished items to customer. Schwarz [24] 

considered a one-warehouse, N-retailer inventory system to determine an optimal stocking 

policy that would minimize an average system cost. He derived some necessary properties for 

an optimal policy as well as the optimal solution. Heuristic solutions were also provided for the 

general problem and tested against analytical lower bounds. Goyal [25] studied integrated 

inventory model for a single supplier-single customer problem. Banerjee [26] examined a joint 

economic lot-size model for purchaser and vendor, with the focus on minimizing the joint total 

relevant cost. He concluded that a jointly optimal ordering policy, together with an appropriate 

price adjustment, could be economically beneficial for both parties, but definitely not 
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disadvantageous to either party. Viswanathan [27] reexamined the integrated vendor-buyer 

inventory models with two different strategies: one where each replenishing quantity 

delivered to the buyer is identical and the other strategy where at each delivery all the 

inventory available with the vendor is supplied to the buyer. A detailed numerical analysis of 

the relative performance of the two strategies for various problem parameters is presented. 

Hoque [28] studied a model of delivering a single product to multiple buyers when the set-up 

and inventory costs to the vendor are included. A close relationship between a manufacturer 

and buyers is assumed for a costless way of benefit sharing. Three models were examined, two 

of which consider equal batches, and the third with unequal batches of the product. Optimal 

solution techniques were presented, sensitivity analyses of the techniques were carried out, 

and several numerical problems were solved to support the analytical findings. Chiu et al. [29] 

combined a multi-delivery policy and quality assurance into an imperfect EPQ model with 

scrap and rework. They assumed that random defective items produced are partially 

repairable and the finished items can only be delivered to customers if the entire lot is quality 

assured at the end of rework. The expected integrated cost function per unit time was derived, 

and a closed- form optimal batch size solution to the problem was obtained. Other studies that 

focused on various aspects of supply chain optimization can also be found [30-35]. 

This paper incorporates a multi-delivery policy into Chiu’s model [17] and studies the joint 

effects of a multi-delivery policy, random breakdown, and rework on the optimal 

replenishment run time for a specific imperfect EPQ model. 

2. PROBLEM DESCRIPTION AND MATHEMATICAL MODELLING 

This study examines an imperfect EPQ-based model with a random breakdown, rework, and 

multi-delivery policy. The model assumes that a production process may randomly produce x 

portion of defective items at a rate d1. For a regular supply, the constant production rate P is 

greater than a demand rate λ. Hence, P1 has to be greater than the sum of λ and d1, i.e., (P1-d1-

λ)>0 where d1=P1x. All items produced are screened and inspection cost is included in the unit 

production cost c. A defective rate x is assumed to be a random variable with a known 

probability density function. All defective items are assumed to be repairable through a 

rework process at a rate P2 in each production run, after the regular process has finished. 

During the production uptime, a machine is subject to a random breakdown that follows the 

Poisson distribution. When a breakdown occurs, an AR policy is adopted, wherein the machine 

is put under repair immediately and the interrupted lot resumes when the machine is repaired 

and back in the operating condition. Machine repair time is assumed to be constant. Further, 

this paper incorporates a multi-delivery policy into the aforementioned imperfect EPQ model 

with rework and random breakdown. It is assumed that finished items can only be delivered to 

customer if the whole lot is quality assured, at the end of rework. A fixed quantity of n 

installments of a finished batch is delivered at a fixed interval of time during production 

downtime t3 (see Figure 1). Cost parameters considered in the proposed model include the 

production setup cost K, holding cost h, unit rework cost CR, holding cost h1 for each reworked 

item, fixed delivery cost K1 per shipment, and a delivery cost CT per item shipped to the 

customer, and the cost for repairing and restoring a machine M. Additional notations used in 

this study are listed under Nomenclature. 

It is taken that t denotes time before a random breakdown has taken place during production 

uptime t1, then the two different cases, presented in Sections 2.1 and 2.2, need to be studied. 
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Fig. 1  On-hand inventory of perfect quality items in EPQ-based model with breakdown, rework, and multi-

delivery policy 

2.1 CASE 1: A BREAKDOWN OCCURING DURING PRODUCTION UPTIME 

In this case, time before a machine breakdown has taken place t, is smaller than the production 

uptime t1. This means that a machine breakdown takes place during the production process. 

