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Abstract. We show under what conditions, and how, one can ob-
tain a shape theory (various shape theories) in a concrete category. The
technique is, roughly speaking, reduced to the quotients by congruences
providing the objects of lower cardinalities. The application yields the new
(coarser) classifications in every concrete category which admits sufficiently
many non-trivial quotients. Thus, the ordering, (ultra)pseudometric, uni-
form and topological structures, as well as many algebraic and mixed
(multi-) structures, give rise to interesting results.

1. Introduction

Although founded purely categorically (after Borsuk’s “geometric” ap-
proach for compact subsets of the Hilbert cube ([1, 2, 3]), a shape theory is,
mostly, well known only as the shape theory of topological spaces with respect
to spaces having homotopy types of polyhedra ([7, 8, 13]). The generalizations
founded in [11] and [18] are, primarily, also on that line. (An exception to
that kind could be [4], where the shape is treated in somewhat more general
categorical frame.) Briefly, the well-studied shape theories are appropriate
operable extensions of the homotopy theory to all (i.e., locally bad) spaces.
They share many useful invariants with the standard homotopy and bring
some new ones ([13, Chapter II], [18, Section 9]).

The key notion in a shape theory is that of expansion ([13, I. 2]). The idea
is, as in many other theories, to approximate an object with the “nice” ones.
In some cases the inverse limit approach is satisfactory. However, an inverse
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limit ([9, VIII. 2, 3], [13, I. 2]) is only accidentally an expansion. Namely,
although both are pro-morphisms ([13, I. 1]) from an object to an associated
inverse system, the corresponding universal properties are quite different:

In order to establish the shape theory of topological spaces, the main
problem was to prove the existence of polyhedral (ANR-) expansions of non-
compact spaces. It was solved by proving the existence of the associated
inverse systems called resolutions (and by constructing them), which then are
transferred into the homotopy category.

In our approach, for any concrete category C, we firstly propose a subclass
of “nice” objects depending on a given cardinal. More precisely, given an
infinite cardinal κ, we choose the full subcategory Cκ− (Cκ) of C determined
by all the objects having cardinalities less than (less or equal to) κ. Then we
used to say that the objects of Cκ− (Cκ) are nice comparing to those of C \Cκ−

(C \ Cκ). Further, we show that every object X admits the canonical Cκ−-
expansion (Cκ-expansion) via the appropriate quotient objects and quotient
morphisms by congruences on X , denoted by (the notations for objects and
morphisms of C or pro-C are those of [13]):

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−)

(pκ = (pλ) : X →Xκ = (Xλ, pλλ′ ,Λκ)).

Clearly, in the case of κ > |X | (κ ≥ |X |), the inverse systemXκ− (Xκ) has the
maximal term, and thus, it is “κ−-stable” (“κ-stable”), i.e., isomorphic in pro-
Cκ− (pro-Cκ) to the rudimentary (constant) system ⌊X⌋. If one wants more
special expansions, it has to choose a special subcategory D ⊆ C and make the
expansions in Dκ− and Dκ (if they exist!). After this, the construction of the
corresponding shape categories Sh(C, Cκ−) ≡ Shκ−(C), Sh(C, Cκ) ≡ Shκ(C)
and functors Sκ− , Sκ as well as of the relating functors Sκ−κ, Sκκ′ , κ < κ′,
follows the general procedure. In the case of κ− for κ = ℵ0, we speak about
finite shape and denote it by Sh0

¯
.

Figuratively speaking, the quotient shapes of an object are (changeable)
“pictures of that object viewing it from outside at different distances”. Really,
if one wants to estimate (“roughly”) a large object in whole and get its global
picture, he has to stay outside or to move far enough from the object. Of
course, in that case one cannot see a fine (local) structure, and ignores it
purposely. Since this kind of shape obviously depends on a given “distance”,
one, firstly, has to define and fix a distance (“view point for observing”), and,
secondly, to propose the “referent” (“nice”) objects for the chosen distance,
in order to “recognize” (“compare”) the shape of a considered object with
respect to nice objects at that distance. In our approach, the distance is
defined by means of cardinality such that a larger (infinite) cardinal means the
smaller distance, while the nice objects are those of lower cardinalities. Thus,
the largest distance (the “coarsest” κ−-shape) corresponds to κ = ℵ0. The
minimal nontrivial distance (the “finest” nontrivial κ−-shape) corresponds
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to cardinality κ of the object Clearly, if an object has cardinality κ, then,
for every κ′ ≥ κ, its κ′-shape class becomes the category isomorphism class
because, in that case, one is “in” the object.

Some interesting concrete categories C for considering the quotient shapes
are as follows:

Set - sets and functions;
Ordg - partially ordered sets and genuine order-preserving functions;
(U)PMet - (ultra)pseudometric spaces with various kinds of morphisms;
Top - topological spaces and mappings (and many of its subcategories);
Unf - uniform spaces and uniformly continuous functions;
Mon - monoids and their homomorphisms;
Grp - groups and homomorphisms;
TGrp - topological groups and continuous homomorphisms;
Ring - rings and ring homomorphisms;
R-Mod (and Mod-R) - left (and right) R-modules and R-module homo-

morphisms, as well as many of its important subcategories;
V ectF - vectorial spaces (over a fixed field F ) and their linear functions.

In each of them, except Set and V ectF (with the algebraic structure only),
we have found examples which show that the quotient shape classifications
are strictly coarser than the classification by isomorphisms.

Finally, the paper is written as a program (bringing only the main con-
structions and motivating examples in a few fairly known concrete categories),
and the author expects an appropriate response of the specialists in the vari-
ous concrete categories.

2. Preliminaries

Let S denote the class of all sets. Recall ([10], III. 2) that a concrete
category, denoted by C, is a triple (O, U, hom), where

(i) O is a class whose members are called C-objects ;
(ii) U : O → S is a set-valued function, where, for each C-object X , U(X)

is called the underlying set of X ;
(iii) hom : O×O → S is a set-valued function, where, for each ordered pair

(X,Y ) of C-objects, hom(X,Y ) is called the set of all C-morphisms
with domain X and codomain Y ;

such the following conditions are satisfied:

(1) for each ordered pair (X,Y ) of C-objects, hom(X,Y ) is a subset of the
set U(Y )U(X) of all functions from U(X) to U(Y );

(2) for each C-object X , the identity function 1U(X) on the set U(X) is a
member of hom(X,X);

(3) for each triple (X,Y, Z) of C-objects, f ∈ hom(X,Y ) and g ∈
hom(Y, Z) implies that the function composite gf ∈ hom(X,Z).
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For instance, Set (the category of all sets and functions), Grp (the category of
all groups and homomorphisms), Top (the category of all topological spaces
and mappings - continuous functions) are concrete categories, while HTop
(the category of all topological spaces and homotopy classes of mappings) is
not a concrete category (proven by P. Freyd; see [10], III.4.7, p. 25). Roughly
speaking, a concrete category C have the objects (X, σ), where X is a set
and σ is a structure, and the morphisms f : (X, σ) → (Y, τ), where f is a
function ofX to Y which preserves the structures by a given rule. Further, the
function U turns into so called forgetful functor U : C → Set, U(X, σ) = X
and U(f) = f , that is faithful.

One usually denotes O by Ob(C) and hom(X,Y ) by C(X,Y ), while the
union of all hom(X,Y ) of C one denotes by Mor(C). Further, an element
f ∈ C(X,Y ) one often writes down as f : X → Y .

According to [10], a congruence (or natural equivalence relation) on a
category C (not necessarily concrete) is an equivalence relation ∼ on the class
Mor(C) satisfying the next two conditions:

(a) every equivalence class by ∼ is contained in a unique C(X,Y );
(b) if f ∼ f ′ and g ∼ g′, then gf ∼ g′f ′, whenever the compositions are

meaningful.

A natural equivalence relation ∼ on C makes the composition of equivalence
classes possible by putting [g][f ] = [gf ]. Consequently, there exists the cate-
gory having the object class Ob(C), while the morphisms are the equivalence
classes of those from C by ∼. It is called the quotient category of C with
respect to ∼, and is denoted by C/ ∼.

We assume that the notion of a functor of a category C to a category D,
F : C → D, is well known.

Further, we recall some basic notions and facts about a pro-category, as
well as about an expansion and shape, by following [13]. A preordered set is
an ordered pair (Λ,≤) consisting of a set Λ and a preordering ≤ (reflexive
and transitive). A preordered set (Λ,≤) is said to be directed provided

(∀λ, λ′ ∈ Λ)(∃λ′′ ∈ Λ)λ, λ′ ≤ λ′′.

Let C be a category. An inverse system, denoted by X, in the category
C is a triple ((Xλ), (pλλ′ ), (Λ,≤)), abbreviated to (Xλ, pλλ′ ,Λ), where

- (Λ,≤) is a directed set, called the index set ;
- for each λ ∈ Λ, Xλ is a C-object, called the term;
- for every related pair λ ≤ λ′ in Λ, pλλ′ : Xλ′ → Xλ is a C-morphism,
called the bonding morphism, such that pλλ = 1Xλ

(≡ 1λ) and
pλλ′pλ′λ′′ = pλλ′′ whenever λ ≤ λ′ ≤ λ′′.

In the case of (Λ,≤) = (N,≤) (the natural numbers), an inverse system
X = (Xi, pii′ ,N) is called an inverse sequence. An inverse system indexed by
a singleton is called a rudimentary (or constant) system and is denoted by
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⌊X⌋ where X is the only term. We shall often abbreviate (not identify; see
[17], Section 2) ⌊X⌋ to X .

A morphism of inverse systems, denoted by

(fµ, φ) : X → Y = (Yµ, qµµ′ ,M),

consists of a function φ : M → Λ and of C-morphisms fµ : Xφ(µ) → Yµ, for
each µ ∈M , such that

(∀µ ≤ µ′)(∃λ ≥ φ(µ), φ(µ′)) fµpφ(µ)λ = qµµ′fµ′pφ(µ′)λ.

The composition of morphisms of inverse systems, (fµ, φ) : X → Y and
(gν , ψ) : Y → Z = (Zν , rνν′ , N), is well defined by putting

(gν , ψ)(fµ, φ) = (hν , χ) : X → Z,

where
χ = φψ : N → Λ and hν = gνfψ(ν) : Xχ(ν) → Zν .

The composition is associative, and the identity morphism on an inverse sys-
tem X is (1λ, 1Λ) : X → X. In this way is constructed a certain category,
denoted by inv-C, which is called the inv-category of the category C. Further,
on each morphism set inv-C(X,Y ), an equivalence relation ∼ is defined as
follows:

(fµ, φ) ∼ (f ′
µ, φ

′)⇔ ((∀µ ∈M)(∃λ ≥ φ(µ), φ′(µ))fµpφ(µ)λ = f ′
µpφ′(µ)λ).

It is a natural equivalence relation on inv-C. The corresponding quotient
category (inv-C)/ ∼ is denoted by pro-C and is called the pro-category of the
category C.

There exists a functor from C to pro-C determined by

(f : X → Y ) 7→ (⌊f⌋ : ⌊X⌋ → ⌊Y ⌋)

(the rudimentary embedding). Although the brackets “⌊·⌋” are often dropped,
one must not assume that C is a subcategory of pro-C (see [17], Section 2).

Let X ∈ Ob(C), let X ∈ Ob(pro-C) and let p : ⌊X⌋ → X be a morphism
of pro-C. Then, p is said to be an inverse limit of X (in the category C) if,
for every morphism f : ⌊Y ⌋ →X (of pro-C), there exists a unique morphism
f : Y → X (of C) such that p ⌊f⌋ = f . Further, given a full subcategory
D ⊆ C, p is said to be a C-expansion of X with respect to D if, for every
Y ∈ Ob(pro-D) and every f : ⌊X⌋ → Y (of pro-C)), there exists a unique
morphism g : X → Y (of pro-C) satisfying gp = f . If, in addition, X ∈
Ob(pro-D), then p is, for short, said to be a D-expansion of X (with respect
to D itself). In that case, obviously, g belongs to pro-D. The following two
conditions characterize a C-expansion (D-expansion) p : ⌊X⌋ →X:

(E1) (∀P ∈ Ob(D))(∀h : X → P of C)(∃λ ∈ Λ)(∃f : Xλ → P of C (of D))
fpλ = h;

(E2) (∀f, f ′ : Xλ → P of C (of D)) (fpλ = f ′pλ ⇒ ((∃λ′ ≥ λ) fpλλ′ =
f ′pλλ′ ).
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Every two D-expansions of the same C-object are naturally isomorphic (as
objects of pro-D). If every C-object X admits a D-expansion p : ⌊X⌋ → X,
then D is said to be dense in C. Since [15, Section 3.3], the term “dense”
may be replaced by the equivalent (more categorical) term πpro-reflective.
We shall use it in the sequel.

Given a category pair (C,D) such that D ⊆ C is pro-reflective, D-
expansions p : ⌊X⌋ → X , p′ : ⌊X⌋ → X ′, q : ⌊Y ⌋ → Y , q′ : ⌊Y ⌋ → Y ′, and
morphisms f : X → Y , f ′ : X ′ → Y ′, let us consider the following diagram
(in pro-D):

X
i
→ X ′

f ↓ ↓ f ′

Y →
j

Y ′
,

where i and j are the natural isomorphisms. We say that f is equivalent
to f ′, f ∼ f ′, provided the above diagram commutes. The relation ∼ is a
natural equivalence relation on pro-D, and the equivalence class of an f is
denoted by 〈f〉. Now the shape category for (C,D), denoted by Sh(C,D), is
defined as follows:

Ob(Sh(C,D)) = Ob(C);

Sh(C,D)(X,Y ) ≈ (pro-D)(X ,Y ),

where X, Y is any pair of the appropriate D-expansions, i.e., a shape mor-
phism F : X → Y is the equivalence class 〈f〉 of a morphism f ∈ (pro-
D)(X ,Y ). Thus, such an F is represented by a diagram

X
p
← X

f ↓
Y ←

q
Y

.

The composition is well defined by means of any pair of the representatives,
and the identity 1X is defined by any 1X . Given X,Y ∈ Ob(C), we say that
X and Y have the same shape (type), Sh(X) = Sh(Y ), provided they are
isomorphic objects in Sh(C,D). There also exists a functor S : C → Sh(C,D),
called the shape functor, defined by S(X) = X and S(f) = F , where F = 〈f〉
and f is induced by f ([13, I.2.3]).

Finally, all necessary facts concerning ordinals and cardinals one can find
in [5], Chapter II. In addition, one can straightforwardly prove that, for every
infinite set X (|X | ≥ ℵ0) and every cardinal κ, the following facts hold true:

(e) if κ < |X |, then the set of all subsets A ⊆ X having cardinality |A| = κ
has cardinality |X |;

(f) consequently, the set of all subsets A ⊆ X having cardinalities |A| <
|X | has cardinality |X |;

(g) the set of all subsets A ⊆ X having cardinality |A| = |X | has cardinal-
ity

∣

∣2X
∣

∣ = 2|X|.
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3. The shapes in a concrete category - generally

Concerning a shape of objects, in general, one has to decide which ones
are “nice” absolutely and/or relatively (with respect to a chosen one). In this
approach, the main principle is:

In general, an object is “nice” if it is a quotient object belonging to a
special full subcategory and if it (its “basis”) has cardinality less than (less or
equal to) a given infinite cardinal.

Given a category pair (C,D), where D ⊆ C is full, and a cardinal κ, let
Dκ− (Dκ) denote the full subcategory of D determined by all the objects
having cardinalities or, in some special cases, the cardinalities of “bases” less
than (less or equal to) κ.

By following the principle, let (C,Dκ−) ((C,Dκ)) be such a pair of concrete
categories. If

(a) every C-object (X, σ) admits a directed set R(X, σ, κ−) ≡ Λκ−

(R(X, σ, κ) ≡ Λκ) of equivalence relations λ on X such that each quo-
tient object (X/λ, σλ) has to belong to Dκ− (Dκ), while each quotient
morphism pλ : (X, σ)→ (X/λ, σλ) has to belong to C;

(b) the induced morphisms between quotient objects belong to Dκ− (Dκ);
(c) every morphism f : (X, σ)→ (Y, τ) of C, having the codomain in Dκ−

(Dκ), factorizes uniquely through a quotient pλ : (X, σ) → (X/λ, σλ),
f = gpλ, with g belonging to Dκ− (Dκ),

then Dκ− (Dκ) is a pro-reflective subcategory of C. Consequently, there ex-
ist a (nontrivial) “quotient” shape category Sh(C,D

κ−) ≡ ShD
κ−

(C) ≡ Shκ−

(Sh(C,Dκ) ≡ ShDκ
(C) ≡ Shκ) obtained by the general construction described

in Section 2.
Therefore, a κ−-shape morphism Fκ− : (X, σ)→ (Y, τ) is represented by

a diagram (in pro-C)

(X,σ)κ−

p
κ−

← (X, σ)
fκ− ↓

(Y , τ )κ−

q
κ−

← (Y, τ)

(with pκ− and qκ− - a pair of appropriate expansions), and similarly for
a κ-shape morphism Fκ : (X, σ) → (Y, τ). Since all Dκ−-expansions (Dκ-
expansions) of a C-object are mutually isomorphic objects of pro-Dκ− (pro-
Dκ), the composition and identities follow straightforwardly (observe that ev-
ery quotient morphism pλ is an effective epimorphism (U(pλ) is a surjection),
and thus condition (E2) follows trivially).

The corresponding “quotient” shape functors Sκ− : C → Sh(C,D
κ− ) and

Sκ : C → Sh(C,Dκ) are defined in the same general manner. That means,

Sκ−(X, σ) = Sκ(X, σ) = (X, σ);
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if f : (X, σ) → (Y, τ) is a C-morphism, then, for every µ ∈ Mκ− ,
the composite gµf : (Y, τ) → (Yµ, τµ) factorizes (uniquely) through a
pλ(µ) : (X, σ) → (Xλ(µ), σλ(µ)), and thus, the correspondence µ 7→ λ(µ)
yields a function ϕ : Mκ− → Λκ− and a family of Dκ−-morphisms fµ :
(Xϕ(µ), σϕ(µ)) → (Yµ, τµ) such that qµf = fµpϕ(µ); one easily shows that
(ϕ, fµ) : (X ,σ)κ− → (Y , τ )κ− is a morphism of inv-Dκ− , so the equivalence
class fκ− = [(ϕ, fµ)] : (X,σ)κ− → (Y , τ )κ− is a morphism of pro-Dκ− ; then
we put Sκ−(f) = 〈fκ−〉 ≡ Fκ− : (X, σ)→ (Y, τ) in Sh(C,D

κ−). The identities
and composition are obviously preserved. In the same way one defines the
functor Sκ.

