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SUMMARY 

For the analysis of a pressure pipe system with multiple reservoirs, a numerical algorithm for 

initializing the flow in the system is developed. This algorithm finds real hydraulic head values in 

junctions of a pressure pipe system by using an iterative method. Also, it determines the 

orientation and amount of the flow rate for an arbitrary given pressure pipe system and a 

number of reservoirs. By comparing the presented method with a classical three-reservoir 

problem, it might be said that the proposed method performs a hydraulic head correction in 

junctions in an inverse way. The method is implemented in the computer code developed for the 

analysis of an arbitrary pressure pipe system. 

KEY WORDS: multiple reservoirs, three-reservoirs problem, hydraulic head, pressure pipe 

system, iterative method. 

1. INTRODUCTION 

In hydraulic engineering, a water supply system is the most common type of pressure systems. 

In order to design one of these, it is necessary to perform the analysis of steady and unsteady 

flow. This paper focuses on the steady flow analysis, especially on the initialization of such an 

analysis for the case of water networks with multiple reservoirs. In fact, regardless of the 

choice of the computational algorithm (pressure-based method or discharge-based method), 

the steady flow analysis starts by assigning the flow to all pipes, which must necessarily satisfy 

the continuity equation in all nodes, where the node represents a junction of two or more 

pipes. In addition, it is necessary to satisfy Kirchhoff’s second law [1, 2, 3], which is achieved by 

using an iterative procedure. 

Determination of the reservoir outflow q for water networks with one reservoir is almost 

trivial. That is because the flow from the reservoir is equal to the sum of all node consumptions 

q (Figure 1). 
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Fig. 1  Reservoir flow determination for the pipe system with one reservoir 

However, if a pipe system combines multiple reservoirs (Figure 2), the determination of 

reservoir outflows is more complicated and requires an iterative procedure. That is because 

there are multiple unknowns in one available equation. This problem is usually solved by an 

iterative procedure [4] in which, firstly, the amount of pressure is assumed and, secondly, the 

pressure gradients or achieved flows are computed. The iterative procedure converges to the 

exact result when the achieved flows satisfy the continuity equation (Kirchhoff’s first law). 

 

Fig. 2  Reservoir flow determination for the pipe system with two reservoirs 

In this paper, the given problem is solved in an inverse way so that first the reservoirs’ flows 

are assumed and only then the pressure corrections in nodes are made accordingly. It should 

be emphasized that this method (unlike the previously mentioned one) can be used in terms of 

initialization for complex pipe systems with more reservoirs. Also, except of the outflows 

quantities, the algorithm predicts the orientation of the flow, so it can determine which 

reservoirs are getting filled with water. At the end of the paper, the numerical algorithm is 

presented and numerical examples are given. 

2. THEORETICAL BACKGROUND 

2.1 INDEXATION OF PIPES AND JUNCTIONS 

In terms of a computational algorithm, a pipe is an element of a pressure system between two 

contiguous junctions. Apart from this, a pipe can be considered as an element of a pressure 

system between a junction and some other functional elements of the system (i.e. pumping 

station). To identify the position of all geometrical and kinematical values of the flow, they will 

be labelled with an index j, which will indicate a particular pipe for which that value is 

mentioned. The index j can take discrete values from one to a maximal value of nj, which 

defines the last pipe in the pressure system. Obviously, in order to have a functional purpose, 

the pipe system layout and pipe numeration should be given in advance. 

Junction indexation is made in a similar way. Therefore, all values which are related to 

junctions (i.e. hydraulic head H and node consumption q) will have an index i which can take 
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discrete values from one to a maximal value of ni, which defines the last junction in the 

pressure system. 

In cases where it is necessary to point out a specific junction o and its contiguous pipes, i.e. 

pipes connected with a junction o, pipes are labeled with an index oi, where o represents the 

observed junction and i the ordinal number of one of the contiguous junctions. 

2.2 KIRCHHOFF’S LAWS 

The steady flow model is based on Kirchhoff’s laws. Firstly, at any junction in the pipe system 

the volumetric flow rate into that junction is equal to the volumetric flow rate out of that 

junction. Secondly, for each pipe the Darcy–Weisbach equation [5] should be satisfied. 

The first Kirchhoff’s law can be interpreted as principle of flow Q conservation. Mathematical 

notation of the first rule is: 

 

n

oi o

i 1

Q q

=

=∑  (1) 

in which Qoi represents volumetric flow rate in a pipe oi and q consumption in a junction o. The 

index i represents the pipe connection counter which goes from 1 to n, where n represents the 

total number of contiguous junctions. 