Under the AR policy, the production of an interrupted lot will be immediately resumed when 

the machine is fixed. The on-hand inventory level of perfect quality items at the time a random 

breakdown occurs is H2' (see Figure 1), and the level of on-hand inventory stays at H2' until the 

machine is fixed. H1' denotes the level of on-hand inventory in units when production of the 

remaining of interrupted lot is completed. Then, the rework process starts and the on-hand 

inventory level in the end of rework is H'. Fixed quantity of n installments of a finished batch is 

delivered at a fixed interval of time during production downtime t3. Figure 1 gives the cycle 

length T' as: 

 
( ) ' '

r 1 2 3T' t t t t t t= + + − + +
 (1) 

The related costs in a production cycle for such a specific imperfect quality EPQ model with a 

random breakdown include: (1) a production setup cost per cycle; (2) a variable production 

cost; (3) a reworking cost; (4) a machine repairing cost; (5) fixed and the variable shipping 

costs; (6) an inventory holding cost during the rework process; (7) a holding cost for safety 

stocks (i.e., stocks to prevent shortage happening due to breakdown in the very early stage of 

the production cycle); and (8) an inventory holding cost during uptime, machine repairing 

time, and end items delivery period. Using the similar procedures from earlier studies [17], 

total production-inventory-delivery costs per cycle TC1(t1) in the case of breakdown taking 

place (under AR policy) during uptime t1, can be obtained as: 
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Since the proportion x of defective items is assumed to be a random variable with a known 

probability density function, in order to take randomness of defective rate into account, one 

can use the expected values of x in inventory cost analysis. Substituting all related system 

parameters and with further derivations, one obtains an expected production-inventory cost 

per cycle E[TC1(t1)] for the proposed EPQ model as follows: 

 

( ) [ ]

[ ]
[ ]( )

[ ] [ ]

1 1 1 R 1 T 1 3 1 1

1
1 1

22 2 22
1 1 1 12 1 1

1
2 2 2
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t 1 E x 1

P 2 λ n 2P n 2n 2P

   = + + + + + ⋅ +   

 
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 

   +  − + − + + + 
    (3) 

2.2 CASE 2: NO BREAKDOWN OCCURING DURING PRODUCTION UPTIME 

In this case, the time before a machine breakdown taking place t is greater than, or equal to, 

the production uptime t1. This means there is no breakdown taking place during the 

production process (see Figure 2). 

 

Fig. 2  On-hand inventory of perfect quality items in EPQ-based model with rework and multi-delivery 

policy 

As presented in Figure 2 the cycle length T becomes: 

 1 2 3
1 1t P

T t t t
λ

= + + =  (4) 

Total inventory costs per cycle in case that breakdown does not occur, TC2(t1) can be obtained 

as: 
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Again, taking randomness of defective items into account, substituting all related parameters 

from Figure 2, and with further derivations, one can obtain the expected total production- 

inventory-delivery costs per cycle E[TC2(t1)] as follows [29]: 

 

( ) [ ]
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2.3 INTEGRATION OF EPQ MODELS WITH/WITHOUT BREAKDOWN 

Let f(t) denote probability density function of random time t before breakdown occurs. Also, 

let F(t) be cumulative density function of t. Then, the long-run expected production-inventory-

delivery costs per unit time (whether a breakdown takes place or not), E[TCU(t1)] is: 
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From Eqs (1) and (4), one obtains expected cycle length E[T] as: 
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Machine breakdown per unit time is assumed to be a random variable that follows the Poisson 

distribution with a mean that equals to β per year. Therefore, the time to breakdown should 

obey exponential distribution with a density function f(t)=β e−βt and the cumulative density 

function F(t)=1−e−βt. 