Furthermore, since (X, σ)κ− is a subsystem of (X,σ)κ, one easily shows
that there exists a functor Sκ−κ : Sh(C,Dκ) → Sh(C,D

κ−) such that Sκ−κSκ =
Sκ− , i.e., the diagram

C
ւ Sκ− Sκ ց

ShD
κ−

(C) Sκ−κ←−−−
ShDκ

(C)

commutes (compare the proof of Theorem 1). Moreover, an analogous functor
Sκκ′ : ShDκ′

(C) → ShDκ
(C), satisfying Sκκ′Sκ′ = Sκ, exists for every pair of

infinite cardinals κ ≤ κ′.

Generally, in the case of κ = ℵ0, the κ
−-shape is said to be the finite

(quotient) shape, because all the objects in the expansions are of finite (bases)
cardinalities, and is denoted by Sh(C,D0

¯
) ≡ Sh0

¯
.

Remark 3.1. For every concrete category C such that U [Ob(C)] =
Ob(Set), and every subcategory B ⊆ Set such that Ob(B) = Ob(Set) and
MorB ⊇ MorC, there exists a unique category CB ⊇ C that it enlarges C by
MorCB = MorB (the new morphisms are all functions of B - ignoring the
structure). The maximal such enlargement C̄ occurs in the case B = Set. The
only condition for the existence of a κ-shape theory for CB is that there exist
quotient objects belonging to C. Then, clearly, for every infinite cardinal κ,
“to be of the same κ-shape” in CB is equivalent to “to be mutually equipotent
as sets” (“to have equipotent bases”), that does not imply “to be isomorphic
in C”. Therefore, the notion of κ-shape makes sense for every category CB as
well. However, in this paper, we will not consider the κ-shapes of any such
CB.

Clearly, there are concrete categories (mostly some special subcategories
of a concrete category) that do not admit a (nontrivial quotient) shape theory
in the above sense. In the sequel, we shall apply the above procedure to the
following well known concrete categories:

- Set - sets and functions;
- Ordg - partially ordered sets and genuine order-preserving functions;



QUOTIENT SHAPES 263

- PMet (UPMet) - pseudometric (ultrapseudometric) spaces with sev-
eral classes of functions;

- Top - topological spaces and mappings (only, in general);
- Mon - monoids and their homomorphisms;
- Grp - groups and homomorphisms (and Ab ⊆ Grp - abelian groups);
- Ring - rings and ring homomorphisms;
- R-Mod - (left) R-modules and R-module homomorphisms;
- V ectF - vectorial spaces (over a field F ) with the algebraic structure
(only) and their linear functions.

4. The shapes of sets

We shall begin with the category Set of all sets and functions in order to
demonstrate the technique. Since there is no structure in this case, one should
expect that all the shape classifications of sets and equipotency coincide, that
is, indeed, the case.

The construction by quotients of any (κ-) shape category for the category
Set serves as the general pattern for any concrete category. We follow the
main principle of our “philosophy”: every finite set is “nice”, and, if X is
infinite, every set Y with |Y | < |X | is “nice with respect to X”.

Let X be a set, and let Λ ≡ Λ(X) be the set of all equivalence relations
∼ ≡ λ ⊆ X ×X on X . Put

λ ≤ λ′ ⇔ (∀x ∈ X)[x]λ′ ⊆ [x]λ

(the refinement), where [x]λ and [x]λ′ are the equivalence classes of x by λ and
by λ′, respectively. Then (Λ,≤) becomes a poset (partially ordered set) that
is directed (it is closed under intersections and λ, λ′ ≤ λ∩λ′). Given a λ ∈ Λ,
denote by Xλ the quotient set X/λ and by pλ : X → Xλ the quotient function
x 7→ [x]λ. If λ ≤ λ

′, then there exists a unique function pλλ′ : Xλ′ → Xλ such
that pλλ′pλ′ = pλ. Further, if λ ≤ λ

′ ≤ λ′′, then pλλ′pλ′λ′′ = pλλ′′ . Moreover,
all the functions pλ and pλλ′ are surjective. In this way we have obtained
the inverse system X = (Xλ, pλλ′ ,Λ) in Set (an object of pro-Set) and the
morphism

p = (pλ) : X →X

of pro-Set, where X is identified with the rudimentary system ⌊X⌋ . It is ob-
vious that p : X → X is the limit (of X) and an expansion (of X) in Set
(with respect to any subcategory). Namely, (Λ,≤) has the maximal element
which corresponds to the finest equivalence relation on X - the diagonal ∆X .
Therefore, X∆X

= X and p∆X
= 1X , so the conclusion follows. This, obvi-

ously, is not very useful for our aim. Thus we need to remove ∆X from Λ.
It is clear that the poset (Λ \ {∆X},≤) might not be directed any more. If
X is an infinite set and ∆X is removed from Λ, then in order to assure the
needed directedness one has, in general, to remove from Λ a “lot” of other
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equivalence relations. Consequently, the resulting morphism

p′ = (pλ) : X →X ′ = (Xλ, pλλ′ ,Λ′)

is not, generally, a limit (ofX ′) nor an expansion (of X) (of course, the system
X ′ = (Xλ, pλλ′ ,Λ′) has a limit p′ = (p′λ) : X

′ →X ′, such that, in general, X ′

is not equipotent to X). Nevertheless, for every infinite set X , it is possible
to choose a directed subset of Λ′ ⊂ Λ \ {∆X} so that the restricted morphism
p′ is an expansion.

Given an infinite cardinal κ (≥ ℵ0), let Setκ− (Setκ) denote the full
subcategory of Set having the objects all the sets with cardinalities less than
(less or equal to) κ. We are to prove that Setκ− and Setκ are pro-reflective
subcategories of Set. More explicitly, the following lemma holds true.

Lemma 4.1. Let κ be an infinite cardinal and let X be a set. Let Λκ− ⊆ Λ
(Λκ ⊆ Λ) be the subset of all λ ∈ Λ such that |Xλ| < κ (|Xλ| ≤ κ). Then the
morphism

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−)

(pκ = (pλ) : X →Xκ = (Xλ, pλλ′ ,Λκ))

of pro-Set is a Setκ−-expansion (Setκ-expansion) of X having all pλλ′ and
all pλ epimorphisms (surjections in Set) .

Proof. Firstly, Λκ− and Λκ are directed. Namely,

|Xλ∩λ′ | ≤ |Xλ| · |Xλ′ | and κ′ · κ′′ < κ(κ′ · κ′′ ≤ κ)

whenever κ′, κ′′ < κ ( κ′, κ′′ ≤ κ) and κ ≥ ℵ0 (see [5], Section 8). Thus, Xκ−

(Xκ) is an inverse system in Setκ− (Setκ) and pκ− : X → Xκ− (pκ : X →
Xκ) is a morphism of pro-Set. Now, if |X | < κ, the assertions are true by the
consideration from above (Λκ− = Λκ = Λ, and there exists maxΛ = ∆X). Let
|X | = κ. Then Λκ = Λ and, consequently, pκ : X →Xκ is a Setκ-expansion)
of X as before. To verify that pκ− : X → Xκ− is a Setκ−-expansion of X ,
consider any function f : X → Y , where |Y | < κ. It implies that the fibers
f−1[{y}], y ∈ Y , of f induce the partition of X . i.e., a unique equivalence
relation ∼f on X , such that |X/ ∼f | < κ. Thus, there exists a λ ∈ Λκ− such
that ∼f= λ and, consequently, X/ ∼f= Xλ. Therefore, f factorizes through
pλ, i.e., there exists a function g : Xλ → Y , gpλ = f . Moreover, g is unique
since all pλ are epimorphisms (surjections). Finally, if |X | > κ, the proof
holds in the same manner.

The above constructed expansions pκ− : X → Xκ− and pκ : X → Xκ

of X are said to be canonical. In the case of κ = ℵ0, we shall, in the sequel,
Setℵ−

0

denote by Set0
¯
, and pℵ−

0

= (pλ) : X → Xℵ−

0

= (Xλ, pλλ′ ,Λℵ−

0

) by

p0
¯
= (pλ) : X →X0

¯
= (Xλ, pλλ′ ,Λ0

¯
),

which is a cofinite expansion of X in terms of finite sets. Clearly, if X is
a finite set, then one may reduce p0

¯
, as well as every pκ− and pκ, to the
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identity 1X . And, in general, if κ ≥ |X | (κ > |X |), one may take pκ = 1X
(pκ− = pκ = 1X).

Remark 4.2. By accepting the generalized continuum hypothesis (see
[5], II. Sections 6 and 7), if κ = ℵα ≥ ℵ0 is an accessible cardinal (i.e., α is
not a limit ordinal), then κ− = ℵα−1, while, if κ is inaccessible and α = β+ω
(β is a limit ordinal and ω is the first limit ordinal), then κ− may represent
the well-ordered set {ℵ | ℵβ < ℵ < ℵβ+ω} = {ℵβ+n | n ∈ N}.

By following the general procedure of constructing of a shape category
(Section 2), one establishes the next theorem.

Theorem 4.3. For each infinite cardinal κ, there exist two shape cate-
gories Shκ−(Set) and Shκ(Set) of sets having for the object classes Ob(Set),
while

Shκ−(Set)(X,Y ) ≈ pro-Setκ−(Xκ− ,Y κ−)

and
Shκ(Set)(X,Y ) ≈ pro-Setκ(Xκ,Y κ),

where Xκ− , Y κ− and Xκ, Y κ are the systems in any pair of appropriate
expansions of X, Y respectively. Further, there exist two shape functors

Sκ− : Set→ Shκ−(Set) and Sκ : Set→ Shκ(Set)

keeping the objects fixed, and there exists a unique relating functor

Sκ−κ : Shκ(Set)→ Shκ−(Set)

keeping the objects fixed such that Sκ−κSκ = Sκ− . Moreover, for every related
pair κ ≤ κ′ (including the case κ ≤ κ′− whenever it occurs), there exists the
relating functor Sκκ′ : Shκ′(Set)→ Shκ(Set) such that Sκκ′Sκ′ = Sκ.

Proof. We only want to demonstrate how one constructs Sκ−(f), and
then to prove the existence of Sκ−κ. Let κ be an infinite cardinal and let
f : X → Y be a function. Let pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−) and
qκ− = (qµ) : Y → Y κ− = (Yµ, qµµ′ ,Mκ−) be the canonical Setκ−-expansions
of X and Y respectively. If |X | < κ, then there exists λ∗ = maxΛκ− with
pλ∗

= 1X . Thus, f yields f = qκ−f = [(cλ∗
, qµf)] : Xκ− → Y κ− of pro-Setκ−

such that fpκ− = qκ−f . Then S(f) : X → Y of Shκ−(Set) is the equivalence
class 〈f〉 of f in pro-Setκ− . Let |X | ≥ κ. Since, for each µ ∈M , |Yµ| < κ, the
function qµf : X → Yµ admits (as in the proof of Lemma 1) a ϕ(µ) ∈ Λ and a
unique function fµ : Xϕ(µ) → Yµ such that fµpϕ(µ) = qµf . Further, if µ ≤ µ

′,
then there exists a λ ≥ ϕ(µ), ϕ(µ′) such that fµpϕ(µ)λ = qµµ′fµ′pϕ(µ′)λ. In
that way f yields an f = [(ϕ, fµ)] : Xκ− → Y κ− of pro-Setκ− such that
fpκ− = qκ−f . Then S(f) : X → Y of Shκ−(Set) is the equivalence class 〈f〉
of f in pro-Setκ− .

In order to prove the existence of Sκ−κ, let Fκ ∈ Shκ(X,Y ) and let an
fκ : Xκ → Y κ be its representative with Xκ and Y κ canonical. Recall
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that the canonical inverse system Xκ− and Y κ− are subsystems of Xκ and
Y κ, respectively, and that Xκ and Y κ are subobjects of Xκ− and Y κ− ,
respectively, in pro-Setκ ⊆ pro-Set. (In the categorical sense, every inverse
system is the subobject of a chosen subsystem!) Let jX : Xκ → Xκ− and
jY : Y κ → Y κ− . be the corresponding subobject (mono)morphisms, i.e.,
jX = [(j, 1λ)], where j : Λκ− →֒ Λκ is the inclusion and 1λ is the identity on
Xλ, λ ∈ Λκ− , and jY = [(j′, 1µ)], where j

′ : Mκ− →֒Mκ is the inclusion and
1µ is the identity on Yµ, µ ∈Mκ− Notice that jXpκ = pκ− and jY qκ = qκ− .
Let us consider the morphism jY fκpκ : X → Y κ− . Since pκ− : X →Xκ− is
a Setκ−-expansion of X , there exists a unique fκ− : Xκ− → Y κ− such that
fκ−jXpκ = fκ−pκ− = jY fκpκ. Denote Fκ− = 〈fκ−〉 ∈ Shκ−(X,Y ), and
put Sκ−κ(Fκ) = Fκ−. . Finally, observe that fκ−jX = jY fκ (because pκ is
an epimorphism, Section 3). Now one straightforwardly verifies that Sκ−κ is
a functor. The commutativity of functors follows by the construction.

Corollary 4.4. All the shape categories of Set make an “inverse sys-
tem”

Sh0
¯

(Set)← · · · ← Shκ−(Set)← Shκ(Set)← · · ·

in CAT (quasicategory of all categories and functors) over the well-ordered
index class K− ∪ K, where K is the class of all cardinals, while K− is the
class of all κ− representing the well ordered sets {ℵβ+n | β - a limit ordinal,
n ∈ N} (see Remark 2).

Remark 4.5. Clearly, for every infinite cardinal κ, every function f :
X → Y yields the shape morphisms Sκ−(f) and Sκ(f) (i.e., pro-morphisms
fκ− and fκ). However, the κ

−-converse (κ-converse) does not hold whenever
κ is not sufficiently large. More precisely, given a morphism f : Xκ → Y κ of
pro-Setκ, let us consider a diagram

limXκ ← X
↓ limf

limY κ ← Y
.

Now, if ∆Y /∈ Mκ, the injective function Y → limY κ, in general, is not
surjective. Hence, (lim f)[X ] might be not a subset of Y .

Although there exist the various (quotient) shapes Shκ−(X) and Shκ(X)
of a set X and the shape morphism sets are richer than the function sets, all
the (quotient) shape classifications on Set coincide with the equipotence. It
is not surprising because the only condition in the construction is to take care
about cardinalities. The main step in proving this fact is the next lemma.

Lemma 4.6. Let X and Y be infinite sets such that |X | 6= |Y |. Then, for
every infinite cardinal κ, Shκ−(X) 6= Shκ−(Y ) and Shκ(X) 6= Shκ(Y ).
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Proof. Without loss of generality, we may assume that ℵ0 ≤ κ1 = |X | <
|Y | = κ2. The relevant possibilities are as follows: (a) κ > κ2; (b) κ = κ2; (c)
κ1 < κ < κ2; (d) κ = κ1; (e) κ < κ1.

(a) The both sets X and Y represent their shape κ−-classes and shape
κ-classes. The conclusion follows.

(b) X represents its shape κ−-class and shape κ-class, and Y represents
its shape κ-class, while Y κ− (of the canonical Setκ−-expansion of Y ) is not
isomorphic to any rudimentary system. The conclusion follows.

(c) X represents its shape κ−-class and shape κ-class, while Y κ− and Y κ

are not isomorphic to rudimentary systems. The conclusion follows.
(d) X represents its shape κ-class, while Xκ− , Y κ− and Y κ are not iso-

morphic to rudimentary systems. Thus, it suffices to prove that the canonical
systems Xκ− and Y κ− are not isomorphic objects of pro-Setκ− . In order to
do it, notice that λ ∈ Λ0, i.e., |Xλ| < ℵ0, implies that there exists an x ∈ X
such that |[x]λ| = |X |. Hence, in general, since Λ0 ⊆ Λκ− ⊆ Λκ ⊆ Λ ⊆ 2X×X ,
the fact (g) at the end of Section 2 implies that

2|X| = |Λ0| ≤ |Λκ− | ≤ |Λκ| ≤ |Λ| ≤
∣

∣2X×X
∣

∣ = 2|X×X| = 2|X|.

Therefore, all the Λκ− and Λκ are of the same cardinality - 2|X|. Espe-
cially, in this case, |Λκ− | = 2κ1 < 2κ2 = |Mκ− |. Without loss of generality,
we may pass to the associated cofinite systems X ′

κ− = (X ′
λ̄
, p′
λ̄λ̄′
, Λ̄κ−) and

Y ′
κ− = (Y ′

µ̄, q
′
µ̄µ̄,Mκ−) ([13], I.1.2, Theorem 2). Recall that

∣

∣Λ̄κ−

∣

∣ = |Λκ− |
and |Mκ− | = |Mκ− |.

Let us assume to the contrary, i.e., that X ′
κ−
∼= Y ′

κ− in pro-Setκ− . Let
f : X ′

κ− → Y ′
κ− be an isomorphism. Choose a special representative (ϕ, fµ̄)

of f (having the index function ϕ increasing, [13], I. 1.2, Lemma 2). Then,
for every related pair µ̄ ≤ µ̄′,

fµp
′
ϕ(µ̄)ϕ(µ̄′) = q′µ̄µ̄′fµ̄′ .

Similarly, there exists a special representative (ψ, gλ̄) of f−1 : Y κ− → Xκ−

(ψ is increasing) such that, for every related pair λ̄ ≤ λ̄′,

gλ̄q
′
ψ(λ̄)ψ(λ̄′′) = p′

λ̄λ̄′gµ̄′ .

Since

(ϕ, fµ̄) ◦ (ψ, gλ̄) = (ψϕ, fµ̄gϕ(µ̄)) ∼ (1M
κ−
, 1Y ′

µ̄
),

one infers that, for every µ̄ ∈Mκ− , there exists a µ̄′ ≥ µ̄, ψϕ(µ̄) such that

fµ̄gϕ(µ̄)q
′
ψϕ(µ̄)µ̄′ = q′µ̄µ̄′ .