The second Kirchhoff’s law is based on the principle of conservation of energy inside a close 

section of pipes i.e. inside a pipe loop. The law defines that the sum of all energy loss ΔE inside 

each loop is equal to zero, which can mathematically be written as [6]: 

 

n

oi

i 1

E 0∆

=

=∑  (2) 

in which n is the total number of pipes that form a loop. This law applies to all loops in a pipe 

system. Also, it should be noted that this law is changed if there is an element in the observed 

loop, which adds or subtracts energy from the flow in the loop. Therefore, if there is a pump 

station in the loop, then Eq. (2) becomes: 

 

n

oi man

i 1

E H∆

=

=∑  (3) 

in which Hman labels the manometric head of the pump station. On the other hand, if there is a 

turbine in the loop, Eq. (2) becomes: 

 

n

oi turb

i 1

E H∆

=

= −∑  (4) 

in which Hturb labels a pressure drop on a turbine. 

2.3 BERNOULLI’S PRINCIPLE 

The principle of energy conservation can be applied for the purpose of defining Bernoulli’s 

equation for a steady flow condition, which can be written as: 

 
2 2

1 1 2 2
1 2

p v p v
z z E

ρg 2g ρg 2g
∆+ + = + + +  (5) 
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in which z labels geodetic height of the pipe centerline, ρ fluid density, g gravitational 

acceleration, v average flow velocity and ΔE energy loss caused by overcoming hydrodynamic 

resistance between section 1 and 2. It is necessary to note that the velocity head defined by the 

third term on the LHS and RHS will be neglected in the developed numerical procedure due to 

the relatively small contribution to the total energy. For water system distribution this is most 

frequently justified. 

2.4 DARCY–WEISBACH EQUATION 

Energy loss ΔE can be expressed as a function of relevant geometrical and kinematical 

quantities of the flow. By combining the analytical flow analysis with the Vaschy-Buckingham 

Π theorem [7], a Darcy–Weisbach equation can be derived: 

 
2L v

E λ
D 2g

∆ =  (6) 

in which λ denotes the Darcy friction factor, L pipe length and D pipe diameter. The Darcy 

friction factor λ represents a function of a Reynolds number Re and a relative roughness ε/D 

[8]. 

3. THREE RESERVOIR PROBLEM 

As described in the introduction, determination of reservoir flow is very complex for networks 

with multiple reservoirs. In order to clarify the problem, let us consider a network with three 

reservoirs denoted as A, B and C connected with three pipes. The three pipes are connected in 

the junction J, in which the continuity equation (1) must be satisfied (Figure 3). 

 

Fig. 3  Classical example of the three-reservoir problem 

Each of the reservoirs represents one point where there can be only one value of the head. The 

same applies to the junction. Also, it should be noted that for each pipe the Darcy–Weisbach 

equation (6) must be satisfied. 

If the piezometric head of the reservoirs is known, then it is a classical problem known as the 

three-reservoir problem [9]. In the available literature, the problem is solved iteratively by 

adjusting the piezometric head at junction J to satisfy Kirchhoff’s law. In other words, the 

piezometric head at the junction J should satisfy the head loss equation for each pipe i.e. the 

Darcy-Weisbach equation (6). This equation may be used to define the pipe parameter S as: 
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oi

oi oi 2
oi oi

L
S λ

D 2gA
=  (7) 

which enables us to rewrite Eq. (6) in the form: 

 2
oi oi oiE S Q∆ =  (8) 

The former Eq. can be applied to a pipe network illustrated in Figure 3 to obtain the following 

expressions (9): 

 

2
JA J A JA JA

2
JB J B JB JB

2
JC J C JC JC

E | H H | S Q

E | H H | S Q

E | H H | S Q

∆

∆

∆

= − =

= − =

= − =

 (9) 

It should be noted that the positive value QJA means that the flow goes from J to A, so it will be 

negative if the actual flow goes from A to J. 