Substituting E[TC1(t1)], E[TC2(t1)], and E[T] in Eq. (7), and solving the integration of mean time 

to breakdown in E[TCU(t1)] (see Appendix A), the long-run expected production-inventory-

delivery cost per unit time can be obtained as: 
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where: 

 
[ ]3 R T 3α C C E x C h g = + + +   

and: 

 

[ ]
[ ]( )

[ ]
2

1 11 11

2 2 2

h P E xhP E x hP E xhP 1 h
ω 1- E x 1

P λ n n P n P

  
    = + − + + +   

    



S.W. Chiu, C.-K. Chang, M.-S. Song, Y.-S.P. Chiu: An EPQ model with a random breakdown, rework, and a discontinuous issuing policy 

 ENGINEERING MODELLING 28 (2015) 1-4, 1-15 7 

3. CONVEXITY OF E [TCU (t1)] 

In order to determine the optimal production run time t1*, one needs first to prove that 

E[TCU(t1)] is convex. Hence, Theorem 1 is proposed as follows: let z(t1) denote the following 

term: 

 ( )
[ ]( )

[ ]( ) ( )

1

1
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1 1

1
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Theorem 1: E[TCU(t1)] is convex if 0 < t1 < z(t1). 

If the second derivative of E[TCU(t1)] with respect to t1, Eq. (11), is greater than zero, then 

E[TCU(t1)] is a convex function for all t1 different from zero. Differentiating E[TCU(t1)] with 

respect to t1 gives the second derivative as: 
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From Eq. (11), since an annual demand λ is greater than zero, the following is obtained: 
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With further arrangement, the following is obtained: 
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In order to minimize expected overall costs E[TCU(t1)], Eq. (13) must be satisfied. Now, to 

search for the optimal value of t1* that yields a minimum cost, one can set first derivative of 

E[TCU(t1)] equal to 0 as follows: 

 

( )
( )

( )

1

1
1

1 βt1
2 2

1 1 1 1 1

βt
βt

2
1 11

dE TCU t nKK hg hg
λ hg βe

dt 2 2nt P t P

1 eM hg βe ω
0

P β t 2t

−

−
−

   −−    = + + − + +   
   

 − −   + + + + =          (14) 

To find bounds for the optimal production run time, let: 
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where  ( )1γ= Mβ hP g+   and  4
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Theorem 2: t1L* < t1* < t1U* 

To prove Theorem 2, it is necessary to first multiply both sides of Eq. (14) by (2P1t1
2β): 
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Now, in order to locate the optimal run time t1*, it is necessary to rearrange Eq. (18) as follows: 
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Since e
−βt1 is a complement of cumulative density function F(t1)=1−e

−βt and 0≤F(t1)≤1, hence 

0≤e
−βt1≤1. Let e

−βt1=0 and e
−βt1=1 denote the bounds for e

−βt1, respectively, from Eq. (19) we 

obtain: 
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and t1L* < t1* < t1U*. 

Although the optimal run time t1* cannot be expressed in a closed form, it can be located 

through the use of a proposed recursive searching algorithm (see Appendix B), based on the 

existence of bounds for e
−βt1 and t1*. 
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4. NUMERICAL EXAMPLE 

It was assumed that a manufactured product can be produced at a rate of 10000 units per year, 

and that it experiences a relatively flat demand of 4000 units per year. During its production 

uptime, a random defective rate is assumed and it follows a uniform distribution over the 

interval [0, 0.2]. All defective items can be repaired through rework process at a rate P2=5000 

units per year in the end of production. 

Furthermore, the machine in production system is subject to a random breakdown that follows 

a Poisson distribution with mean β=0.5 times per year. An AR policy is used when a random 

breakdown takes place. Other parameters of this example are given as follows: K=$450 for 

each production run; h=$0.6 per item per unit time; C=$2 per item; CR=$0.5 repaired cost for 

each item reworked; h1=$0.8 per item reworked per unit time; M=$500 repair cost for each 

breakdown; g=0.018 years (time needed to repair and restore the machine); n=4 installments 

of finished batch are delivered per cycle; K1=$80 per shipment, a fixed cost; and CT=$0.001 per 

item delivered. 

For the convexity of E[TCU(t1)] (Eq. (13)), using both upper and lower bounds of t1* in Eq. 

(13), one finds out that it holds. Applying Eqs. (16) and (9) one obtains t1L*=0.30352 (years) 

and E[TCU(t1L*)]=$10,222.89. Then, applying Eqs. (15) and (9) one has t1U*=0.45605 (years) 

and E[TCU(t1U*)]=$10,837.76. 