Because of the choice of the special representatives (q′µ̄µ̄′ = q′
µ̄ψϕ(µ̄)q

′
ψϕ(µ̄)µ̄′)

and the surjectivity of all qµµ′ , and thus of all q′µ̄1µ̄2
, it follows that

(∀µ̄ ∈Mκ−) fµ̄gϕ(µ̄) = q′µ̄ψϕ(µ).
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Now, since

|Mκ− | = |Mκ− | = κ2 > κ1 = |Λκ− | =
∣

∣Λ̄κ−

∣

∣ ≥ ℵ0,

there exists a λ̄0 ∈ Λ̄κ− and there exists infinitely many elements µ̄ ∈ Mκ−

such that ϕ(µ̄) = λ̄0. Put µ̄0 = ψ(λ̄0) ∈Mκ− . Then,

µ̄0 = ψϕ(µ̄) ≥ µ̄

for infinitely many µ̄ ∈ Mκ− . It follows that (Mκ− ,≤′) is not cofinite - a
contradiction.

(e) In this case any of Xκ− , Xκ, Y κ− , Y κ is not isomorphic to a rudi-
mentary system. To prove that Xκ− and Y κ− are not mutually isomorphic
in pro-Setκ− , and that Xκ and Y κ are not mutually isomorphic in pro-Setκ
is quite similar to the proof of case (d).

Theorem 4.7. For every pair X,Y of sets and every infinite cardinal κ,

Shκ−(X) = Shκ−(Y )⇔ |X | = |Y | ⇔ Shκ(X) = Shκ(Y ).

Proof. If |X | = |Y |, then the implications follow by functoriality. We
have to prove the converses. Let, firstly, Shκ−(X) = Shκ−(Y ). If X and
Y are finite sets, then |X | = |Y | because, for every κ, the representatives of
their κ−-shape classes are X and Y themselves respectively. If X is finite and
Y infinite, then X represents every of its κ−-shape classes, and Y represents
every of its κ−-shape classes whenever κ > |Y |, while Y κ− is not isomorphic to
any rudimentary system whenever κ ≤ |Y |. Therefore, Shκ−(X) 6= Shκ−(Y )
- a contradiction. If X is infinite and Y is finite, the same conclusion follows.
Thus both X and Y are either finite (the previous case) or infinite. Then
must be, by Lemma 2, |X | = |Y |. The proof of the κ-case is quite similar.

In the pointed case, i.e., for category Set∗ of all pointed sets (X, x0) and
the base point-preserving functions f : (X, x0) → (Y, y0), the equivalence
relations should be compatible with morphisms, i.e.,

x ∼ x0 ⇔ f(x) ∼′ f(x0) = y0.

Since this compatibility is preserved under intersections, the construction for
Set remains valid for Set∗ as well. Moreover, since the proof of Lemma 2 works
in the pointed case as well, the pointed analogue of Theorem 2 holds true.
Therefore, all the shapes of a pointed set reduce to its (pointed) equipotency
class.

5. The shapes of ordered sets

Firstly, we have to select a certain class of function between ordered sets
to be the needed morphisms. Let (X,≤) and (Y,≤′) be posets (partially
ordered sets) and let f : X → Y be a function. If, for every pair x1, x2 ∈ X ,
the implication
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(1) x1 < x2 ⇒ f(x1) ≤
′ f(x2)

holds, then f : (X,≤)→ (Y,≤′) is said to be order-preserving. If the condition

(2) f(x1) <
′ f(x2)⇒ x1 ≤ x2

is fulfilled, then f : (X,≤)→ (Y,≤′) is said to be conversely order-preserving.
(As usually, “<” means “≤” and “ 6=”, and thus, x1 ≤ x2 in (2) is equivalent
to x1 < x2.) If f satisfies both conditions (1) and (2), then f is said to be
genuine order-preserving. Observe that every constant function is genuine
order-preserving: Further, if (X,≤) is totally ordered, then, for every poset
(Y,≤′), every order-preserving function f : (X,≤)→ (Y,≤′) is genuine order-
preserving.

Example 5.1. (a) Let (N,≤∗) be the set of natural numbers with the
ordering ≤∗,

(∀n1, n2 ∈ N)n1 ≤
∗ n2 ⇔

n2

n1
∈ N,

and let (N,≤) be ordered as usual. Then the identity function 1N of (N,≤∗)
onto (N,≤) has property (1) but not (2), while conversely, 1N of (N,≤) onto
(N,≤∗) has property (2) but not (1). An order-preserving (and thus, genuine)
function f : (N,≤) → (N,≤∗) is, for instance, f(n) = n!. Conversely, every
non-constant genuine order-preserving function g : (N,≤∗) → (N,≤) has to
be constant on N\{1} (see also Example 6 (a) at the end of this section). For
instance,

g(n) =

{

k, n = 1
k + l, n 6= 1

.

(b) Let (Z,≤′) be the set of integers with the ordering defined by the arrows
as below

−1 ← −2 ← −3 · · ·

0
ւ
տ

ւ
տ

ւ
տ

· · ·

1 ← 2 ← 3 · · ·

,

(the slanting arrows mean that n <′ −(n + 1) and −n <′ n + 1, n ∈ N,
i.e., m1 <

′ m2 ⇔ |m1 | < |m2| , m ∈ Z) and let ({0} ∪ N,≤) be the set of
nonnegative integers with the standard ordering. Let f : Z → {0} ∪ N be
defined by f(0) = 0 and by f(−n) = f(n) = n, n ∈ N, and let g : Z →
{0} ∪ N be defined by g(0) = 0 and by g(−n) = n, g(n) = n + 1, n ∈ N.
Then f : (Z,≤′)→ ({0} ∪ N,≤) is a genuine order-preserving function, while
g : (Z,≤′)→ ({0}∪N,≤) is an order-preserving function which is not genuine
order-preserving. Namely, g(−n) = n < n + 1 = g(n), while −n and n are
not related in (Z,≤′).

All the posets and all the (conversely, genuine) order-preserving functions
make a category, denoted by Ord (Ordc, Ordg), and Ordg ⊆ Ord ∩ Ordc
having the same object class. Namely, for every (X,≤), the identity function
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1X is obviously genuine order-preserving, while, given an f : (X,≤)→ (Y,≤′)
and a g : (Y,≤′) → (Z,≤′′), that are (conversely, genuine) order-preserving,
then, for every pair x1, x2 ∈ X ,

x1 < x2 ⇒ f(x1) ≤
′ f(x2)⇒ gf(x1) ≤

′′ gf(x2)

(gf(x1) <
′′ gf(x2 ⇒ f(x1) <

′ f(x2)⇒ x1 < x2).

Therefore, gf is also (conversely, genuine) order preserving.
Secondly, we have to select those equivalence relations on X that are

compatible with their quotient functions on the corresponding posets. In
order to do it, given a poset (X,≤) and an equivalence relation λ on X , let
us define

[x1]λ ≤ [x2]λ ⇔ ([x1]λ = [x2]λ ∨ [x1]λ < [x2]λ),

where “<” refers to all the elements, i.e., for every x′1 ∈ [x1]λ and every x′2 ∈
[x2]λ, it holds x

′
1 < x′2. Then the quotient set X/λ becomes the (canonical)

poset (X/λ,≤). However, the quotient function p : X → X/λ is not, in
general, (the given) order-preserving. For our purpose, a congruence on a
poset (X,≤) is needed, i.e., an equivalence relation λ ≡ ∼ on X such that,
for all x1, x2, x

′
1, x

′
2 ∈ X , the implication

(x1 ≤ x2 ∧ x1 6∼ x2 ∧ x1 ∼ x
′
1 ∧ x2 ∼ x

′
2)⇒ x′1 ≤ x

′
2

holds (“∧” denotes the logic conjunction). The diagonal ∆X is obviously the
finest congruence on (X,≤). Every congruence λ assures that x1 < x2 and
[x1]λ 6= [x2]λ imply [x1]λ < [x2]λ. Also, if (X,≤) is totally (well-) ordered,
then so is (X/λ,≤). Notice that, for a given congruence λ on a poset (X,≤)
and an x ∈ X , the congruence class [x]λ may contain some mutually unrelated
elements (see Example 2 below).

Example 5.2. Let (Z,≤′) be the poset of Example 1 (b). Then the par-
tition {0}, -N, N of Z yields a unique equivalence relation λ on Z such that

(Z/λ,≤′) = ({{0},−N,N},≤′) ≡ ({[0], [−1], [1]},≤′)

and [0] < [−1], [0] < [1], while [−1] and [1] are not related (−1 and 1 are not
related in (Z,≤′)). Obviously, λ is not a congruence on (Z,≤′) (−1 < 2, while
[−1] and [2] = [1] are not related in (Z/λ,≤′)). Consequently, the quotient
function p : Z → Z/λ is not (the) order preserving. On the other hand, for
each n ∈ N, the partition {0}, {-1,1,· · · , -n,n}, {−n−1, n+1, · · · } of Z yields
a unique equivalence relation λn on Z such that

(Z/λn,≤
′) = ({[0], [1], [n+ 1]},≤′).

One easily verifies that λn is a congruence on (Z,≤′) and the quotient function
p′n : (Z,≤′)→ (Z/λn,≤

′) is genuine order-preserving. (Moreover, (Z/∩λn,≤
′

) is well-ordered and isomorphic to (N,≤); see Example 3 below.)
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Let X and Y be sets and let λ ≡ ∼ and µ ≡ ∼′ be equivalence relations
on X and Y respectively. A function f : X → Y is said to be (λ, µ)-preserving
if, for every pair x, x′ ∈ X , the implication

x ∼ x′ ⇒ f(x) ∼′ f(x′)

holds.

Lemma 5.3. (i) For every congruence λ on a poset (X,≤), the quo-
tient function p : (X,≤) → (X/λ,≤) is a genuine order-preserving
surjection.

(ii) If, in addition, λ′ is a finer congruence on (X,≤), then the induced
function p̃ : (X/λ′,≤) → (X/λ,≤), satisfying p̃p′ = p, is genuine
order-preserving as well.

(iii) If f : (X,≤) → (Y,≤′) is a (conversely, genuine) order- and (λ, µ)-
preserving function, where λ is a congruence on (X,≤) and µ is a con-

gruence on (Y,≤′), then the induced function f̃ : (X/λ,≤)→ (Y/µ,≤′

), satisfying f̃ p = qf , is (conversely, genuine) order-preserving.

Proof. Let λ ≡ ∼ be a congruence on a poset (X,≤), and let p : X →
X/λ, p(x) = [x], be the quotient function. Let x1, x2 ∈ X such that x1 < x2.
If x1 ∼ x2, then

p(x1) = [x1] = [x2] = p(x2),

and thus, p(x1) ≤ p(x2). If x1 6∼ x2, then x1 < x2 implies (by definitions),

p(x1) = [x1] < [x2] = p(x2)⇒ p(x1) ≤ p(x2).

Further, if x1, x2 ∈ X such that p(x1) < p(x2), i.e., [x1] < [x2], then x1 < x2
(by definition). Therefore, the quotient function p : (X,≤) → (X/λ,≤) is
genuine order-preserving, and (i) is proven.

Given a congruence ∼′≡ λ′ ≥ λ (the refinement), the function p̃ : X/λ′ →
X/λ, satisfying p̃p′ = p, is well defined by p̃([x]′) = [x]. Let x1, x2 ∈ X such
that [x1]

′ < [x2]
′ (in (X/λ′,≤)). Then, x1 < x2 and, by (i),

p̃([x1]
′) = [x1] = p(x1) ≤ p(x2) = [x2] = p̃([x2]

′).

Further, if x1, x2 ∈ X such that p̃([x1]
′) < p̃([x2]

′), then

[x1] = p(x1) = p̃([x1]
′) < p̃([x2]

′) = p(x2) = [x2].

Since λ′ ≥ λ, it follows that [x1]
′ < [x2]

′ as well. Therefore, p̃ : (X/λ′,≤)→
(X/λ,≤) is a genuine order-preserving function, and (ii) is proven.

Let f : (X,≤) → (Y,≤′) be an order- and (λ, µ)-preserving function,
where λ is a congruence ∼ on (X,≤) and µ is a congruence ∼′ on (Y,≤′).
Let p : (X,≤) → (X/λ,≤) and q : (Y,≤′) → (Y/µ,≤′) be the corresponding

quotient functions. Then f̃ : X/λ → Y/µ is well defined by putting f̃([x]) =
[f(x)]′. Thus, for every x ∈ X ,

f̃ p(x) = f̃([x]) = [f(x)]′ = qf(x).
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Let [x1] < [x2]. Then x1 < x2, and thus by (i), for the composite qf (= f̃p),

f̃([x1]) = f̃p(x1) = qf(x1) ≤
′ qf(x2) = f̃ p(x2) = f̃([x2])

holds. Hence, the induced function f̃ : (X/λ,≤)→ (Y/µ,≤′) is order-preser-
ving. If, in addition, f is conversely order-preserving, then (by (i))

f̃([x1]) <
′ f̃([x2])⇔ [f(x1)]

′ <′ [f(x2)]
′ ⇒ f(x1) <

′ f(x2)

⇒ x1 < x2 ⇒ [x1] < [x2].

proving that f̃ is conversely order-preserving too. This proves (iii), and com-
pletes the proof of the lemma.

Notice that the intersection of two congruences λ and λ′ on a poset (X,≤)
is again a congruence on (X,≤), finer than λ and λ′. The above proven facts
(Lemma 3, (i) and (ii)) imply that one can associate with every poset (X,≤) a
certain (canonical - by means of quotients) inverse system (X,≤) = ((Xλ,≤
), pλλ′ ,Λ) in Ordg (Ordc, Ord) and a (canonical) morphism p = (pλ) : (X,≤
) → (X ,≤) of pro-Ordg (pro-Ordc, pro-Ord), where Λ is the (index) set
consisting of all congruences on (X,≤) ordered by λ ≤ λ′ ⇔ (λ′ refines λ).
Moreover, all pλ and pλλ′ are (effective) epimorphisms. Since there exists
maxΛ (corresponding to ∆X), it is not satisfactory for our purpose, except
X is a finite set. However, as in the case of category Set, given an infinite
cardinal κ, one may restrict his consideration to the subset Λκ− (Λκ) of Λ such
that each quotient set Xλ has cardinality less than (less or equal to) κ. Still,
to obtain an expansion, the genuine order-preserving functions are needed
(see the proof of Lemma 4 below). Let us denote by Ordgκ− (Ordgκ) the full
subcategory of Ordg having the objects all the posets (X,≤) of cardinalities
less than (less or equal to) κ.

Lemma 5.4. For every infinite cardinal κ (≥ ℵ0), the subcategories
Ordgκ− , Ordgκ ⊆ Ordg are pro-reflective. Moreover, in both cases, each poset
admits the canonical epimorphic (quotient) expansion.

Proof. We only have to verify condition (E1) for the canonical mor-
phisms pκ− = (pλ) : (X,≤) → (X,≤)κ− and pκ = (pλ) : (X,≤) → (X ,≤)κ
of pro-Ordg. (Condition (E2) follows trivially.) Let us consider the κ-case.
Let a (Y,≤′) ∈ Ob(Ordgκ) and an f : (X,≤) → (Y,≤′) of Mor(Ordg) be
given. If |X | ≤ κ, then there exists maxΛκ ≡ λ∗ and pλ∗

= 1X : (X,≤λ∗

) → (X,≤), so that there is nothing to prove (a desired g = f belonging to
Mor(Ordgκ)). Let |X | > κ. Since |Y | ≤ κ, the fibers f−1[{y}], y ∈ Y , make
a partition of X , i.e., an equivalence relation ∼f≡ λf ∈ X × X such that
|X/λf | ≤ κ. Moreover, λf is a congruence on (X,≤). Indeed, if x1 ≤ x2,
x1 6∼f x2 (i.e., x1 < x2 and f(x1) 6= f(x2)), x

′
1 ∼f x1 and x′2 ∼f x2, then

f(x′1) = f(x1) 6= f(x2) = f(x′2).
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Since f is order-preserving (and x1 6∼f x2), it follows that

f(x′1) = f(x1) <
′ f(x2) = f(x′2),

and since f is also conversely order-preserving, one finally infers that x′1 < x′2,
and thus, x′1 ≤ x′2. Therefore, there exists a λ ∈ Λκ such that p : (X,≤) →
(X/λf ,≤) is the appropriate pλ : (X. ≤) → (Xλ,≤) of pκ. Finally, by

applying Lemma 3 (iii), a desired g may be f̃ : (Xλ,≤) → (Y/∆Y ,≤
′) =

(Y,≤′). The proof of the κ−-case is quite similar.

Now, the general construction of a shape category and a shape functor
yields the main fact (compare Theorem 1 and its proof).

Theorem 5.5. For each infinite cardinal κ, there exist two shape cate-
gories Shκ−(Ordg) and Shκ(Ordg) of partially ordered sets, both having the
same object class Ob(Ord), while

Shκ−(Ordg)((X,≤), (Y,≤′)) ≈ pro-Ordg((X ,≤)κ− , (Y ,≤′)κ−)

and
Shκ(Ordg)((X,≤), (Y,≤

′)) ≈ pro-Ordg((X ,≤)κ, (Y ,≤
′)κ),

where (X,≤)κ− , (Y ,≤′)κ− and (X ,≤)κ, (Y ,≤′)κ are the systems in any
pair of appropriate expansions of (X ≤), (Y,≤′) respectively.

Further, there exist two shape functors Sκ− : Ordg → Shκ−(Ordg) and
Sκ : Ordg → Shκ(Ordg) keeping the objects fixed, and there exists a unique
relating functor Sκ−κ : Shκ(Ordg) → Shκ−(Ordg) keeping the objects fixed,
such that Sκ−κSκ = Sκ− . Moreover, for every related pair κ ≤ κ′ (including
the case κ ≤ κ′− whenever it occurs), there exists the relating functor Sκκ′ :
Shκ′(Ordg)→ Shκ(Ordg) such that Sκκ′Sκ′ = Sκ.

Example 5.6. It is obvious that the ordered sets (Z,≤′) and ({0} ∪
N,≤) of Example 1 are not isomorphic objects of Ordg. They also are not
isomorphic to the standard ordered set (Z,≤) of integers. We will prove that
they all are of the same finite shape, i.e., that Sh0

¯
(Z,≤′) = Sh0

¯
({0} ∪ N,≤

) = Sh0
¯
(Z,≤). It suffices to verify that their canonical Ordg0

¯
-expansions are

isomorphic objects of pro-Ords0
¯
. Let

p0
¯
: ({0} ∪ N,≤)→ (N ,≤)0

¯
and q0

¯
: (Z,≤′)→ (W, ≤′)0

¯

be the canonical Ordg0
¯
-expansions of ({0} ∪ N,≤) and (Z,≤′) respectively.