The second condition that should be satisfied at the junction J is the previously mentioned 

continuity equation (1). For the considered pipe system it can be written as: 

 JA JB JCQ Q Q 0+ + =  (10) 

The procedure of retrieving a solution to the posed problem is the following. In the first step, 

the piezometric head HJ at the junction J should be guessed. After the head differences are 

known, the flow rates, as well as head losses in all pipes can be computed from Eq. (9). The 

calculated flow rates can be checked by Eq. (10). Therefore, if the calculated flow in junction J 

is too high, then the larger head value HJ is required. Likewise, if the calculated flow is too low, 

then the lower head value HJ is required. The new value HJ is used as an initial guess in the next 

iteration step and the whole procedure is repeated until Eq. (10) is satisfied. 

It is important to note that the number of unknown values (HJ, QJA, QJB, QJC) is greater than the 

available head loss equations (9). However, due to the additional equation (10), it is possible to 

solve this problem directly [9]. Nevertheless, the available literature shows deficiency in direct 

methods for larger systems. 

Also, it is interesting to notice in Figure 3 that, due to the position of the reservoir B, it is 

impossible to accurately predict the flow direction in the pipe JB. For the pipes JA and JC, the 

flow direction is logically predicted due to the fact that the reservoir A has the highest 

hydraulic head point while the reservoir B has the lowest. 

Contrary to methods usually used for solving the three-reservoir problem, we focus on 

developing a method for an arbitrary number of reservoirs, as well as larger and more complex 

pipe systems. Namely, to initialize the computational procedure for the steady flow condition 

in a given pipe system with more reservoirs, the flow rate from the reservoirs should be 

determined in advance. For this purpose, a numerical procedure is developed and illustrated in 

the following chapters. 
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4. THE ITERATIVE PROCEDURE 

As discussed previously, a computational procedure needed to determine the flow in a 

relatively simple pipe system with just one junction and few reservoirs (Figure 3) is not trivial. 

Hereafter an iterative method developed for solving complex pipe systems with multiple 

reservoirs is described. 

The first condition that should be satisfied is given by the equality between the sum of flows 

from reservoirs and the total consumption in junctions (Figure 4). The second condition is 

defined by the hydraulic heads in the junctions [1, 2]. 

The iterative procedure for initializing the flow in a pipe system with more junctions and 

reservoirs is summarized in the following description. Choose any flow values that satisfy the 

first Kirchhoff’s law (1). With those values compute initial pipe flows Q, initial pressure losses 

∆H and initial hydraulic heads H. Input those initial values in the Newton-Raphson iterative 

algorithm [10, 11]. However, in the Newton-Raphson iterative algorithm a hydraulic head H for 

one reservoir is held constant while others are progressively corrected. The choice of a 

reservoir which has a constant hydraulic head is arbitrary. In this way hydraulic heads in the 

pipe system are obtained, which satisfies assumed outgoing reservoir flows, but not the 

required hydraulic heads in certain water reservoirs. Based on the differences of obtained and 

given hydraulic heads for each of the reservoirs, the correction of reservoir flows is performed. 

With new reservoir flows, new initial values and hydraulic heads are computed. This 

procedure is repeated until the adjusted reservoir flows satisfy the required hydraulic heads 

for each of the reservoirs. 

To explain the computational procedure in detail, it is necessary to clarify the idea behind it. If 

a computed hydraulic head H in an observed reservoir is lower than required, it is necessary to 

increase reservoir flow q in the next iterative step. Herein, it should be stressed that the flow 

may be directed out of or to the reservoir. If it runs out of the reservoir, it has a positive sign 

(+) and (-) in the opposite direction. The main idea is to add a correction factor to those 

reservoirs for which required hydraulic heads are not reached. As mentioned earlier, hydraulic 

head for one reservoir is held constant inside a Newton-Raphson iterative loop. For this 

reservoir, the flow q is corrected depending on the rest of the corrected flows, so that that the 

continuity equation is satisfied (1). In other words, this reservoir flow is corrected last. 

For each of the reservoirs (beside the one for which hydraulic head H is held constant) the 

correction of the flow q is performed according to the equation: 

 ( k ) ( k 1)q q q∆−
= ±  (11) 

in which q(k) denotes the reservoir flow at k iteration, q(k-1) reservoir flow at k-1 iteration and 

Δq the correction of the value for the flow at the present iteration. The reservoir flow for 

reservoir 1 (for which the hydraulic head H is held constant) is corrected depending on the 

reservoir flow 2, as described earlier (Figure 4). 
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Fig. 4  Determining the flow from multiple reservoirs by the proposed iterative procedure 