Further, as stated earlier, since E[TCU(t1)] is convex and the optimal run time t1* falls within 

the interval of [t1L*, t1U*] (see Theorems 1 & 2), using a proposed recursive searching algorithm 

(see Appendix B), one can locate the optimal run time t1*. Step-by-step iterations and their 

results are displayed in Table 1. When β=0.5, the optimal run time t1*=0.3295 years and the 

optimal expected costs per unit time E[TCU(t1*)]=$10,216.59 (see Figure 3). 

Table 1  Iterations of the proposed recursive searching algorithm for locating the optimal run time t1* 

β Iteration yL = 1Ut
e

− β  t1U* yU = 1Lt
e

−β  t1L* 
Difference 
between 

t1U* & t1L* 

[U] 
E[TCU(t1U*)] 

[L] 
E[TCU(t1L*)] 

Difference 
between 

[U] and [L] 

0.5 initial 0.00000 0.45605 1.00000 0.30352 0.15253 $10,837.76 $10,222.89 $614.87 

 2nd 0.79611 0.33806 0.85919 0.32762 0.01044 $10,259.50 $10,216.62 $42.88 

 3rd 0.84448 0.33008 0.84890 0.32934 0.00074 $10,219.61 $10,216.59 $3.02 

 4th 0.84786 0.32952 0.84817 0.32946 0.00005 $10,216.80 $10,216.59 $0.21 

 5th 0.84810 0.32948 0.84812 0.32947 0.00000 $10,216.60 $10,216.59 $0.01 

 6th 0.84812 0.32947 0.84812 0.32947 0.00000 $10,216.59 $10,216.59 $0.00 
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Fig. 3  The behavior of E[TCU(t1)] with respect to production run time t1 

The behavior of E[TCU(t1)] with respect to x and 1/β is illustrated in Figure 4. One notes that as 

the mean time between breakdowns 1/β decreases, the value of E[TCU(t1*)] increases. Also, as 

x increases, E[TCU(t1*)] goes up significantly, too. 

 

Fig. 4  The behavior of E[TCU(t1)] with respect to x and 1/β 

5. CONCLUDING REMARKS 

An EPQ-based inventory model with a random breakdown, rework, and multi-delivery policy 

is studied. An AR inventory control policy is adopted when a machine breakdown occurs. We 

present a complete solution procedure which includes mathematical modelling, derivations of 

cost functions for the proposed EPQ models with and without breakdown, integration of cost 

functions, theorems on convexity and on bounds of the production run time, development of a 

recursive run time searching algorithm, and a numerical demonstration aiming at confirmation 

of the entire solution procedure. Without an in-depth study on such a specific imperfect 

production system with breakdown, multi-delivery, and rework, the optimal run time and 
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related facts of the system cannot be revealed. For future research, it would be interesting to 

study the effects of variable production rates on the same model. 

6. ACKNOWLEDGEMENT 

The authors greatly appreciate National Science Council (NSC) of Taiwan for supporting this 

research under Grant No. NSC 102-2410-H-324-005. 

7. APPENDIX – A 

Nomenclature 

t1 = optimal production time (i.e. uptime) to be determined for the proposed EPQ model, 

t = production time before a random breakdown occurs, 

β = number of breakdowns per year, a random variable that follows the Poisson 

distribution, 

tr = time required for repairing the machine, 

t2' = time needed for the rework of defective items when machine breakdown takes place, 

t3' = time needed for consuming all available perfect quality items when breakdown takes place, 

H2' = the level of on-hand inventory in units when random breakdown takes place, 

H1' = the level of on-hand inventory in units when a regular production ends (in the case of a 

breakdown), 

H' = the maximum level of on-hand inventory in units when a regular production ends in the 

EPQ model with random breakdown, 

Q = production lot size per cycle, 

T' = cycle length in the case of machine breakdown, 

h3 = unit holding cost for safety stock, 

TC1(t1) = the total production-inventory-delivery costs per cycle in the case of breakdown, 

E[TC1(t1)] = the expected production-inventory-delivery costs per cycle in the case of 

breakdown, 

t2 = time required for the rework of defective items in case a breakdown does not occur, 

t3 = time required for depleting all available perfect quality items in case a breakdown does 

not occur, 

H1 = the level of on-hand inventory in units when a regular production ends in the EPQ model 

without any occurrence of a machine failure, 

H = the maximum level of on-hand inventory in units when the rework process ends in the 