In this case we shall show even more, that the inclusion

j : ({0} ∪ N,≤) →֒ (Z,≤′)

(which is a genuine order-preserving function) induces an isomorphism of
(N ,≤)0

¯
to (W, ≤′)0

¯
, i.e., that

j0
¯
= [(ϕ, jµ)] : ((Nλ,≤), pλλ′ ,Λ0

¯
)→ ((Wµ,≤

′), qµµ′ ,M0
¯
)

is an isomorphism of pro-Ordg0
¯
. Firstly, notice (see Examples 1 and 2) that

every congruence on (Z,≤′) yields a unique (by the restriction) congruence on
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({0}∪N;≤), and conversely, every congruence on ({0}∪N,≤) admits a unique
congruence extension on (Z,≤′). Therefore, we may consider the index sets
Λ0
¯
and M0

¯
to be equal. Further, each term (Nλ,≤), λ ∈ Λ0

¯
, having |Nλ| ≥ 2,

is an ordered set of the form

Nλ = {[nλ1 ], . . . , [n
λ
k+1]}, k ∈ N, nλi ∈ {0} ∪ N, i ∈ {1, . . . , k + 1},

where
[nλ1 ] = {n ∈ {0} ∪ N | 0 ≤ n ≤ nλ1},

[nλi ] = {n ∈ N | nλi−1 < n ≤ nλi }, i ∈ {2, . . . , k},

[nλk+1] = {n ∈ N | nλk < n}.

This implies that the terms of the form

Nλ(k) = {{0}, {1}, . . . , {k − 1}, [k]}, k ∈ N,

determine a cofinal sequence in (N ,≤)0
¯
. Similarly, each term (Wµ,≤

′), µ ∈
M0

¯
, having |Wµ| ≥ 2, is an ordered set of the form

Wµ = {[nµ1 ], . . . , [n
µ
k+1]}, k ∈ N, nµi ∈ {0} ∪ N, i ∈ {1, . . . , k + 1},

where

[nµ1 ] = {±n ∈ {0} ∪ (±N) | 0 ≤ n ≤ nµ1 ∧ 0 ≥ −n ≥ −nµ1},

[nµi ] = {±n ∈ ±N | n
µ
i−1 < n ≤ nµi ∧ −n

µ
i−1 > −n ≥ −n

µ
i }, i ∈ {2, . . . , k},

[nµk+1] = {±n ∈ ±N | n
µ
k < n ∧ −n > −nµk}.

This implies that the terms of the form

Wµ(k) = {{0}, {−1, 1}, . . . , {−k + 1, k − 1}, [k]}, k ∈ N,

determine a cofinal sequence in (W ,≤′)0
¯
. Notice that both (Nλ(k),≤) and

(Wµ(k),≤
′) are isomorphic to the segment ({1, 2, . . . , k + 1},≤) of (N,≤).

Then the inclusion j : ({0} ∪ N,≤) →֒ (Z,≤′) induces in an obvious way the
isomorphism of the corresponding cofinal sequences in (N ,≤)0

¯
and (W ,≤′)0

¯
.

The conclusion follows.
Let us now prove that (N ,≤)0

¯
and (Z, ≤)0

¯
are isomorphic objects of

pro-Ordg0
¯
, where (Z, ≤ )0

¯
belongs to the canonical Ordg0

¯
-expansion

r0
¯
= (rγ) : (Z,≤)→ (Z, ≤)0

¯
= ((Zγ ,≤), rγγ′,Γ0

¯
)

of (Z,≤). The terms (Nλ,≤) of (N ,≤)0
¯
, having |Nλ| ≥ 2, are already de-

scribed. A term (Zγ ,≤) of (Z, ≤)0
¯
, having |Zγ | ≥ 2, is an ordered set of the

form

Zγ = {[mγ
1 ], . . . , [m

γ
k+1]}, k ∈ N,mγ

i ∈ Z, i ∈ {1, . . . , k + 1},

where
[mγ

1 ] = {m ∈ Z | m ≤ mγ
1},

[mµ
i ] = {m ∈ Z | mµ

i−1 < m ≤ mµ
i }, i ∈ {2, . . . , k},

[mγ
k+1] = {m ∈ Z | mγ

k < m}.
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Thus, the terms Zγ(k), k ∈ N, of the form (Zγ(1) = {[0] = {Z}})

Zγ(2n) = {[−n+ 1], {−n+ 2}, . . . , {0}, . . . , {n− 1}, [n]},

and

Zγ(2n+1) = {[−n], {−n+ 1}, . . . , {0}, . . . , {n− 1}, [n]},

determine a cofinal sequence in (Z, ≤)0
¯
: Since both (Nλ(k),≤) and (Zγ(k),≤)

are isomorphic to the segment ({1, 2, . . . , k + 1},≤) of (N,≤), the conclusion
follows as in the previous case.

Observe that Example 3 generalizes from (Z,≤′) (Example 1 - diagram)
to any “0-wedge of ({0} ∪ N)-rays” ordered by “to be on the right side of”.
The next example is even more interesting.

Example 5.7. Let (Q,≤) and (R,≤) be the sets of rational and real
numbers, respectively, with the standard orderings. We will prove that (Q,≤),
(R r Q,≤) and (R,≤) have the same finite shape, i.e., that Sh0

¯
(Q,≤) =

Sh0
¯
(RrQ,≤) = Sh0

¯
(R,≤). Let

p0
¯
= (pλ) : (Q,≤)→ ((Qλ,≤), pλλ′ ,Λ0

¯
)

and

q0
¯
= (qµ) : (R,≤)→ ((Rµ,≤), qµµ′ ,M0

¯
)

be the canonicalOrdg0
¯
-expansions of (Q,≤) and (R,≤) respectively. Consider

a term Qλ having |Qλ| = k + 1 ≥ 2. The congruence classes I1, I2, . . . , Ik+1

(elements of Qλ) are disjoint intervals in (Q,≤) such that

- I1 is of the form 〈·, x1] = {q ∈ Q | q ≤ x1}, x1 ∈ Q, or 〈·, x1〉 = {q ∈
Q | q < x1}, x1 ∈ R;

- Ii is of the form [xi−1, xi], xi−1 ≤ xi in Q, or 〈xi−1, xi], xi−1 ∈ R,
xi ∈ Q, or [xi−1, xi〉, xi−1 ∈ Q, xi ∈ R, or 〈xi−1, xi〉, xi−1 < xi in R

(Ii partially depends on Ii−1), i ∈ {2, . . . , k};
- Ik+1 is of the form [xk, ·〉 = {q ∈ Q | xk ≤ q}, xk ∈ Q, or 〈xk, ·〉 = {q ∈
Q | xk < q}, xk ∈ R (Ik+1 is determined by Ik), and

- I1 < I2 < · · · < Ik+1.

The finest onesQλ’s alternate open intervals and singletons having I1 and Ik+1

to be the proper intervals, while there is no singleton whenever the “meeting
point” of two intervals is irrational. Notice that such a (Qλ,≤) is isomorphic
to the segment ({1, 2, . . . , k + 1},≤) of (N,≤). Since a “meeting point” (xi -
the “end” of Ii) may belong to RrQ as well (a cut in (Q,≤)), the cardinality
of Λ0

¯
equals |R| = c. To be more precise, an xi can be a qi ≡ q±i - if it is

rational, or an ri ≡ r−i - if it is irrational, such that q−i means that qi /∈ Ii,
while q+i means that qi ∈ Ii. (For instance, if k = 4 and (x1, x2, x3, x4) =
(r−1 , q

−
2 , q

+
3 , r

−
4 ), it means that r1 < q2 ≤ q3 < r4.; q2 /∈ I2, q3 ∈ I3; if q3 = q2,

then I3 = {x3} = {q2}.) Therefore, we may identify every such (Qλ,≤),
i.e., every λ ∈ Λ0

¯
, with a unique increasing k-tuple (x1, x2, . . . , xk), where
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each xi is some q±i or r−i , that yields a (canonical) bijection of the set of all
such k-tuples (x1, x2, . . . , xk), k ∈ N, onto Λ0

¯
. (Recall that, by the general

construction, in the case of |Qλ| = k + 1 = |Qλ′ |, λ ≤ λ′ ⇔ λ = λ′.)
In the same way, each term Rµ having |Rµ| = k + 1 ≥ 2, consists of the

congruence classes I ′1, I
′
2, . . . , I

′
k+1 (elements of Rµ) that are disjoint intervals

in (R,≤) such that

- I ′1 is of the form 〈·, x′1] or 〈·, x
′
1〉, x

′
1 ∈ R;

- I ′i is of the form
[

x′i−1, x
′
i

]

, x′i−1 ≤ x
′
i in R, or

〈

x′i−1, x
′
i

]

, or
[

x′i−1, x
′
i

〉

,

or
〈

x′i−1, x
′
i

〉

, x′i−1 < x′i in R (I ′i partially depends on I ′i−1), i ∈
{2, . . . , k};

- I ′k+1 is of the form [x′k, ·〉 or 〈x
′
k, ·〉 x

′
k ∈ R (I ′k+1 is determined by I ′k),

and
- I ′1 < I ′2 < · · · < I ′k+1.

The finest ones Rµ’s alternate open intervals and singletons having I1 and
Ik+1 to be the proper intervals. Clearly, the cardinality of M0

¯
equals |R| = c,

and each (Rµ,≤) is isomorphic to each (Qλ,≤).of the same cardinality. As
before, we may identify every such (Rµ,≤), i.e., every µ ∈M0

¯
, with a unique

increasing k-tuple (x′1, x
′
2, . . . , x

′
k), where each x

′
i is some q±i or r±i , and obtain

a (canonical) bijection of the set of all such k-tuples (x′1, x
′
2, . . . , x

′
k), k ∈ N,

onto M0
¯
. (Again, if |Rµ| = k + 1 = |Rµ′ |, then µ ≤ µ′ ⇔ µ = µ′.)

The above consideration makes possible to define a function

ϕ : M0
¯
→ Λ0

¯

in the following way. Let µ ∈M0
¯
. If |Rµ| = 1 (∼µ= R×R), we put ϕ(µ) = λ

such that |Qλ| = 1 (∼λ= Q×Q). Let |Rµ| = k+1 and let (x′1, x
′
2, . . . , x

′
k) be

canonically associated with µ.
Case 1. The term (Rµ,≤), corresponding to (x′1, x

′
2, . . . , x

′
k), does not

contain any irrational singleton. Then (x1, x2, . . . , xk) such that, for every
i ∈ {1, . . . , k}, xi = x′i, corresponds to a unique λ ∈ Λ0

¯
. Put ϕ(µ) = λ.

Notice that, since x′i = r±i and xi = ri is possible, every λ ∈ Λ0
¯
is a ϕ(µ),

for some (at most finitely many) µ of the considered kind. Further, if µ ≤ µ′

then ϕ(µ) ≤ ϕ(µ′).
Case 2. The term (Rµ,≤), corresponding to (x′1, x

′
2, . . . , x

′
k), contains

some irrational singletons. Then there are at most [k2 ] such singletons I ′i =
{x′i} = {ri}, ri ∈ R \Q, because the neighbors I ′i−1 and I ′i+1 must be proper
intervals. Thus, the proper interval I ′i+1 can be divided into two subintervals,
I ′i+1,1 and I ′i+1,2, I

′
i+1,1 < I ′i+1,2. Put Ii = I ′i+1,1 ∩ Q and Ii+1 = I ′i+1,2 ∩ Q.

In this way, inductively, by increasing indices i = 2, . . . , k, is constructed an
increasing k-tuple (x1 = x′1, x2, . . . , xk) that corresponds to a unique λ ∈ Λ0

¯
,

and (Qλ,≤) ∼= (Rµ,≤). Then put ϕ(µ) = λ.
One readily sees that the constructed function ϕ :M0

¯
→ Λ0

¯
is an increas-

ing surjection (not a bijection!)
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Now, for every µ ∈M0
¯
, put

fµ : (Qϕ(µ),≤)→ (Rµ,≤)

to be the unique isomorphism. The conclusion follows, i.e.,

Sh0
¯
(Q,≤) = Sh0

¯
(R,≤).

In a quite similar manner one can prove that

Sh0
¯
(Rr Q,≤) = Sh0

¯
(R,≤).

Remark 5.8. (a) Observe that, if λ and λ′ are congruences on a poset
(X,≤) such that (X/λ,≤) and (X/λ′,≤) are totally (well-) ordered, then
(X/(λ ∩ λ′),≤) is totally (well-) ordered. Therefore, it is possible and makes
sense to consider the quotient shapes of partially (totally) ordered sets with
respect to the totally or well-ordered (well-ordered) sets. In fact, Examples 3
and 4 are of such a kind.

(b) According to Example 4, the analogues of Example 3 for (Q,≤),
(R \ Q,≤) and (R,≤) (in several additional variations) can be constructed.
By this, the new ordering ≤′ on R, is defined by the following rules:

(1) ((∀r ∈ R) 0 ≤′ r) ∧ ( ≤′ on R+ is ≤) ∧ (≤′ on R− is ≥);

(2) (∀r ∈ R−(∀r′ ∈ R+)

{

r ≤′ r′ ⇔ |r| < r′

r′ ≤′ r ⇔ r′ < |r|

(the only unrelated pairs are {−r, r}, r ∈ R!).

Example 5.9. By this example we shall prove that the ordered sets (R,≤)
and (R \ Q,≤) have the same ℵ0-shape. However, they are not ℵ0-stable
(isomorphic to a countable ordered set), and thus, their ℵ0-shape type differs
from (Q,≤). Let

pℵ0
= (pλ) : (R \Q,≤)→ (S,≤)ℵ0

= ((Sλ,≤), pλλ′ ,Λℵ0
),

qℵ0
= (qµ) : (R,≤)→ (R,≤)ℵ0

= ((Rµ,≤), qµµ′ ,Mℵ0
)

be the appropriate canonical expansions. One may assume, without loss of
generality, that all the sets Sλ and Rµ are infinite. A typical (enough fine)
(Rµ,≤) consists of an increasing infinite countable alternating chain (Ij)j∈J(µ)
(not necessarily discrete and having nor min neither max) of open intervals
and singletons (of R) Ij ≡ rj ∈ Rλ. A typical (enough fine) Sλ one obtains
of an (enough fine) Rµ by removing all of its rational singletons. This yields
a unique surjection of Mℵ0

onto Λℵ0
. Then the inclusion of (R r Q,≤) into

(R,≤) induces an isomorphism of the corresponding canonical ℵ0-expansions.
Namely, there exists cofinally many isomorphisms iµ : (Si(µ),≤) → (Rµ,≤).
To see that (R,≤) is not ℵ0-stable, let us assume to the contrary. Then
there exist a countable ordered set (X,≤) and an ℵ0-shape isomorphism F ∈
Shℵ0

((X,≤), (R,≤)). Thus, further, there exists an isomorphism

f = (fµ) : ⌊(X,≤)⌋ → (R,≤)ℵ0
, qµµ′fµ′ = fµ,
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of pro-Ordgℵ0
, having the inverse

g = ⌊gµ0⌋ : (R,≤)ℵ0
→ ⌊(X,≤)⌋ , gµ0 : (Rµ0

,≤)→ (X,≤),

for some µ0 ∈Mℵ0
. Since all the qµµ′ are (effective) epimorphisms, one readily

sees that fµ0
: (X,≤)→ (Rµ0

,≤) is an isomorphism of Ordg and f−1
µ0

= gµ0 .
However, if µ > µ0, then fµ cannot be an isomorphism. Indeed, if such an fµ
is an isomorphism, then qµ0µ is an isomorphisms, that contradicts the general
construction.

We finish this section with the following very interesting examples.

Example 5.10. (a) Let (N,≤∗) be the poset of Example 1(a), where
n ≤∗ n′ means that n factorizes (divides) n′ (n′ = mn, for some m ∈ N). Let
us determine its canonical Ordg0

¯
-expansion

p0
¯
= (pλ) : (N,≤

∗)→ (N ,≤∗)0
¯
= ((Nλ,≤

∗), pλλ′ ,Λ0
¯
).

Let λ ≡ ∼ be a congruence on (N,≤∗), and let p : (N,≤∗) → (N/λ,≤∗) be
the (genuine order-preserving) quotient function. Since, for every m,n ∈ N,
m ≤∗ nm and n ≤∗ mn = nm hold, it follows that [m] ≤∗ [mn] and [n] ≤∗

[nm] hold as well. Assume that λ yields the quotient poset (N/λ,≤∗) which
is finite and not trivial, i.e., |N/λ| = k ∈ N, k ≥ 2. Let [n1], . . . , [nk] be all
the congruence classes. Then we may assume that, for every i ∈ {1, . . . , k},
ni is the minimal (in the natural ordering) representative of [ni] and that
n1 = 1 < n2 < · · · < nk (in the natural ordering of N). Further,

(∀i ∈ {2, . . . , k}) [1] <∗ [ni].

Thus, since at least one of [n2], . . . , [n3] is an infinite subset of N, the class
[1] must be the singleton {1}, and hence, n2 = 2. Let us, firstly, consider the
simplest case of 2 ≤ k ≤ 3. If k = 2, then, clearly, n1 = 1, n2 = 2 and

[1] = {1} <∗ [2] = N \ {1}

must hold. If k = 3, then or [2] <∗ [n3] either [2] 6<
∗ [n3]. In the first subcase,

[2] must be a finite subset of N, while [n3] must contain all n ∈ N such that
n ≥ max[2] + 1. However, then

[1] = {1} <∗ [2] <∗ [n3] ⊇ [max[2] + 1]

must hold - a contradiction (because there exists a prime number p > 2 in
the class [n3]). Thus, the second subcase, i.e., [2] 6<∗ [n3] must occur. Since
[n3] 6<

∗ [2] as well, and since the quotient function is order-preserving,

(∀n ∈ [2])(∀n′ ∈ [n3) (n 6<∗ n′ ∧ n′ 6< n).

must hold. However, one readily sees that such a partition {[2], [n3]} of N\{1}
cannot exist. Consequently, the case of 2 ≤ k ≤ 3 reduces to k = 2. A quite
similar analysis shows that the case 2 ≤ k ≤ 4 reduces to 2 ≤ k ≤ 3, and
thus, to k = 2. And in general, the case 2 ≤ k ≤ m + 1, m ∈ N, reduces to
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2 ≤ k ≤ m. Therefore, by induction, the only non-trivial possibility is k = 2.
Therefore, the canonical Ordg0

¯
-expansion p0

¯
of (N,≤∗) is

({N},≤∗)
p12
← ({{1},N \ {1}},≤∗)

p2
← (N,≤∗),

that is isomorphic (in pro-Ordg0
¯
) to

⌊p⌋ : (N,≤∗)→ ({{1},N \ {1}},≤∗).