Elaborating this idea, it was concluded that the best approach of assuming the next iteration 

would be by using linear interpolation or extrapolation (Figure 5). By doing so, Eq. (11) gets a 

little bit more complex due to the increasing number of points used for interpolation (or 

extrapolation). Therefore, instead of just having previous iteration that contributes to the 

present one, there is also one preceding it. Accordingly, Eq. (11) takes the form: 

 ( k ) ( k 2 )q q q∆−
= + , (12) 

in which q(k-2) labels the reservoir flow q at k-2 or the antepenultimate iteration. The 

penultimate iteration k-1 is included within the flow correction value Δq, which can be 

obtained by geometrical equality (Figure 5) given in the form: 

 
( k 2 )( k 1) ( k 2 )

R
( k 1) ( k 2 ) ( k ) ( k 2 )

H HH H

q q q q

−− −

− − −

−−
=

− −

, (13) 

which can be further used to rewrite Eq. (12) in the form: 

 
( k 2 ) ( k 1) ( k 2 )

( k ) ( k 2 ) R
( k 1) ( k 2 )

( H H )(q q )
q q

H H

− − −
−

− −

− −
= +

−

, (14) 

where HR denotes given or requested reservoir hydraulic head H, H(k-2) hydraulic head for 

antepenultimate iteration and H(k-1) for penultimate one. 

 

Fig. 5  Estimation of flow q from reservoir by linear interpolation 

As can be noted, the latest iteration is assumed by using the previous two. It should be 

emphasized that, if there is a linear dependence between the reservoir flow q and reservoir 

hydraulic head H, only three iterations are needed for finding the exact value of the reservoir 

flow q. However, because there is more than just one reservoir in system, the reservoir flow q 

and reservoir hydraulic head HR dependence is not strictly linear. This is because reservoirs 

interact among each other. Hence, a certain number of iteration will be required for finding the 

exact value of the reservoir flow q. The example of finding the correct value q for nonlinear 

relationship between the reservoir flow q and reservoir hydraulic head HR is shown on 
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Figure 6. If memory consumption is taken into account, note that only the last two iterations 

are used for finding the next one. All iterations before it are not stored in the memory. 

 

Fig. 6  Iterative solution for nonlinear relationship between reservoir flow and reservoir hydraulic head 

The exact number of iterations primarily depends on the number of reservoirs in the pipe 

system. Hence, a greater number of reservoirs interacting among each other will require a 

greater number of iterations. The proposed linear method is algorithmically simple, relatively 

fast and precise. It converges to a given accuracy, which can be arbitrarily defined, and ensures 

the convergence. Although some other, higher-order polynomial functions would theoretically 

improve the convergence by decreasing the computational time, reducing the number of 

iteration, an appropriate polynomial order is hard to define uniquely and depends on the 

number of reservoirs in a pipe system. Also, note that a polynomial function of higher order 

has more solutions. However, just one of those solutions is right in terms of finding the exact 

solution for reservoir flow value q. Therefore, for the sake of simplicity and reliability, the 

linear method is found to be a more appropriate method of achieving that objective. 

5. NUMERICAL EXAMPLE 

A numerical example was calculated with the presented numerical algorithm implemented in 

MathCAD 15 [12] for a pipe system with geometrical and topological data illustrated in Figure 

7. Note that the system contains 15 junctions and reservoirs are defined on three of them. 

Apart from that, the consumption in junctions, hydraulic heads of reservoirs and mechanical 

properties of fluids (density and viscosity) should be defined in advance. 

Geometrical features of the pipe system are associated with diameters of sections D and 

absolute roughness of pipe ε. The geometrical characteristics of the pipe system are defined by 

the coordinate matrix XYZ of the junctions given in the form: 

 

1 1 1

2 2 2

3 3 3

ni ni ni

x y z

x y z

x y z

x y z

 
 
 
 =
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 
 

XYZ

M M M

, (15) 

where xi, yi and zi are the coordinates of the junction denoted by the number i. On the other 

hand, the topological features are related to a number of junctions ni and number of sections 

nj. The topological matrix TOP defines the junction connections and for the first four pipes in 

the given pipe system (Figure 7) can be defined as: 
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1 2

2 3

3 4

4 5

 
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 
 =
 
 
 
 

TOP

M M

 (16) 

and defines connections of sections and junctions. For the considered numerical example 

(Figure 7), the section’s length is given as: Δ =1000 m, Δy=1000 m, where Δx and Δy defines the 

distance between junctions. The density of fluid is ρ=1000 kg/m3 and dynamic viscosity 