EPQ model without any occurrence of a machine breakdown, 

T = cycle length in case the breakdown does not occur, 

I(t) = the level of on-hand inventory of perfect quality items at a time t, 

TC2(t1) = total production-inventory-delivery costs per cycle in case a breakdown does not 

occur, 
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E[TC2(t1)] = the expected production-inventory-delivery costs per cycle in the case of no 

breakdown occurrence during uptime, 

T = cycle length regardless of whether a machine breakdown takes place or not, 

TCU(t1) = the total production-inventory-delivery costs per unit time regardless of whether a 

breakdown takes place or not, 

E[TCU(t1)] = the long-run expected production-inventory-delivery costs per unit time 

regardless of whether a breakdown takes place or not. 

8. APPENDIX – B 

A proposed recursive searching algorithm for finding t1*: 

Although the optimal run time t1* cannot be expressed in a closed form, it can be located 

through the use of following searching algorithm based on the existence of bounds for e−βt1 and 

t1*. Recall Eq. (21): 

 

( )

( )
−

 + + − =
 + +
 

1

2
1 1 1βt

2 2
1 4 1 1

2 γ β K nK P βωt
e

2 P β α t βγt γ
 

Because e−βt1 is complement of cumulative density function, therefore, 0 ≤ e−βt1 ≤ 1. 

Let: 
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2 2
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t e  0  y(t ) 1

2 P β α t βγt γ
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= =  

The following recursive searching techniques to find t1* are proposed in this study: 

(1) Let y(t1)=0 and y(t1)=1 initially and compute the upper and lower bounds for t1
*, 

respectively (i.e., the initial values of [t1L
*, t1U

*]). 

(2) Substitute the current values of [t1L
*, t1U

*] in e−βt1 and calculate the new bounds (denoted 

as yL and yU) for e−βt1. Hence, yL < z(t1) < yU. 

(3) Let z(t1)=yL and z(t1)=yU and compute the new upper and lower bounds for t1
*, 

respectively (i.e. to update the current values of [t1L
*, t1U

*]). 

(4) Repeat steps 2 and 3, until there is no significant difference between t1L
* and t1U

* (or there 

is no significant difference in terms of their effects on E[TCU(t1*)]). 

(5) Stop. The optimal production run time t1
* is obtained. 

A step-by-step demonstration of recursive searching algorithm is presented in Table 1. 
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PRIKAZ EPQ MODELA SA SLUČAJNIM KVAROVIMA, DORADOM I 
DISKONTINUIRANOM ISPORUKOM 

Svrha ovog rada jest određivanje optimalnog vremena proizvodnje za model ekonomične količine 

proizvodnje sa Poisson-ovom razdiobom kvarova, popravkom nesukladnih proizvedenih jedinica, 

te višekratnom isporukom konačnog proizvoda. Pretpostavlja se da se nesukladne proizvedene 

jedinice mogu slučajno proizvesti i naknadno popraviti pomoću procesa dorade na kraju 

proizvodnog procesa. Kvar opreme za proizvodnju smatra se slučajnom veličinom koja se 

pojavljuje po Poisson-ovoj razdiobi. Kada se dogodi kvar, stroj se odmah popravlja, te se pokreće 

u modu otkazivanje/nastavak. U ovom modu, proizvodnja prekinute serije proizvoda se 

trenutačno nastavlja nakon popravka stroja. Nakon završetka procesa dorade, fiksan broj od n 

proizvoda završene proizvodne serije isporučuje se kupcu u fiksnom vremenskom intervalu. U 

ovom je radu korišteno matematičko modeliranje u kombinaciji s numeričkom analizom. 

Predloženi su i najzad dokazani teoremi konveksnosti za očekivanu funkciju troška sustava i 

granično vrijeme proizvodnje. Razvijen je rekurzivni algoritam za iznalaženje optimalnog 

vremena proizvodnje unutar definiranih granica. Na kraju rada prikazan je numerički primjer 

radi praktične demonstracije rezultata opisanog istraživanja. 

KLJUČNE RIJEČI: model ekonomične količine proizvodnje, kvar, višestruka isporuka, dorada, 

mod otkazivanje/nastavak, optimizacija. 