Consequently,

p′
0
¯
= ⌊p′⌋ : (N,≤∗)→ ({1, 2},≤), p′(n) =

{

1, n = 1
2, n ∈ N \ {1}

,

is a rudimentary Ordg0
¯
-expansion of (N,≤∗). Therefore, the poset (N,≤∗) is

(finitely) stable (0
¯
-stable), i.e., it is isomorphic to an object of Ordg0

¯
. (Ob-

serve that the canonical ℵ0-expansion, as well as every κ
−- and κ-expansion

of (N,≤∗), , κ > ℵ0, is the identity morphism.)
(b) Let us extend (N,≤∗) to (N∞,≤

∗) by adding a unique maximal el-
ement ∞ such that, for every n ∈ N∞ = N ∪ {∞}, n ≤∗ ∞. Then, quite
similarly to the case (a) (via the canonical Ordg0

¯
-expansion q0

¯
), one obtains

a rudimentary Ordg0
¯
-expansion

q′
0
¯
= ⌊q′⌋ : (N∞,≤

∗)→ ({1, 2, 3},≤), q′(n) =







1, n = 1
2, n ∈ N \ {1}
3, n ≡ ∞

.

Thus, the posets (N,≤∗) and (N∞,≤
∗) are both (finitely) stable having dif-

ferent finite shapes.

6. The shapes of pseudometric spaces

6.1. The general case. An analysis shows that the (general) quotient
shape theory (by means of infinite cardinals) applied to pseudometric (gauge;
[5], Ch. IX, Sec. 10) spaces (endowed with various kinds of convenient classes
of morphisms) has some obstacles. First of all, one has to define a certain
category of pseudometric spaces, i.e., a suitable class of functions should be
chosen to become the needed class of morphisms. Although a pseudometric
on a set induces a topology (having as a basis the family of all pseudoballs),
it is not often usual to consider pseudometric spaces as the topological (pseu-
dometrizable) spaces. Still, let us denote by Met ⊆ PMet the corresponding
categories of all pseudo(metric) spaces and their continuous functions. We will
abandon, for a moment, the case with continuous functions by attempting to
find a larger class of suitable morphisms of pseudometric spaces.

Let (X, ρ) and (Y, σ) be pseudometric spaces and let f : X → Y be a
function. Then f is said to be admissible (with respect to ρ and σ) if the
following condition is fulfilled:

(∀x1, x2 ∈ X) ρ(x1, x2) = 0⇒ σ(f(x1), f(x2)) = 0.
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Notice that, if ρ is a metric, then every function f : X → Y is admissible (for
ρ and any σ). There obviously exists the corresponding category PMeta of all
pseudometric spaces and their admissible functions. Then the categoryMeta

of all metric spaces and functions is a full subcategory of PMta. (Some other
possibilities are given in Remark 5, (a) and (b), below.) In order to get a
pseudometric quotient space (Xλ, ρλ) on Xλ ≡ X/λ, the equivalence relation
∼ ≡ λ on X should fulfill the following condition: For every pair x, x′ ∈ X ,

x ∼ x′ ⇒ ρλ([x]λ, [x
′]λ) = ρλ([x]λ, [x]λ) = 0.

Further, since the quotient function pλ : X → Xλ, pλ(x) = [x]λ, should be
admissible with respect to ρ and ρλ,

ρ(x, x′) = 0⇒ ρλ([x]λ, [x
′]λ) = 0

must hold. Therefore, we define an equivalence relation λ ≡ ∼ on X to be a
congruence on (X, ρ) provided the following condition is fulfilled:

x ∼ x′ ⇒ ρ(x, x′) = 0.

It is readily seen that a congruence λ on (X, ρ) admits a function ρλ : Xλ ×
Xλ → R defined by

ρλ([x1]λ, [x2]λ) = ρ(x1, x2),

Namely, if x1, x
′
1, x2, x

′
2 ∈ X such that [x1] = [x′1] and [x2] = [x′2], then

the triangle inequality yields ρ(x1, x2) ≤ ρ(x′1, x
′
2) and ρ(x′1, x

′
2) ≤ ρ(x1, x2),

and thus ρ(x1, x2) = ρ(x′1, x
′
2). Moreover, one easily verifies that ρλ is a

pseudometric on Xλ and that the quotient function pλ : (X, ρ)→ (Xλ, ρλ) is
admissible.

Observe that every congruence on (X, ρ) divides each subset

Rx = {x′ | ρ(x, x′) = 0} ⊆ Xseparately.

Thus, there exists the largest congruence ∼ρ≡ λρ on (X, ρ), which is deter-
mined by

x ∼ρ x
′ ⇔ ρ(x, x′) = 0.

Clearly, for every congruence λ, |Xλρ| ≤ |Xλ|.
If we now want to proceed in the general way of constructing the quotient

κ−-shape (κ-shape) categories, we have to be aware of the following obstacle:
If

∣

∣Xλρ

∣

∣ ≥ κ0 (
∣

∣Xλρ

∣

∣ > κ0), then, for every infinite κ ≤ κ0 (κ < κ0), there
does not exist the canonical pκ−-expansion (pκ-expansion) of (X, ρ). One can
overcome this obstacle by passing to the appropriate subcategories. (Con-
sider the full subcategories PMetaκ∗

, PMetaκ∗ ⊆ PMeta determined by all the

objects (X, ρ) such that
∣

∣Xλρ

∣

∣ < κ,
∣

∣Xλρ

∣

∣ ≤ κ, respectively; see the next
subsection.) However, the factorization condition (E1) cannot be successfully
solved (compare Lemma 7 below and its proof). Therefore, we shall consider
the largest congruence on (X, ρ) only.
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Denote Xρ = Xλρ
≡ X/λρ the (smallest) quotient set, and denote the

pseudometric ρλρ
by

dρ : Xρ ×Xρ → R, dρ([x1], [x2]) = ρ(x1, x2).

Lemma 6.1. For every pseudometric space (X, ρ), the quotient (Xρ, dρ) is
a metric space and p : (X, ρ)→ (Xρ, dρ), p(x) = [x], is an admissible function.
Moreover, dρ is an ultrametric if and only if, ρ is an ultrapseudometric.

Proof. Notice that dρ inherits all the pseudometric properties of ρ. Fur-
ther,

dρ([x1], [x2]) = ρ(x1, x2) = 0⇒ x1 ∼ρ x2 ⇒ [x1] = [x2].

Thus, dρ is a metric. The quotient function p is admissible because ∼ρ is a
congruence. If ρ is an ultrapseudometric, i.e., the following strengthening of
the triangle inequality

(∀x, x′, x′′ ∈ X) ρ(x, x′) ≤ max{ρ(x, x′′), ρ(x′′, x′)},

holds, then the same holds for dρ. Conversely, if dρ is an ultrametric, then,
for all x, x′, x′′ ∈ X ,

ρ(x, x′) = dρ([x], [x
′]) ≤ max{dρ([x], [x

′′]), dρ(fx
′′], [x′])}

= max{ρ(x, x′′), ρ(x′′, x′)}.

Hence, ρ is an ultrapseudometric.

To go further, let us observe that an f : (X, ρ) → (Y, σ) is admissible
(i.e., ρ(x, x′) = 0⇒ σ(f(x), f(x′)) = 0) if and only if,

(∀x, x′ ∈ X) x ∼ρ x
′ ⇒ f(x) ∼σ f(x

′)

(i.e., f is (∼ρ,∼σ)-preserving.

Lemma 6.2. Let f : (X, ρ)→ (Y, σ) be a morphism of PMeta. Then there

exists a unique morphism f̃ : (Xρ, dρ)→ (Yσ , dσ) of Meta such that f̃ p = qf ,
i.e., the following diagram (in PMeta) commutes

(Xρ, dρ)
p
← (X, ρ)

f̃ ↓ ↓ f

(Yσ, dσ)
q
← (Y, σ)

.

Proof. Since f is admissible, it is (∼ρ,∼σ)-preserving. Thus, there ex-
ists a unique function

f̃ : Xρ → Yσ, f̃([x]) = [f(x)].

Hence, for every x ∈ X ,

f̃p(x) = f̃([x]) = [f(x)] = qf(x).

Since (Xρ, dρ) is a metric space, the function f̃ : (Xρ, dρ) → (Yσ, dσ) belongs
to Mor(Meta).
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The next lemma accomplishes Lemma 6,

Lemma 6.3. Let f : (X, ρ)→ (Y, δ) be a morphism of PMeta with (Y, δ)
a metric space. Then the equivalence relation ∼f on X, induced by fibers of f ,

is coarser than ∼ρ, and there exists a unique morphism f̃ : (Xρ, dρ)→ (Y, δ)

of Meta such that f̃ p = f .

Proof. Since
x ∼f x

′ ⇔ f(x) = f(x′),

and since f is admissible and δ is a metric, it follows that

x ∼ρ x
′ ⇔ ρ(x, x′) = 0⇒ δ(f(x), f(x′)) = 0⇔ f(x) = f(x′)⇔ x ∼f x

′.

Thus, ∼f is coarser than ∼ρ. Consequently, there exists a (set) function

p′ : Xρ → X/ ∼f , p′([x]) = [x]f .

Further, since x ∼f x
′ implies f(x) = f(x′), there exists a function

f ′ : X/ ∼f→ Y, f ′([x]f ) = f(x).

Put f̃ = f ′p′ : Xρ → Y . Then

f̃([x]) = f ′p′([x]) = f ′([x]f ) = f(x).

Therefore, f̃p = f . Since (Xρ, dρ) is a metric space, the function f̃ is f̃ :
(Xρ, dρ) → (Y, δ) belonging to Mor(Meta), and it is unique because p is
surjective.

The proven facts from above yield the following theorem and corollary.

Theorem 6.4. The category Meta of all metric spaces and functions is
a rudimentary pro-reflective subcategory of the category PMeta of all pseudo-
metric spaces and admissible functions. More precisely, for every pseudomet-
ric space (X, ρ), the quotient (effective) epimorphism p : (X, ρ)→ (Xρ, dρ) is
a rudimentary Meta-expansion of (X, ρ).

Corollary 6.5. For every f : (X, ρ) → (Y, δ) of PMeta, with (Y, δ) a
metric space, and every congruence λ on (X, ρ), there exists a unique factor-
ization through (Xλ, ρλ), f = fλpλ.

Proof. Observe that every congruence λ is finer than ∼ρ and apply
Theorem 4.

Remark 6.6. (a) One can prove, in the same way, that Met ⊆ PMet is
also a rudimentary pro-reflective subcategory, i.e., every pseudometric space
(X, ρ) admits a rudimentary epimorphic Met-expansion p : (X, ρ)→ (Xρ, dρ)
(all the functions are continuous).

(b) There are some other interesting possibilities of choosing suitable
morphisms of pseudometric spaces. For instance, each of the two following
(“equidistance preserving”) properties of a function is categorical on pseudo-
metric spaces:
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(1) ρ(x1, x2) = ρ(x′1, x
′
2)⇒ σ(f(x1), f(x2)) = σ(f(x′1), f(x

′
2)),

(2) σ(f(x1), f(x2)) = σ(f(x′1), f(x
′
2))⇒ ρ(x1, x2) = ρ(x′1, x

′
2).

Notice that every function from a non null-pseudometric (ρ 6= c0) space to
a null-pseudometric (σ = c0) space has property (1) but not (2), while the
function f : (R, ρ = c0) → (R2, d2), f(ξ) = (ξ, ξ), has property (2) but not
(1). All pλ and pλλ′ , obtained by congruences, have both properties (1) and
(2). Again, the appropriate metric categories (having property (1) or (2)
or (1) and (2) simultaneously) are rudimentary pro-reflective subcategories of
the corresponding pseudometric categories. Furthermore, property (2) admits

the non-rudimentary shape theories for PMet
(2)
κ−
⊆ PMet

(2)
κ∗

and PMet
(2)
κ ⊆

PMet
(2)
κ∗ . An analogue holds true in the special case of properties (1) and (2)

simultaneously as well.
(c) It is well known fact ([13, I.2.1, Example 1]) that the topological

category of realcompact spaces (compact Hausdorff spaces) is a rudimentary
pro-reflective subcategory of the category of completely regular spaces - via
the Hewitt realcompactification (the Stone-Čech compactification). However,
except briefly in [17], Section 5, the corresponding shape theories were not
studied.

Example 6.7. Let X = A ⊔ B (disjoint union), and let ρ be a pseudo-
metric on X such that, for all a, a′ ∈ A and all b, b′ ∈ B,

ρ(a, a′) = 0 = ρ(b, b′), ρ(a, b) > 0.

Similarly, let Y = C ⊔D, and let σ be a pseudometric on Y such that, for all
c, c′ ∈ C and all d, d′ ∈ D,

σ(c, c′) = 0 = σ(d, d′), σ(c, d) > 0.

Then both quotient spaces (Xρ, dρ) and (Yσ, dσ) are isomorphic (in Meta) to
the discrete (ultra)metric space {0, 1}, and thus, ShMeta(X, ρ) =ShMeta(Y, σ).
However, if |X | 6= |Y |, then (X, ρ) 6≈ (Y, σ) in PMeta.

Example 6.8. Let X = R2 and let ρ : X ×X → R be defined by

ρ(x, x′) = ρ((ξ1, ξ2), (ξ′1, ξ′2)) =
∣

∣ξ1 − ξ′1
∣

∣ .

Then (X, ρ) is a pseudometric space. Let Y = R3 and let σ : Y × Y → R be
defined by

σ(y, y′) = σ((η1, η2, η3), (η′1, η′2, η′3)) =
∣

∣η1 − η′1
∣

∣ .

Then (Y, σ) is a pseudometric space. Since (Xρ, dρ) ∼= (Yσ, dσ) ∼= R (the
Euclidean line) in Met, it follows that

ShMet(X, ρ) = ShMet(Y, σ) (and ShMeta(X, ρ) = ShMeta(Y, σ)).

In both cases the shape representative may be R. On the other side, one
readily sees that (R2, ρ) ∼= (R3, σ) in PMeta as well (map each line {ξ} × R
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bijectively to the corresponding plane {ξ}×R×R). However, in the continuous
case, it is obvious that

(X, ρ) = (R2, ρ) 6≈ (R3, σ) = (Y, σ)

in PMet.

Example 6.9. Let (X, ρ) and Y be as in Example 8, and let the pseudo-
metric σ′ on Y be defined by

σ′(y, y′) = σ((η1, η2, η3), (η′1, η′2, η′3)) = (
∣

∣η1 − η′1
∣

∣

2
+
∣

∣η2 − η′2
∣

∣

2
)

1

2 .

Since (Xρ, dρ) ≈ R and (Yσ′ , dσ′) ≈ R2 (the Euclidean plane), the metric
spaces (Xρ, dρ) and (Yσ′ , dσ′) are isomorphic inMeta (see Example 8). There-
fore, ShMeta (X, ρ) = ShMeta(Y, σ

′) and their (admissible) shape representa-
tive may be R. However, in the continuous case, ShMet(X, ρ) = ShMet(R) 6=
ShMet(R

2) = ShMet(Y, σ
′).

6.2. The shapes of ultrapseudometric spaces. Recall again that an ultra-
pseudometric (ultrametric) on a set X is a pseudometric (metric) ρ : X×X →
R satisfying the following strengthening of the triangle inequality:

(∀x, x′, x′′ ∈ X) ρ(x, x′) ≤ max{ρ(x, x′′), ρ(x′′, x′)}.

An ultrapseudometric (ultrametric) space is a pseudometric (metric) space
(X, ρ) where ρ is an ultrapseudometric (ultrametric). Let us firstly observe
that a congruence ∼≡ λ on an ultrapseudometric space (X, ρ), i.e.,

x ∼ x′ ⇒ ρ(x, x′) = 0.

induces an ultrapseudometric ρλ on X/λ ≡ Xλ by defining

ρλ([x1]λ, [x2]λ) = ρ(x1, x2).

Therefore, everything we have established in the first subsection concerning
Meta ⊆ PMeta (and the other cases mentioned in Remark 5, (a) and (b) )
remains valid for their full subcategories UMeta ⊆ UPMeta of ultrapseudo-
metric spaces and admissible (and the other mentioned classes of) functions.

Nevertheless, there is another interesting operable possibility in construct-
ing ultrametric expansions of ultrapseudometric spaces, influenced by results
obtained in [16]. By Theorem 4 of [16], there is a certain duality between
ultrapseudometrics on a set X and monotone families of equivalence relations
on X . For the sake of simplicity, we will consider the subcategory of UPMet
determined by diam(X, ρ) ≤ 1 (see [16], Lemma 1, and [16], Remark 5 (a)).
By Theorem 1 of [16], every such ultrapseudometric ρ on X induces a unique
decreasing (in general, not strictly decreasing) family of equivalence relations
(∼t)t∈[0,·〉, [0, ·〉 ⊆ R, on X by the rule

x ∼t x
′ ⇔ ρ(x, x′) ≤

1

1 + t



QUOTIENT SHAPES 285

such that ∼0= X ×X , and, if ρ is an ultrametric, then ∩t∈[0,·〉 ∼t= ∆X . (In
two other cases, i.e., if 1 < diam(X, ρ) < ∞ or diam(X, ρ) = ∞, the family
(∼t) is defined according to [16], Remark 5 (a)). Let, for every t ∈ [0, ·〉,
Xt ≡ X/ ∼t be the quotient set, and let pt : X → Xt, pt(x) = [x]t, be the
quotient function. Observe that

ρ(x, x′) = 0⇔ (∀t ∈ [0, ·〉) x ∼t x
′.

Hence,

x ∼t x
′ 6⇒ x ∼ρ x

′(⇔ ρ(x, x′) = 0),

and thus, ∼t is not, generally, a congruence on (X, ρ). Nevertheless, the
following facts hold.

Lemma 6.10. For every t ∈ [0, ·〉, the rule

dt([x1]t, [x2]t) =

{

0, [x1]t = [x2]t
ρ(x1, x2), [x1]t 6= [x2]t

defines a function dt : Xt × Xt → R. Moreover, (Xt, dt) is an ultrametric
space, and the quotient function pt : (X, ρ)→ (Xt, dt) is continuous.