μ=0.001307 Pa·s (for a temperature of 10ºC). Consumption in all junctions is q=60 l/s. The only 

exceptions are junctions 1, 8 and 15 that represent reservoirs. The section’s diameters vary 

and are: D1=400 mm, D2=600 mm, D3=550 mm, D4=500 mm, D5=900 mm, D6=750 mm, D7=950 

mm, D8=300 mm, D9=200 mm, D10=700 mm, D11=150 mm, D12=100 mm, D13=100 mm, D14=400 

mm, D15=200 mm, D16=250 mm, D17=100 mm, D18=100 mm, D19=100 mm, D20=150 mm, D21=150 

mm, D22=150 mm. The absolute pipe roughness is ε = 0.01 mm for all sections. The hydraulic 

head on junction 1 is H1 =50 m and on junctions 8 and 15 they are 40 m. 

 

Fig. 7  Pipe system used for the numerical example 

As a result of numerical computation, pipe flows Q, velocity in sections v, hydraulic heads in 

junctions H and reservoir flows q are obtained. The most interesting results are those of the 

distribution of hydraulic heads on the basis of which it is easier to understand the calculated 

values of reservoir flows q. Despite the fact that reservoirs on junctions 8 and 15 are of the 

same value, they have different reservoir flows’ features. Actually, the reservoir on junction 8 

receives the flow in the amount of 291.5 l/s and is initially acting as a consumer, while the 

reservoir on junction 15 delivers the flow in the amount of 37.3 l/s. This is due to hydraulic 

heads’ differences between reservoirs and neighboring junctions. The hydraulic head 

distribution is illustrated in Figure 8. 

 

Fig. 8  Computed hydraulic heads and reservoir flows values 
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Furthermore, the influence of the number of iteration on a computation time was examined 

and for all the numerical experiments the almost linear dependence was evidenced. The same 

conclusion applies to the relation between the number of reservoirs in the pipe system and 

number of required iterations to retrieve the solution, as much as the number of reservoirs 

and computation time. To illustrate this, it was examined using the same topology showed in 

Figure 7. Computation with 1, 2, 3 ..., 8 reservoirs was executed 10 times, each time varying 

hydraulic heads and placements of reservoirs in the pipe system. The results are illustrated in 

Figures 9, 10 and 11. 

 

Fig. 9  Relation between the number of iteration and computational time required to retrieve the solution 

 

Fig. 10  Relation between the number of reservoirs and number of iteration required to retrieve the 

solution 

 

Fig. 11  Relation between the number of reservoirs and computational time required to retrieve the 

solution 
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6. CONCLUSIONS 

The iterative numerical procedure proposed in this paper can be used to calculate the rate of 

flow from reservoirs in a given pipe system. The computational implementation of the 

procedure is relatively easy and the procedure can be used to determine the amount and 

direction of the flow from reservoirs where hydraulic heads are specified in advance. 

Computation time depends on the complexity of a network topology and number of reservoirs. 

In this paper, focus was turned to the relationship between a number of reservoirs and 

computation time, while the network topology was held constant. The relationship showed an 

approximate linear dependence. Although a linear interpolation method was used in the 

developed numerical procedure, the numerical procedure can be further improved by 

introducing a nonlinear interpolation (e.g. a quadratic one) for the purpose of finding the 

amount and direction of reservoir flow. These methods promise a faster obtainment of the 

exact solution, but they also present a great challenge in defining the exact solution (e.g. the 

quadratic equation has two solutions). 
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ITERATIVNI ALGORITAM ZA INICIJALIZACIJU TOKA U TLAČNIM SUSTAVIMA S 
VIŠE VODOSPREMNIKA 

Za analizu tlačnih sustava s više rezervoara, razvijen je numerički algoritam za inicijalizaciju 

toka. Koristeći iterativnu proceduru, razvijeni numerički algoritam se koristi u svrhu definiranja 

tlaka u tlačnim sustavima. Osim navedenoga, algoritam se koristi u svrhu definiranja orijentacije 

i iznosa volumetrijskog protoka za proizvoljan tlačni sustav s više vodosprema. Uspoređujući ovaj 

algoritam s klasičnom metodom koja se koristi za problem triju rezervoara, može se reći da 

predloženi algoritam korigira iznos tlaka u spojevima tlačne mreže na inverzan način. Numerički 

algoritam je implementiran u računalni kod razvijen za analizu proizvoljnih tlačnih sustava. 
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tlačni sustav, iterativna metoda. 