Proof. Given a t ∈ [0, ·〉, let x1, x
′
1, x2, x

′
2 ∈ X such that [x1]t = [x′1]t and

[x2]t = [x′2]t. This means that x1 ∼t x
′
1 and x2 ∼t x

′
2, and thus, ρ(x1, x

′
1) ≤

1
1+t and ρ(x2, x

′
2) ≤

1
1+t . Now, if [x1]t = [x2]t, then [x′1]t = [x′2]t. So, in

this case the definition is correct. In the remaining case, i.e., if [x1]t 6= [x2]t,
then [x′1]t 6= [x′2]t, i.e., x1 6∼t x2 and x′1 6∼t x

′
2, and thus, ρ(x1, x2) >

1
1+t and

ρ(x′1, x
′
2) >

1
1+t . Since ρ is an ultrapseudometric, the strengthening of the

triangle inequality implies that

ρ(x1, x2) = ρ(x1, x
′
2) = ρ(x′1, x

′
2),

which proves that dt is well defined in this case as well. Now one straight-
forwardly verifies that dt is an ultrapseudometric on Xt. Moreover, if
dt([x1]t, [x2]t) = 0, then or [x1]t = [x2]t, or ρ(x1, x2) = 0 and [x1]t 6= [x2]t.
However, the second case cannot occur. Indeed, if ρ(x1, x2) = 0 would hold,
then x1 ∼t′ x2 for all t′, especially implying [x1]t = [x2]t - a contradiction.
Consequently, dt is an ultrametric. The continuity of pt follows by the defini-
tion of dt.

Observe that

t ≤ t′ ⇔ ∼t′⊆∼t ⇔ (the refinement) ⇔ |Xt| ≤ |Xt′ | .

Then the induced function ptt′ : (Xt′ , dt′)→ (Xt, dt), ptt′pt′ = pt, is obviously
continuous. Further, (X0, d0) is a singleton, and, for every t ∈ [0, ·〉,

x ∼ρ x
′ ⇒ x ∼t x

′,
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and thus, |Xt| ≤ |Xρ|. (Hence, each term Xt belongs to the complementary
part - comparing to the case with congruences - of the “quotient system”
associated with (X, ρ).) In this way we have constructed a morphism

p = (pt) : (X, ρ)→ (X, d) = ((Xt, dt), ptt′ , [0, ·〉)

of pro-UPMet, associated with (X, ρ) ∈ Ob(UPMet), such that (X,d) be-
longs to pro-UMet. Finally, observe that a needed “ultra” analogue of Lemma
7 holds as well. More precisely, if |Y | ≤ |Xρ|, then every continuous (admissi-
ble) f : (X, ρ)→ (Y, δ) uniquely continuously (admissible) factorizes through
an (Xt, dt) and |Xt| ≤ |Y |.

We now proceed as follows. Let κ be an infinite cardinal, and let
UPMetκ∗

(UPMetκ∗) be the full subcategory of UPMet determined by all
the objects (X, ρ) satisfying |Xρ| < κ (|Xρ| ≤ κ). Let UMetκ− (UMetκ)
denote, as usually, the full subcategory of UMet determined by all the
objects having cardinalities less than (less or equal to) κ. Then, clearly,
UMetκ− ⊆ UPMetκ∗

(UMetκ ⊆ UPMetκ∗) is a full subcategory. The same
holds in the admissible case, with the appropriate notation, as well. Let Tκ−

(Tκ) be the subset of [0, ·〉 such that, for every t ∈ Tκ− (t ∈ Tκ), |Xt| < κ
(|Xt| ≤ κ), and let

pκ− : (X, ρ)→ (X, d)κ−(pκ : (X, ρ)→ (X ,d)κ)

be the appropriate restriction of p to Tκ− (Tκ). Then, for every (X, ρ) of
UPMetκ∗

(UPMetκ∗), the proven facts imply that

- pκ− : (X, ρ) → (X,d)κ− is a totally ordered epimorphic expansion
with respect to UMetκ− and to UMeta

κ− ;
- (pκ : (X, ρ)→ (X ,d)κ is a totally ordered epimorphic expansion with
respect to UMetκ and to UMetaκ);

- p : (X, ρ) → (Xρ, dρ) is a rudimentary epimorphic expansion with
respect to UMet and to UMeta;

- the index set [0, ·〉 ⊆ R is sufficiently large to cover all the (infinite)
cases.

Hence, the following theorem (in the categorical terms) holds true.

Theorem 6.11. (i) For every infinite cardinal κ, the subcategories
UMetκ− ⊆ UPMetκ∗

and UMetκ ⊆ UPMetκ∗ (UMeta
κ− ⊆ UPMetaκ∗

and UMetaκ ⊆ UPMetaκ∗) are pro-reflective by means of epimorphic
expansions indexed by totally ordered index sets of cardinalities less or
equal ℵ1 (CH).

(ii) The subcategory UMet ⊆ UPMet (UMeta ⊆ UPMeta) is pro-
reflective by means of rudimentary epimorphic expansions.

Hereby we shall not explicitly mention the appropriate quotient shape
categories and corresponding functors.
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Corollary 6.12. For every infinite cardinal κ0 and every infinite car-
dinal κ < κ0 (κ ≤ κ0), every ultrapseudometric space (X, ρ), with |Xρ| < κ0
(|Xρ| ≤ κ0), admits a quotient ultrametric κ−-expansion (κ-expansion) with
a totally ordered index set T ⊆ [0, ·〉 ⊆ R.

The next example shows that those shape categories provide mutually
different classifications of ultrapseudometric spaces (strictly coarser than the
isomorphiness).

Example 6.13. Let (X, ρ) be an ultrapseudometric non-metric space such
that the corresponding ultrametric quotient space (Xρ, dρ) has cardinality
|Xρ| > ℵ0. Then, by the above construction and results, the rudimentary
UMet-shape of (X, ρ), ShUMet(X, ρ), is not the isomorphism class of (X, ρ)
in UPMet. Further, both of them differ from the UMet-shapes Sh0

¯
(X, ρ)

and Shℵ0
(X, ρ). Finally, Sh0

¯
(X, ρ) 6= Shℵ0

(X, ρ) as well.

We finish this section with the following simple corollary concerning the
admissible cases.

Corollary 6.14. A pair (X, ρ), (Y, σ) ∈ Ob(UPMetκ∗
) (Ob(UPMetκ∗))

has the same admissible quotient shape type, for all appropriate κ− (κ), (ad-
missible rudimentary quotient shape type) if and only if, the corresponding
pair of metric spaces (Xρ, dρ), (Yσ, dσ) has the same cardinality.

Proof. As we already mentioned, Meta((A, d), (A′, d′)) = Set(A,A′).
Thus, the conclusion follows by Theorem 5 (i) (Theorem 4) and Theorem 2.

7. The (quotient) shapes of topological spaces

For every topological space X (we stress the topological structure only
when necessary) and every equivalence relation ∼ ≡ λ on the set X , the topo-
logical structure on the quotient set X/λ is defined to be the finest (largest,
maximal) one such that the quotient function p : X → X/λ is continuous,
i.e., a V ⊆ X/λ is open if and only if p−1[V ] ⊆ X is open. So, there is no
restriction to the set Λ of all equivalence relations on the set X . Recall that,
for every mapping (continuous function) f : X → Y , the equivalence relation
∼f (by the fibers of f) induces the factorization f = up, where

p : X → X/ ∼f , u : X/ ∼f→ Y

and p is a surjection. By that, u is a homeomorphism, if and only if f is an
identification. Further, for every commutative diagram (in Top)

X
f
→ Y

ϕ ↓ ↓ ψ

Z
g
→ W

,
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there exists the following commutative diagram

X
p
→ X/ ∼f

u
→ Y

ϕ ↓ ↓ χ ↓ ψ

Z
q
→ Z/ ∼g

v
→ W

.

By following the procedure of construction for Set (Section 4), one obtains
the morphism p of pro-Top consisting of the appropriate quotient spaces and
quotient mappings. Further, for every infinite cardinal κ, the corresponding
restrictions pκ− and pκ of p yield the canonical Topκ−- and Topκ-expansion
of X , respectively. Thus, there exist the (quotient) shape categories of topo-
logical spaces, Shκ−(Top) and Shκ(Top) (having the realizing categories pro-
Topκ− and pro-Topκ), and the shape functors Sκ− : Top → Shκ−(Top),
Sκ : Top → Shκ(Top) as well as the relating functor Sκ−κ : Shκ(Top) →
Shκ−(Top), Sκ−Sκ = Sκ− , and also the relating functors Sκκ′ , whenever
κ ≤ κ′.

Notice that even in the general setting (the only condition is a cardinality)
with an indiscrete codomain, a non-trivial result (different comparing to the
Set-case) may occur. For instance, if X , Y is a pair of non-homeomorphic
spaces having the same cardinality, then, in general, the canonical map

pro-Topκ(Xκ,Y κ)→ pro-Setκ(U(Xκ), U(Y κ))

(U is the forgetful functor) does not reflect isomorphisms.
In order to obtain some more useful results, one has to consider the quo-

tient shapes of topological space with respect to a specific “nice” full subcat-
egory Dκ ⊆ Top. Clearly, then there should exist a directed subset Λκ ⊆ Λ
such that all the quotient spaces Xλ, λ ∈ Λκ, belong to Dκ. However, the
quotient spaces very rarely belong to a certain “nice” subcategory. Even for
such a large class of Hausdorff spaces, X/λ is Hausdorff provided λ is closed
(unavoidable) and p : X → X/λ is open. Nevertheless, a certain subcat-
egory D of the full subcategory of all Hausdorff spaces T 2 ⊆ Top could be
pro-reflective, as well as the subcategories Dκ− ,Dκ of T 2κ− , T 2κ ⊆ T 2 respec-
tively. Namely, for every mapping f : X → Y to a Hausdorff Y , the quotient
space X/ ∼f is Hausdorff (see also Lemmata 10 - 14 and Theorem 7 below).

Example 7.1. Let X = R (the Euclidean line). Since R is connected,
every mapping f : R → Y to a totally disconnected (especially, discrete, and
thus Hausdorff) space Y is constant. (Recall that all D-expansion systems of
a C-object are mutually isomorphic in pro-D; Section 2). Consequently, every
RT20

¯

-expansion system of R is isomorphic to the trivial rudimentary system
⌊{∗}⌋. In the same way, every RT2TD

κ−
-expansion (RT2TDκ

-expansion) sys-
tem of R with respect to the full subcategory of totally disconnected Hausdorff
spaces (T 2TD ⊆ T 2) is isomorphic to a trivial rudimentary system. Thus,
those shapes of R are trivial (i.e., equal to the shape of a singleton). On the
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other hand, ShT20
¯

(Q) and ShT20
¯

(R r Q) are different and not trivial (com-
pare Example 4 of Section 5 ). (The index set Λ0

¯
(Q) is uncountable, while

Λ0
¯
(R r Q) is countable.) In fact, it is not difficult to show that R r Q is

T 20
¯
-shape dominated by Q, ShT20

¯

(R rQ) ≤ ShT20
¯

(Q).

In order to get a better control over quotient spaces, we will select some
special equivalence relations having a certain “degree of compatibility” with
the topology. Let ∼ be an equivalence relation on a set X . Then there exists
the induced function on the power set,

2∼ : 2X → 2X , 2∼(A) ≡ Ã = ∪a∈A[a],

where [a] = {x | x ∈ X ∧ x ∼ a} is the equivalence class of a. Obviously,

A ⊆ Ã, and one can straightforwardly verifiy the following properties of 2∼:

(i) (∪j∈JAj )̃ = ∪j∈J Ãj ;

(ii) (Ã)̃ = Ã;

(iii) (∩j∈JAj )̃ ⊆ ∩j∈J Ãj (if Ãj = Aj for every j, then the equality holds);

(iv) (X rAj )̃ ⊇ X r Ã (the equality holds ⇔ Ã = A);

(v) (∀A ⊆ X)Ã = p−1[p[A]], where p : X → X/ ∼, p(x) = [x].

(vi) (∀f : X → Y )(∀A ⊆ X)Ãf = f−1[f [A]].

Definition 7.2. Let X be a topological space and let ∼ be an equivalence
relation on X. If, for every U ⊆ X open (F ⊆ X closed), Ũ is open (F̃
is closed), then ∼ is said to be an open- (closed)-preserving equivalence
relation on X. If ∼ is open- and closed-preserving, then it is said to be a
congruence on the space X.

The next five lemmata follow immediately.

Lemma 7.3. For every topological space (X, T ). every basis B for T
and every equivalence relation ∼ on X, the following assertions are mutually
equivalent:

(i) ∼ is open-preserving;
(ii) p : X → X/ ∼ is open;

(iii) (∀W ∈ B) W̃ ∈ T .

(iv) (∀U ⊆ X open) Ũ = p−1[p[U ]] ⊆ X is open.

Lemma 7.4. For every topological space X and every equivalence relation
∼ on X, the following assertions are mutually equivalent:

(i) ∼ is closed-preserving;
(ii) p : X → X/ ∼ is closed;

(iii) (∀F ⊆ X closed) F̃ = p−1[p[F ]] ⊆ X is closed.

Lemma 7.5. For every topological space X and every equivalence relation
∼ on X, the following assertions are mutually equivalent:

(i) ∼ is a congruence;
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(ii) p : X → X/ ∼ is open and closed;

(iii) (∀A ⊆ X open and closed) Ã = p−1[p[A]] ⊆ X is open and closed.

Lemma 7.6. Let f : X → Y be a mapping of topological spaces, and let
∼f be induced by fibers of f (f−1[{y}], y ∈ Y ).

(i) If f is open, then ∼f is open-preserving, and the converse holds when-
ever f is an identification;

(ii) If f is closed, then ∼f is closed-preswerving, and the converse holds
whenever f is an identification;

(iii) If f is open and closed, then ∼f is a congruence, and the converse
holds whenever f is an identification;

(iv) f is open (closed) if and only if, p : X → X/ ∼f and g =“fp−1” are
open (closed).

Lemma 7.7. If ∼ and ∼′ on a space X are open-preserving (closed-
preserving, congruences), then so is ∼ ∩ ∼′ refining the both.

Theorem 7.8. The category T2op of Hausdorff spaces is a pro-reflective
subcategory of Top. The same is true for their restrictions to mappings that
are open and closed.

Proof. For every topological space, there exists a congruence ∼ on X
(at least, the coarsest equivalence relation ∼ = X×X is a congruence). Since,
for every pair of infinite cardinals κ, κ′,

κ · κ′ = max{κ, κ′}

holds, the conclusion follows by Lemma 13. In the case of the restrictions,
apply also Lemma 11.

Example 7.9. Let

X = {
n

n+ 1
| n ∈ {0} ∪N} ∪ {1}

and
Y = {(−1, 0)} ∪ (

⋃

n∈N

{−
n

n+ 1
} × R) ∪ (X × {0})

be topological spaces carring the Euclidean subspace topologies. We shall
prove that X and Y have the same finite T2-shape, i.e., that Sh0

¯
(X) =

Sh0
¯
(Y ), where Sh0

¯
is the abbreviation for Sh0

¯
(Top, T2op). Let

p0
¯
= (pλ) : X →X0

¯
= (Xλ, pλλ′ ,Λ0

¯
)

and
q0
¯
= (qµ) : Y → Y 0

¯
= (Yµ, qµµ′ ,M0

¯
)

be the canonical T2op0
¯
-expansions of X and Y respectively. Observe that the

terms

Xλ(k) = {{0}, . . . , {
k − 1

k
}, [1]k}, k ∈ N,
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of X0
¯
, where

[1]k = {
n

n+ 1
| n ≥ k ∈ N} ∪ {1},

determine an inverse sequence X
(k)
0
¯

which is is cofinal subsystem of X0
¯
.

Moreover, the inverse subsequence X
(2k)
0
¯

of X
(k)
0
¯

determined by terms Xλ(2k)

is cofinal in X0
¯
as well. Obviously, Xλ(2k) is a discrete space consisting of

2k + 1 points, and thus, it is homeomorphic to {1, 2, . . . , 2k, 2k + 1} ⊆ N.
Similarly, since every {− n

n+1} × R is connected, the terms

Yµ(k) = {[(−1, 0)]k, [(−
k − 1

k
, 0)]k, . . . , {(0, 0)}, . . . , {(

k − 1

k
, 0)}, [(1, 0)]k},

for k ∈ N of Y 0
¯
, where

[(−1, 0)]k = {(−1, 0)} ∪ (
⋃

n≥k

{−
n

n+ 1
} × R)

and

[(−
k − 1

k
, 0)]k = {−

k

k + 1
} × R,

determine an inverse sequence Y
(k)
0
¯

which is is cofinal subsystem of Y 0
¯
.

Clearly, Yµ(k) is homeomorphic to {1, 2, . . . , 2k, 2k + 1} ⊆ N as well. The
conclusion follows straightforwardly.

In order to investigate the quotient shapes of some special classes of topo-
logical spaces, one can choose, by means of the above lemmata, various suit-
able subcategories of Top (by reducing Mor(Top) if necessary) and their pro-
reflective “nice” subcategories. One of the most interesting of those classes
could be that of all completely regular spaces (or Tychonoff or T3.5-spaces).
Namely, the complete regularity is the same as a (topological) gauge structure,
while every gauge structure is a separating family of pseudometrics (see [5],
Chapter IX, Section 10). So there is a firm relation to the results of Section 6.
Also, a countable gauge structure yields a metric space. Further on this line
is the subcategory of all uniform spaces. We postpone this job for the future.

8. The shapes of monoids

LetMon denote the category of all monoids (M, ·) (associative groupoids
with neutral elements) and their homomorphisms

f : (M, ·)→ (N, ◦), f(x · y) = f(x) ◦ f(y) ∧ f(eM ) = eN .

(In the sequel, we shall often omit the operations “·” and “◦”.) In order
to consider the quotients of a monoid, the appropriate equivalence relations
- congruences are needed, such that the quotient sets (functions) become
monoids (homomorphisms). Given a monoid (M, ·), an equivalence relation
∼ ≡ λ on the set M is said to be a congruence on the monoid if the following
condition is fulfilled:



292 N. UGLEŠIĆ

(1) (∀x, y, x′, y′ ∈M)(x ∼ x′ ∧ y ∼ y′)⇒ (xy ∼ x′y′).

It that case the quotient set M/λ, endowed with the operation [x][y] = [xy],
becomes a monoid having for the unique neutral element the class [e] (which
is a submonoid of (M, ·)) of the neutral element e ∈ M , and the quotient
function p :M →M/λ, p(x) = [x] becomes a homomorphism.

If f : M → N is a homomorphism of monoids, then the equivalence
relation ∼f induced by fibers of f (i.e., by the kernel of f) is a congruence on
M . Indeed, if x1 ∼f x

′
1 and x2 ∼f x

′
2, i.e., f(x1) = f(x′1) and f(x2) = f(x′2),

then

f(x1x2) = f(v1)f(x2) = f(x′1)f(x
′
2) = f(x′1x

′
2),

i.e., x1x2 ∼f x
′
1x

′
2, and (1) is fulfilled. Finally, if ∼ and ∼′ are congruences

on M , then one readily sees that so is

∼′′=∼ ∩ ∼′ ([x]′′ = [x] ∩ [x]′)

because property (1) is preserved under intersection. In addition, if ∼′ ≡ λ′

refines ∼ ≡ λ, λ′ ≥ λ, the relating quotient function

p̃ :M/λ′ →M/λ, [x]′ 7→ [x],

(p̃p′ = p) is a homomorphism:

p̃([x]′[y]′) = p̃([xy]′) = [xy] = [x][y] = p̃([x]′)p̃([y]′).

Hence, from now on, the quotient shape theory for monoids can be devel-
oped by the general procedure of Section 3. Thus, given a monoid M and an
infinite cardinal κ, the corresponding canonical κ−-expansion (κ-expansion) is
fully determined by the quotients having cardinalities less than (less or equal
to) κ. Clearly, if κ > |M |, then pκ− is isomorphic to the rudimentary expan-
sion of M , while κ ≥ |M | implies that pκ is isomorphic to the rudimentary
expansion ofM . We will not repeat the construction of the appropriate shape
categories and functors any more.

Example 8.1. (a) Let (N, ·) be the multiplicative monoid on the set N of
natural numbers. Let, for each m ∈ N, the relation ∼m on N be defined by

n ∼m n′ ⇔ (∃l ∈ Z) n′ = nml.

Then ∼m is an equivalence relation on N (n = n′m−l), and ∼1= ∆N. More-
over, it is a congruence on (N, ·) because n′

1 = n1m
l1 and n′

2 = n2m
l2 imply

n′
1n

′
2 = n1m

l1n2m
l2 = (n1n2)m

l1+l2 .

The congruence class [n]m of an n ∈ N is the set

{nml | l ∈ {0} ∪ Z} ∩ N.

If n ≤ m > 1, then [n]m is countably infinite. However, for every m, the
quotient monoid (N/ ∼m, ·) is countably infinite too.
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(b) Let us find out a Mon0
¯
-expansion of (N, ·). Consider a congruence

∼ ≡ λ on (N, ·) such that |N/λ| < ℵ0. If |N/λ| = 1, then λ = N × N. If
|N/λ| = 2, then the two following possibilities occur:

or λ corresponds to the partition {1}, N \ {1} (if a monoid M has no
invertible element except e = e−1, then x ∼ y ⇔ ((x = y) ∨ (x, y ∈
M \ {e})) is a congruence);
or λ corresponds to the partition 2N−1, 2N, i.e., it is the congruence

n ∼2 n
′ ⇔ n ≡ n′(mod 2).

Furthermore, for every m ≥ 2, the equivalence relation ∼m,

n ∼m n′ ⇔ n ≡ n′(modm),

is a congruence on (N, ·) such that |N/ ∼m| = m. In that case,

(N/ ∼m, ·) ∼= (Nm, ·m),

where the congruence classes

[n]m = {n, n+m, . . . , n+ km, . . .}, n ∈ N,

are represented by n ∈ {1, . . . ,m}, and [n]m ·m [n′]m is defined as usual
(residuum 0 is identified with m). Another type of congruence on (N, ·), that
induces a finite quotient monoid, is ∼′

m which corresponds to the partition

{1}, . . . , {m}, {m+ 1,m+ 2, . . .}.

(Notice that n > m implies nk ∈ {m + 1,m + 2, . . .}, for every k.) Finally,
a slightly deeper analysis shows the following: For every congruence λ on
(N, ·) such that 2 < |N/λ| < ℵ0, there exists a finer congruence of the type
∼m ∩ ∼

′
m, m ∈ N. Its quotient set consists of 2m congruence classes. The

corresponding subset Λ∗
0
¯
≡ (N,≤∗) ⊆ Λ0

¯
(ordered by divisibility; see Example

1 (a) of Section 5) is cofinal in Λ0
¯
. Consequently, the restriction

p∗
0
¯
= (pm) : (N, ·)→ (N , ·)

∗
0
¯
= ((Nm, ·), pmm′ , (N,≤∗))

(of the canonicalMon0
¯
-expansion p0

¯
) is a (countable)Mon0

¯
-expansion of the

monoid (N, ·). It is a well known fact ([9], VIII., Ex. A. 1.; [18], Lemma 9)
that it is isomorphic to an inverse sequence. Thus, for instance,

p′
0
¯
= (p′m) : (N, ·)→ (N , ·)

′
0
¯
= ((N ′

m, ·), p
′
mm′ ,N),

where N ′
m = Nm!, p

′
mm′ = pm!m′!, p

′
m = pm!, is a sequential Mon0

¯
-expansion

of (N, ·).

Example 8.2. Let (Z,+) be the additive monoid of integers, and let ∼
be a congruence on (Z,+) such that the quotient monoid (Z/ ∼,+) is finite.
An analysis shows ((Z,+) has invertible elements!) that ∼ = ∼m, for some
m ∈ N, i.e., that

k ∼m k′ ⇔ k ≡ k′(modm).
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The congruence classes

[k]m = {k, k ±m, . . . , k ± nm, . . .}, k ∈ Z,

are represented by k ∈ {0, . . . ,m− 1}, while

(Z/ ∼m,+) ∼= ({0, . . . ,m− 1},+ ≡ +m) ≡ (Zm,+m).

Thus, the canonical Mon0
¯
-expansion of (Z,+) is

q0
¯
= (qM ) : (Z,+)→ (Z,+)0

¯
= ((Zm,+m), qmm′ , (N,≤∗)).

Let ({0} ∪ N,+) be the additive monoid of non-negative integers, which is
a proper (commutative) submonoid of (Z,+) having no invertible element
except 0. Then the congruences ∼m on (Z,+) restricted to {0} ∪ N are
also congruences on ({0}∪N,+) providing the (same) finite quotient monoids
(({0} ∪ N)/ ∼m,+) ≡ (Nm,+m) ∼= (Zm,+m) of cardinality m. Further,
another type of congruence on ({0} ∪ N,+), that induces a finite quotient, is
∼′
m corresponding to the partition

{0}, . . . , {m− 1}, {m,m+ 1, . . .}, m ∈ N

(∼′
0= ({0} ∪ N) × ({0} ∪ N)). An analysis shows that the family of all in-

tersections ∼m ∩ ∼
′
m≡ λm, m ∈ N, is cofinal in the family of all con-

gruences on ({0} ∪ N,+) providing finite quotients. The quotient monoid
({0} ∪ N)/λm ≡ N0

m consists of all intersections of the appropriate congru-
ence classes, i.e.,

(N0
m,+) ≡ ({[n]m ∩ [n]′m | n ∈ {0} ∪N},+),

where

[n]m ∩ [n]′m =

{

{n}, 0 ≤ n ≤ m− 1
{n, n+m,n+ 2m, . . .}, m ≤ n ≤ 2m− 1

and
∣

∣(N0
m,+)

∣

∣ = 2m. Therefore, the canonicalMon0
¯
-expansion of ({0}∪N,+)

admits a restriction

r0
¯
= (rm) : ({0} ∪ N,+)→ (N

0
,+)0

¯
= ((N0

m,+), rmm′ , (N,≤∗))

that is a Mon0
¯
-expansion of ({0} ∪ N,+) too. Similarly to Example 13 (b),

there exists a sequential Mon0
¯
-expansion of ({0} ∪ N,+) that is cofinal in

r0
¯
. Finally, observe that, for every m ∈ N, the canonical monomorphism

(inclusion) jm : (Zm,+m)→ (N0
m,+) is a section, i.e., it admits a left inverse

(retraction) ρm : (N0
m,+) → (Zm,+m), ρmjm = 1Zm

, by putting ρm({n}) =
n, n ∈ {0, . . . ,m − 1}, and ρm({n + km | k ∈ {0} ∪ N}) = n −m (or = 0),
n ∈ {m, . . . , 2m − 1}. Moreover, they extend to inverse systems, i.e., there
exist

j : (Z,+)0
¯
→ (N

0
,+)0

¯
, ρ : (N

0
,+)0

¯
→ (Z0,+)0

¯
of pro-Mon0

¯
such that ρj = 1(Z,+)

0
¯

. Hence, (Z,+) is finitely shape domi-

nated by its submonoid ({0}∪N,+), Sh0
¯
(Z,+) ≤ Sh0

¯
({0}∪N,+) (of course,
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neither (Z,+) is dominated, in Mon, by ({0} ∪ N,+), nor ({0} ∪ N,+) is
dominated by (Z,+)!).

Remark 8.3. We have not considered the quotient shapes in the cate-
gories of groupoids and semigroups.Nevertheless, for the sake of completeness,
the only condition for a congruence in such a (sub)category is property (1) as
well.

9. The shapes of groups

9.1. The general case. As in the previous section (concerning monoids),
an equivalence relation ∼ on a group (G, ·) is said to be a congruence if

(1) (∀x, x′, y, y′ ∈ G)(x ∼ x′ ∧ y ∼ y′)⇒ xy ∼ x′y′).

It is well known that a congruence ∼ is induced by a normal subgroup (N, ·) E
(G, ·) and that N = [e]. We denote, as usually, the quotient group G/∼ by
G/N , and by p : G→ G/N the quotient homomorphism. If Λ is the set of all
congruences λ ≡ ∼ on G, then we order Λ by the refiniment. It corresponds
to

λ ≤ λ′ ⇔ Nλ′ ≤ Nλ (the subgroup).

Since the intersection of any pair of normal subgroups is a normal subgroup,
Λ is directed as well. In the sequel, we shall abbreviate G/Nλ ≡ Gλ. If
f : G→ H is a homomorphism that preserves given congruences ∼ ≡ λ and
∼′≡ µ, i.e.,

x ∼ x′ ⇒ f(x) ∼′ f(x′)

(equivalently, f([eG]) ⊆ [eH ]′), then there exists a unique homomorphism

f̃ : Gλ→ Hµ, f̃ [x] = [f(x)]′, i.e., f̃(x[eG]) = f(x)[eH ]′, such that the following
diagram (in the category Grp)

Gλ
pλ
← G

f̃ ↓ ↓ f

Hµ

qµ
← H

commutes, i.e., f̃pλ = qµf . Consequently, if λ ≤ λ′, then 1G : G → G
is (λ, λ′)-preserving, and thus, there exists a unique (effective) epimorphism
pλλ′ : Gλ′ → Gλ such that pλλ′pλ′ = pλ. Further, for every homomorphism
f : G → H , the equivalence relation ∼f induced by the fibers of f , f−1(y),
y ∈ H , (i.e., by the kernel of f) is a congruence on G. Hence, there exists
a λ ∈ Λ such that ∼f= λ and there exists a unique homomorphism fλ :
Gλ → H such that fλpλ = f . If, in addition, f is an epimorphism, then fλ
is an isomorphism (“The first isomorphism theorem”). In this way we have
obtained an inverse system

G = (Gλ, pλλ′ ,Λ)
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in Grp, and a morphism
p = (pλ) : G→ G

of pro-Grp that is a Grp-expansion of G. However, there exists λ∗ = maxΛ
(corresponding to [e] E G), and Gλ∗

= G. Therefore, we have to reduce Λ
so that the restriction remains an expansion. Given an infinite cardinal κ, let
Λκ− (Λκ) be the subset of Λ consisting of all elements λ such that |Gλ| < κ
(|Gλ| ≤ κ). Then the restriction of p,

pκ− = (pλ) : G→ Gκ− = (Gλ, pλλ′ ,Λκ−)

and
pκ = (pλ) : G→ Gκ = (Gλ, pλλ′ ,Λκ)

are (the canonical) Grpκ− -expansion and Grpκ-expansion of G, respectively.
This shows that Grpκ− and Grpκ are pro-reflective subcategories of Grp (of
course, in the case of a finite group G, one may choose, for every κ−-and
κ-expansion of G, the rudimentary identity expansion ⌊1G⌋ : G→ G).

Now one obtains, in the general way, the shape categories Shκ−(Grp) and
Shκ(Grp), and the shape functors Sκ− : Grp → Shκ−(Grp) and Sκ : Grp →
Shκ(Grp), as well as the relating functor Sκ−κ : Shκ(Grp) → Shκ−(Grp)
such that Sκ−κSκ = Sκ− .

Remark 9.1. The analogous theory holds in whole for the category Ab
of Abelian groups as well. Observe that the above expansions of a group G
admit to consider a partial (or the full) normal system of G (instead only a
chain or a normal sequence).

Remark 9.2. According to [14], Theorem 1.6, there exists a bijection

Sh0
¯
(G,H) ≈ LocGrp(lim{locgrp(Gλ)}, lim{locgrp(Hµ)}),

where lim is the inverse limit in LocGrp (the category of localic groups), while
locgrp(Gλ) is the localic group associated with the finite group Gλ carrying
the discrete topology.

Example 9.3. Let Z be the additive group of integers. Each of its
subgroups is (normal) of the form kZ, and the quotient group is (Zk,+k),
k ∈ {0} ∪ N. (The corresponding congruences ∼k, see Example 14 of Section
8, are defined by the rule

m ∼k m
′ ⇔ m ≡ m′(mod k),

i.e., m −m′ = lk, for some l ∈ Z, and ∼k′ refines ∼k whenever k′ = rk, for
some r ∈ N.) Thus, the canonical Grp0

¯
-expansion of the group Z is

p0
¯
= (pk) : Z→ Z0

¯
= (Zk, pkk′ ,Λ0

¯
= (N,≤∗))

(see Examples 1(a) and 6(a)), that is isomorphic to the sequential Grp0
¯
-

expansion
p′
0
¯
= (pk!) : Z→ Z ′

0
¯
= (Zk!, pk!k′!,N!).
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Clearly, the canonical ℵ0-expansion of Z reduces to the identity homomor-
phism.

Example 9.4. (a) Let (R,+) be the additive group of real numbers, and
let N be a subgroup of (R,+). Then,

|(R,+)/N | < ℵ0 ⇒ N = (R,+).

Therefore, the finite shape of (R,+) is trivial. (The countable shape of (R,+)
is not trivial because, for every n ∈ N, there exists a subgroup Nn such
that (R,+)/Nn is isomorphic to (Q,+)n. Namely, (R,+) is an (uncount-
ably infinite-dimensional vectorial space over Q.) Finally, the canonical ℵ1-
expansion of (R,+) reduces to the identity homomorphism. Since the multi-
plicative group (R+, ·) is isomorphic to (R,+), the same conclusion holds for
it as well.

(b) Let (R \ {0}, ·) be the multiplicative group of non-zero real numbers,
and let N be a subgroup of (R \ {0}, ·). Then,

|(R \ {0}, ·)/N | < ℵ0 ⇒ (N = (R \ {0}, ·) ∨N = (R+, ·)),

i.e., (R \ {0}, ·)/N ∼= ({1}, ·) or (R \ {0}, ·)/N ∼= ({−1, 1}, ·). Therefore,
(R\{0}, ·) is finitely stable having the finite shape of ({−1, 1}, ·). Clearly, the
canonical ℵ1-expansion of (R \ {0}, ·) reduces to the identity homomorphism.

9.2. The rudimentary commutative shape of groups. Let G be a group,
and let [KG] be its commutator subgroup. (If G is Abelian, then [KG] =
{e} E G.) Then the quotient group G/[KG] is commutative. Moreover, [KG]
is the minimal such a normal subgroup, i.e., if N E G such that G/N is
commutative, then [KG] E N . Therefore, G/[KG] is the maximal quotient
group of G that is commutative. Let p : G → G/[KG] be the quotient
homomorphism. Given an N E G such that G/N commutative, let pN : G→
G/N be the quotient homomorphism. Then there exists a unique relating
(quotient) homomorphism p̃ of G/[KG] onto G/N such that the diagram

G/[KG]
p
← G

p̃ ↓ ւ pN
G/N

in Grp commutes, i.e., p̃p = pN . Notice that all the considered homomor-
phisms are epimorphic. Let us denote by eGrp ⊆ Grp the subcategory of
all groups and epimorphisms, and let eAb ⊆ eGrp be the full subcategory
determined by all Abelian groups.

Lemma 9.5. The quotient homomorphism p : G→ G/[KG] is a rudimen-
tary eAb-expansion of G. If G is Abelian, then p = 1G.

Proof. Let H be an Abelian group and let f : G → H be an epimor-
phism. Then Ker(f) E G such that G/Ker(f) is commutative because the
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homomorphism

q : G/Ker(f)→ H, qpKer(f) = f,

is an isomorphism. Let

p̃ : G/[KG]→ G/Ker(f), p̃p = pKer(f).

be as above. Put

g = qp̃ : G/[KG]→ H.

Then g is an epimorphism and gp = f . The conclusion follows.

Remark 9.6. In order to obtain a less rudimentary shape, it would be
interesting (in this approach) to replace abelian groups by the nilpotent ones.
We postpone that work for an other occasion.

10. The shapes of rings

Similarly to the cases of monoids and groups, an equivalence relation ∼
on a ring (R,+, ·) is said to be a congruence if

(∀x, x′, y, y′ ∈ R) (x ∼ x′ ∧ y ∼ y′) ⇒ (x+ y ∼ x′ + y′ ∧ xy ∼ x′y′).

It is well known that a congruence∼ is induced by an ideal (A,+, ·) E (R,+, ·)
and that A = [0]. We denote, as usually, the quotient ring R/∼ by R/A, and
by p : R→ R/A the quotient homomorphism. If Λ is the set of all congruences
λ ≡ ∼ on R, then we order Λ by the refiniment. It corresponds to

λ ≤ λ′ ⇔ Aλ′ ≤ Aλ (the subring).

Since the intersection of any pair of ideals is an ideal, Λ is directed as well.
In the sequel, we shall abbreviate R/Aλ ≡ Rλ. If f : R → Q is a ring
homomorphism that preserves given congruences ∼ ≡ λ and ∼′≡ µ, i.e.,

x ∼ x′ ⇒ f(x) ∼′ f(x′),

then there exists a unique ring homomorphism f̃ : Rλ → Qµ, f̃ [x] = [f(x)]′,
such that the following diagram

Rλ
pλ
← R

f̃ ↓ ↓ f

Qµ
qµ
← Q

(in the category Ring) commutes, i.e., f̃ pλ = qµf . Therefore, if λ ≤ λ′,
then 1R : R → R is (λ, λ′)-preserving, and thus, there exists a unique ring
epimorphism pλλ′ : Rλ′ → Rλ such that pλλ′pλ′ = pλ. Further, for every
ring homomorphism f : R → Q, the equivalence relation ∼f induced by the
fibers of f , f−1(y), y ∈ Q, (i.e., by the kernel of f) is a congruence on R.
Hence, there exists a λ ∈ Λ such that ∼f= λ, and there exists a unique ring
homomorphism fλ : Rλ → Q such that fλpλ = f . If, in addition, f is an
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(effective) epimorphism, then fλ is an isomorphism (“The ring isomorphism
theorem”). In this way we have obtained an inverse system

R = (Rλ, pλλ′ ,Λ)

in Ring, and a morphism

p = (pλ) : R→ R

of pro-Ring that is a Ring-expansion of R. Since there exists λ∗ = maxΛ
(corresponding to the trivial ideal {0} E R), and Rλ∗

= R, we reduce Λ so
that the restriction remains an expansion. Now, as in all the cases before,
we involve in our construction the cardinality of objects. Given an infinite
cardinal κ, let Λκ− (Λκ) be the subset of Λ consisting of all elements λ such
that |Rλ| < κ (|Rλ| ≤ κ). Then the restrictions of p,

pκ− = (pλ) : R→ Rκ− = (Rλ, pλλ′ ,Λκ−)

and

pκ = (pλ) : R→ Rκ = (Rλ, pλλ′ ,Λκ)

are the (canonical) Ringκ−-expansion and Ringκ-expansion of R respectively.
This proves that Ringκ− and Ringκ are pro-reflective subcategories of Ring
(of course, in the case of a finite ring R, one may choose, for every κ−-and
κ-expansion of R, the rudimentary identity expansion ⌊1R⌋ : R→ R).

Now one obtains, in the usual way, the shape categories Shκ−(Ring)
and Shκ(Ring), and the shape functors Sκ− : Ring → Shκ−(Ring) and
Sκ : Ring → Shκ(Ring), as well as the relating functor Sκ−κ : Shκ(Ring)→
Shκ−(Ring) such that Sκ−κSκ = Sκ− .

Example 10.1. Let (Z,+, ·) be the ring of integers. Each subring of Z
is a kZ, k ∈ {0} ∪ N, that is also a principal ideal (k) E Z. Further, given
an n ∈ {0} ∪ N, each subring of nZ is a k(nZ) = (kn)Z, k ∈ {0} ∪ N, that is
also a principal ideal (kn) of nZ and of Z. Since a ring homomorphism of Z
to itself is either c0 or 1Z, for every pair n 6= n′, the rings nZ and n′Z are not
isomorphic. We will show that all of them, except 0Z - the trivial one, have
the same finite shape, i.e., that

(∀n, n′ ∈ N) Sh0
¯
(nZ,+, ·) = Sh0

¯
(n′Z,+, ·).

Recall that (the quotient rings)

Z/(k) ∼= (Zk,+k, ·k),

and

nZ/(kn) ∼= (Zkn,+kn, ·kn) ∼= Z/(kn).

Therefore, the canonical Ring0
¯
-expansion of Z is

p0
¯
= (pk) : Z→ Z0

¯
= (Zk, pkk′ , (N,≤

∗)),
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where (N,≤∗) is ordered (and directed) by

k ≤∗ k′ ⇔
k′

k
∈ N

(see Example 1 (a)), while the canonical Ring0
¯
-expansion of nZ is

p
(n)
0
¯

= (pk) : nZ→ nZ0
¯
= (Zk, pkk′′ , (nN,≤

∗))

(because (nN,≤∗) ⊆ (N,≤∗) is directed as well). Finally, notice that each p
(n)
0
¯

is the restriction of p0
¯

to (nN,≤∗), and that (nN,≤∗) is cofinal in (N,≤∗)
The conclusion follows (notice that Z0

¯
and nZ0

¯
are not isomorphic to any

inverse sequence - see Example 15).

Example 10.2. Since the ring (R,+, ·) of reals is a field (there is no
non-trivial ideal), its 0

¯
−shape and ℵ0-shape are trivial, while the canonical

ℵ1-expansion of (R,+, ·) obviously reduces to the identity ring homomorphism

Example 10.3. Similarly to Example 18, the 0
¯
−shape of the ring (Q,+, ·)

of rationals is trivial, while the canonical ℵ0-expansion of (Q,+, ·) reduces to
the identity ring homomorphism.

Remark 10.4. In order to obtain the (quotient) shape theories for a
subcategory of Ring with respect to a special full subcategory, one has to
assure that the special properties are preserved by the quotients and (finite)
intersections. An interesting special category could be the full subcategory of
all polynomial rings over a class of fields, while for its special subcategory one
may choose, for instance, that of commutative rings, integral (or some more
special) domains or (skew) fields (see [6], Chapter XI).

11. The shapes of modules

Recall (see [12]) that a (left) R-module is every ordered pair (M,ϕ) con-
sisting of an Abelian group M and a function ϕ : R×M →M , ϕ(r, x) ≡ rx,
where R is a ring with unity 1, such that

r(x + x′) = rx + rx′, (r + r′)x = rx + r′x and r(r′x) = (rr′)x, 1x = x

always hold. In the sequel, we shall not stress ϕ unless necessary. Clearly,
every ring R with unity is itself an R-module with ϕ the ring multiplication.
Let R-Mod denote the category of all (left) R-modules and all (left) R-module
homomorphisms f :M → N ,

f(x+ y) = f(x) + f(y) and f(rx) = rf(x).

A subset S of an R-module M is a (left R-) submodule, denoted by S E M ,
if it is an R-module with respect to the same operation. This means that S
is a subgroup of (the Abelian group) M and that, for every r ∈ R, rS ⊆ S
(likewise to a left ideal of a ring). It follows that a submodule of a submodule
of M is a submodule of M . If S and T are submodules of M , then so is
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S ∩T . For every submodule S of M , the inclusion i : S →֒M is an R-module
monomorphism. Further, the quotient R-module

M/S = {[x] = x+ S | x ∈M}, [x] + [y] = [xy], r[x] = [rx],

and the quotient R-module (effective) epimorphisms (the canonical projec-
tion)

p : M →M/S, p(x) = [x],

are well defined. Let M be an R-module.
An equivalence relation ∼ on a set M is a congruence on the R-module

M if the equivalence class [0] ⊆ M is a submodul of M . If Λ is the set of all
congruences λ ≡ ∼ on M , we order it by the refinement, i.e., λ ≤ λ′ if and
only if λ′ refines λ. Equivalently,

λ ≤ λ′ ⇔ Sλ′ E Sλ (the submodule).

Then (Λ,≤) becomes a partially ordered set, that is directed as well. Let us
denote M/Sλ = Mλ and p = pλ : M → Mλ. If f : M → N is an R-module
homomorphism that is (λ ≡ ∼, µ ≡ ∼′)-preserving, i.e.,

x ∼ x′ ⇒ f(x) ∼′ f(x′)

(equivalently, f([0M ]) ⊆ [0N ]′), then there exists a unique R-module homo-

morphism f̃ :Mλ → Nµ, f̃ [x] = [f(x)]′, such that the following diagram

Mλ
pλ
← M

f̃ ↓ ↓ f

Nµ
qµ
← N

(in the category R-Mod) commutes, i.e., f̃ p = qf . Therefore, if λ ≤ λ′, then
1M : M →M is (λ, λ′)-preserving, and thus, there exists a unique R-module
epimorphism pλλ′ : Mλ′ → Mλ such that pλλ′pλ′ = pλ. Further, for every
R-module homomorphism f : M → N , the equivalence relation ∼f induced
by the fibers of f , f−1(y), y ∈ Q, (i.e., by the kernel Ker(f)) is a congruence
on M . Hence, there exists a λ ∈ Λ such that ∼f= λ, and there exists a
unique R-module homomorphism fλ : Mλ → N such that fλpλ = f . If, in
addition, f is an epimorphism, then fλ is an isomorphism (“The R-module
isomorphism theorem”). Consequently, there exists a certain inverse system

M = (Mλ, pλλ′ ,Λ)

in R-Mod, and a morphism

p = (pλ) :M →M

of pro-(R-Mod) that is a R-Mod-expansion of M . Since there exists λ∗ =
maxΛ (corresponding to the trivial submodule {0} E M}), and Mλ∗

= M ,
p is equivalent to the rudimentary identity ⌊1M⌋. In order to obtain a non-
rudimentary expansion, we have to reduce Λ so that the restriction remains
an expansion. Now, as in all the cases before, given an infinite cardinal κ,
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let Λκ− (Λκ) be the subset of Λ consisting of all λ ∈ Λ such that |Mλ| < κ
(|Mλ| ≤ κ). Then the restrictions of p,

pκ− = (pλ) :M →Mκ− = (Mλ, pλλ′ ,Λκ−)

and

pκ = (pλ) : M →Mκ = (Mλ, pλλ′ ,Λκ)

are the (canonical) R-Modκ−-expansion and R-Modκ-expansion ofM respec-
tively. This shows thatR-Modκ− andR-Modκ are pro-reflective subcategories
of R-Mod. Similarly to the previous cases, if κ > |M |, then pκ− is isomor-
phic to the rudimentary expansion ⌊1M⌋, while κ ≥ |M | implies that pκ is
isomorphic to the rudimentary expansion of M .

Now one obtains, in the usual way, the shape categories Shκ−(R-Mod)
and Shκ(R-Mod), and the shape functors Sκ− : R-Mod→ Shκ−(R-Mod) and
Sκ : R-Mod → Shκ(R-Mod), as well as the relating functor Sκ−κ : Shκ(R-
Mod)→ Shκ−(R-Mod) such that Sκ−κSκ = Sκ− .

Since each ring R with unity is an R-module, the shape classifications in
R-Mod are, according to Section 10, strictly coarser than the classification
by the R-module isomorphisms. The same conclusion holds, by Section 9,
for the category Z-Mod because every Z-module is just the Abelian group.
We provide hereby several canonical expansions of some “not very special”
R-modules M , where M is not isomorphic to Z or R.

Example 11.1. (a) Let ((Z,+), ϕ) be the Hom(Z)-module (the ring of
all endomorphisms on (Z,+) with respect to the addition and composition of
functions), where

ϕ : Hom(Z)× Z→ Z, ϕ(h,m) ≡ hm = h(m).

One verifies the needed conditions straightforwardly. Notice that

ϕ(h,m · n) = m · ϕ(h, n) (i.e., h(mn) = mh(n))

holds as well. Therefore, M ⊆ ((Z,+), ϕ) is an Hom(Z)-submodule if and
only if M is an ideal of the ring (Z,+, ·). Consequently, every submodule is a
principal ideal nZ, n ∈ {0} ∪N. Obviously, the Hom(Z)-modules ((Z,+), ϕ),
((nZ,+), ϕ | (- × nZ)) and ((n′Z,+), ϕ | (- × n′Z)), n 6= n′, are not isomor-
phic. However, by following the pattern of Example 17, if n 6= 0 6= n′, the

corresponding canonical Hom(Z)-Mod0
¯
-expansions p0

¯
, p

(n)
0
¯

and p
(n′)
0
¯

show

that they have the same (finite) Hom(Z)-Mod0
¯
-shape.

Example 11.2. Let ((R,+), ϕ) be the Q-module (the ring of rationals),
where

ϕ : Q× R→ R, ϕ(q, x) = qx (the multiplication).

Since Q is a field, the Q-module ((R,+), ϕ) is, actually, the (uncountably
infinite-dimensional) vectorial space RQ. Hence, every its submodule is a
vectorial subspace of RQ. Each 1-dimensional subspace is generated by a
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single vector x ∈ R. For instance, the field as a subspace Q E RQ is generated
by any x ∈ Q. A 2-dimensional subspace is generated by any two vectors
x, y ∈ R that are rationally-linearly independent, i.e., y 6= qx for every q ∈
Q. A“smalll” quotient modul (space) asks for a certain “large” submodule
(subspace). However, every quotient Q-module is a vectorial space over Q.
The consequence is that, except {0} = R/R - the trivial one, there is no
quotient Q-modul of RQ having a finite cardinality. Hence, the canonical
Q-Mod0

¯
-expansion of RQ is rudimentary trivial, i.e., it is

p0
¯
= (c0) : RQ → ⌊{0}⌋ .

Thus, RQ has trivial (finite) Q-Mod0
¯
-shape. Further, since Q is countable,

each countable quotient Q-module Rλ of RQ is obtained via a submodule Lλ
that is a vectorial subspaces generated by a certain subset λ ⊆ R having
countable complement. Thus, the canonical Q-Modℵ0

-expansion of RQ is

pℵ0
= (pλ) : RQ → (Rλ, pλλ′ ,Λℵ0

),

where |Λ| = 2c. Finally, for every cardinal κ > c (κ > 2ℵ0 - by CH), the
canonical Q-Modκ−-expansion pκ− reduces to the rudimentary identity

pκ− = (1RQ
) : RQ → ⌊RQ⌋ ,

as well as pκ for κ ≥ c (κ ≥ 2ℵ0 - by CH).

Remark 11.3. Everything we have established concerning left R-modules
(R-Mod) holds, mutatis mutandis, for right R-modules (Mod-R) as well.

12. The (algebraic) shapes of vectorial spaces

The last example of the previous section motivates the following idea
concerning the quotient shapes of vectorial spaces (that is compatible with our
general principle): We propose that every finite-dimensional vectorial spaceX
is “nice”, and if X is infinite-κ-dimensional, then every vectorial space having
dimension less than κ is “nice comparing to” X . As usually, dimX = |B|,
where B is an algebraic (Hamel) basis of X . Given a field F , let V ectF denote
the category of all vectorial spaces over F and all their linear functions. It is
more convenient, and in some special considerations it is equivalent, to deal
with a basis of a space than with the family of all its subspaces. However,
for our purpose, the linear hulls of all subsets of a given basis (only) are not
sufficient to obtain an expansion of X . So we must consider all the subspaces
of a given infinite-dimensional space.

Let X ∈ Ob(V ectF ) and let {Zλ | λ ∈ Λ} be the set of all its subspaces
Zλ E X . We define

λ ≤ λ′ ⇔ Zλ′ E Zλ.

Then (Λ,≤) is a poset, that is directed because of

Zλ′′ E Zλ ∩ Zλ′ ⇔ λ′′ ≥ λ, λ′.
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For every λ ∈ Λ, put

Xλ ≡ X/Zλ = {[x]λ = x+ Zλ | x ∈ X}

to be the quotient vectorial space, and let

pλ : X → Xλ, pλ(x) = [x]λ,

be the canonical projection, which is a linear function. Notice that dimX =
dimXλ + dimZλ. Given a pair λ ≤ λ′ (i.e., Zλ′ E Zλ), let

pλλ′ : Xλ′ → Xλ, p([x]λ′ ) = [x]λ,

be the relating function, which is linear as well. Then, pλλ′pλ′ = pλ and
pλλ′pλ′λ′′ = pλλ′′ , whenever λ ≤ λ ≤ λ′′. In this way a certain inverse system
X = (Xλ, pλλ′ ,Λ) in V ectF is associated with X , as well as, a morphism

p = (pλ) : X →X

of pro-V ectF such that all pλ and all pλλ′ are (effective) epimorphisms. Since
there exists λ∗ = max(Λ,≤) = ∅ (corresponding to the trivial subspace
Zλ∗

= {θ}), and Xλ∗

∼= X , the system X is isomorphic (in pro-V ectF )
to the rudimentary system ⌊X⌋ of X . However, given an infinite cardinal κ,
one can consider the restriction to the subset Λκ− ⊆ Λ (Λκ ⊆ Λ) of all λ ∈ Λ
such that dimXλ < κ (dimXλ ≤ κ): Then one straightforwardly proves that
(Λκ− ,≤) ((Λκ,≤)) is a directed set. Moreover, there exists a morphism

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−)

(pκ = (pλ) : X →Xκ = (Xλ, pλλ′ ,Λκ)),

of pro-(V ectF )κ− (pro-(V ectF )κ).
Clearly, if κ > dimX , then pκ− is isomorphic to the rudimentary ex-

pansion ⌊1X⌋ of X , while κ ≥ dimX implies that pκ is isomorphic to the
rudimentary expansion ⌊1X⌋ of X . We are to prove that pκ− : X → Xκ−

(pκ : X →Xκ) is a (V ectF )κ− -expansion ((V ectF )κ-expansion) of X .

Theorem 12.1. For every infinite cardinal κ, (V ectF )κ− and (V ectF )κ
are pro-reflective subcategories of V ectF .

Proof. It suffices to verify condition (E1) for pκ− and pκ,

pκ− = (pλ) : X →Xκ− = (Xλ, pλλ′ ,Λκ−),

pκ = (pλ) : X →Xκ = (Xλ, pλλ′ ,Λκ),

constructed previously. If κ > dimX , then (E1) for pκ− holds trivially.
Let κ ≤ dimX . Let Y be any vectorial space (over the same field) such
that dimY < κ, and let f : X → Y be a linear function. Then the kernel
N(f) E X and there exists a unique linear function f̃ : X/N(f)→ Y such that

f̃ p = f , where p : X → X/N(f) is the quotient (linear) epimorphism. Clearly,
there exists a λ ∈ Λ such that N(f) = Zλ, and thus, X/N(f) = Xλ and
p = pλ : X → Xλ. Since the image R(f) E Y , it follows that dimR(f) < κ.
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Finally, X ∼= N(f)⊕R(f) implies that dimXλ = dimR(f) < κ, which shows
that λ ∈ Λκ− . In the κ-case, if κ ≥ dimX , then condition (E1) for pκ holds
trivially; if κ < dimX , one can verify (E1) for pκ in the same way as for pκ− .

We conclude this paper with the next final remark.

Remark 12.2. (a) It seems that all the algebraic quotient shape classifica-
tions and the isomorphism classification of vectorial spaces coincide. Namely,
they reduce to the cardinalities of bases (without any structure), and this
leads to the category Set (Section 4). Thus, in order to obtain a coarser
quotient classification, one should abandon the pure algebraic approach and
consider V ectF endowed with an extra structure. Instead of the algebraic
(Hamel) bases one might consider topological (Schauder) bases The class of
all normed vectorial (primarily, infinite dimensional Banach) spaces admitting
Shauder bases might be a convenient one for the (finite) shape classification.

(b) In the special case of the category AAlF ⊆ V ectF of all associative
algebras over F (and their operators), for every infinite-dimensional algebra,
X , a congruence class [0] E X has to be an ideal of (X,+, ·) as well.
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[17] N. Uglešić and V. Matijević, On expansions and pro-pro-categories, Glas. Mat. Ser.
III. 45(65) (2010), 173–217.
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