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Abstract. For an integer k ≥ 2, let (F
(k)
n )n be the k−Fibonacci

sequence which starts with 0, . . . , 0, 1 (k terms) and each term afterwards
is the sum of the k preceding terms. In this paper, we find all k−Fibonacci
numbers which are Mersenne numbers, i.e., k−Fibonacci numbers that are
equal to 1 less than a power of 2. As a consequence, for each fixed k, we

prove that there is at most one Mersenne prime in (F
(k)
n )n.

1. Introduction and preliminary results

For k ≥ 2, we consider the k−generalized Fibonacci sequence or, for simplicity,

the k−Fibonacci sequence F (k) := (F
(k)
n )n≥2−k given by the recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k for all n ≥ 2,

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We shall refer to F
(k)
n as the nth k−Fibonacci number. We note that this

generalization is in fact a family of sequences where each new choice of k
produces a distinct sequence. For example, the usual Fibonacci numbers
are obtained for k = 2. For small values of k, these sequences are called
Tribonacci (k = 3), Tetranacci (k = 4), Pentanacci (k = 5), Hexanacci (k =
6), Heptanacci (k = 7) and Octanacci (k = 8).

An interesting fact about the k−Fibonacci sequence is that the first k+1
non–zero terms in F (k) are powers of two, namely

F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1,
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while the next term is F
(k)
k+2 = 2k − 1. In fact, the inequality

(1.1) F (k)
n < 2n−2 holds for all n ≥ k + 2

(see [1]). In general, Cooper and Howard in [6] proved the following nice
formula:

Lemma 1.1. For k ≥ 2 and n ≥ k + 2,

F (k)
n = 2n−2 +

⌊n+k

k+1
⌋−1

∑

j=1

Cn,j 2
n−(k+1)j−2,

where

Cn,j = (−1)j
[(

n− jk

j

)

−

(

n− jk − 2

j − 2

)]

.

In the above, we used the convention that
(

a
b

)

= 0 if either a < b or if one
of a or b is negative and denote ⌊x⌋ the greatest integer less than or equal to
x. For example, assuming that k + 2 ≤ n ≤ 2k + 2, Cooper and Howard’s
formula becomes the identity

(1.2) F (k)
n = 2n−2 − (n− k) · 2n−k−3 for all k + 2 ≤ n ≤ 2k + 2.

Several authors have worked on problems involving generalized Fibonacci se-
quences. For instance, F. Luca ([11]) and D. Marques ([13]) proved that 55
and 44 are the largest repdigits (i.e., numbers with only one distinct digit in
its decimal expansion) in the sequences F (2) and F (3), respectively. Moreover,
D. Marques conjectured that there are no repdigits, with at least two digits,
belonging to F (k), for k > 3. This conjecture was confirmed shortly after-
wards by Bravo and Luca ([2]). Another conjecture (proposed by Noe and
Post [16]) about coincidences between terms of these sequences was proved
independently by Bravo–Luca ([3]) and Marques ([12]). We refer to [4, 9] for

results on the largest prime factor of F
(k)
n .

A Mersenne number is a number of the form Mm = 2m − 1, where m is
a positive integer. A Mersenne prime is a Mersenne number that is prime. If
r divides m, then 2r − 1 divides 2m − 1, so a Mersenne prime has a prime
exponent. However, very few of the numbers of the form 2p − 1 (p prime) are
prime. Mersenne numbers are the easiest type of numbers to be proved prime
(because of the Lucas–Lehmer test), so are usually the primes on the list of
largest known primes.

Mersenne primes have a deep connection to perfect numbers, which are
numbers that are equal to the sum of their proper divisors. Historically,
the study of Mersenne primes was motivated by this connection. In the 4th
century BC, Euclid showed that if M is a Mersenne prime then M(M + 1)/2
is a perfect number. Two millennia later, in the 18th century, Euler proved
that all even perfect numbers have this form. No odd perfect numbers are
known, and it is suspected that none exist.
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In the present paper, we are interested in finding which k−Fibonacci
numbers are Mersenne numbers, or equivalently, all k−Fibonacci numbers
which consist of all 1’s in base 2, and are therefore binary repunits. To be
more precise, we study the Diophantine equation

(1.3) F (k)
n = 2m − 1

in positive integers n, k,m with k ≥ 2.
It is important to mention that in the Fibonacci case, namely when k = 2,

it is known that the intersection of Fibonacci sequence and Mersenne sequence
is just {1, 3}. In this case, equation (1.3) reduces to find out when Fn + 1 is
a power of 2. Here, almost every value of n can be eliminated by using the
fact that the Fibonacci sequence is periodic modulo n for all n. Another way
to determine whether the number Fn + 1 is a power of 2 is to use the known
factorization Fn + 1 = F(n+δ)/2L(n−δ)/2, where (Ln)n≥0 is the companion
Lucas sequence of the Fibonacci sequence given by L0 = 2, L1 = 1 and
Ln+2 = Ln+1 + Ln for all n ≥ 0, and δ ∈ {−2,−1, 1, 2} depends on the class
of n modulo 4. However, similar divisibility properties for F (k) when k ≥ 3
are not known and therefore it is necessary to attack the problem differently.

Since F
(k)
1 = F

(k)
2 = 1 and F

(k)
k+2 = 2k − 1, we see that the triples

(1.4) (n, k,m) ∈ {(1, k, 1), (2, k, 1), (k+ 2, k, k)}

are solutions of equation (1.3) for all k ≥ 2. Solutions given by (1.4) will be
called trivial solutions. In this paper, we prove the following theorem.

Theorem 1.2. The Diophantine equation (1.3) has only trivial solutions.

As immediate consequence of Theorem 1.2 we have the following corollary.

Corollary 1.3. If Mp is a Mersenne prime in the k−Fibonacci sequence

F (k), then p = k and so Mp = F
(p)
p+2. Additionally, for each fixed k, there is at

most one Mersenne prime in F (k). In particular, M2 = 3, M3 = 7, M5 = 31
and M7 = 127 are the only Mersenne primes in the sequences Fibonacci,

Tribonacci, Pentanacci and Heptanacci, respectively.

To prove our main result we use lower bounds for linear forms in loga-
rithms (Baker’s theory) to bound n and m polynomially in terms of k. When
k is small, we use the theory of continued fractions by means of a variation
of a result of Dujella and Pethő to lower such bounds to cases that allow
us to treat our problem computationally. For large values of k, Bravo and
Luca in [1, 2] developed some ideas for dealing with Diophantine equations
involving k−Fibonacci numbers. However, when k is large and m = n − 2,
the estimates given in [1,2] are not enough and therefore we need to get more
accurate estimates to finish the job. For this aim, the formula of Cooper and
Howard (Lemma 1.1) will play an important role.
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Before proceeding further it may be mentioned that the characteristic
polynomial of F (k), namely

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible in Q[x] and has just one zero real outside the unit circle.
Throughout this paper, α := α(k) denotes that single zero. The other roots
are strictly inside the unit circle, so α(k) is a Pisot number of degree k. More-
over, it is also known that α(k) is located between 2(1 − 2−k) and 2, see
[10, Lemma 2.3] or [17, Lemma 3.6]. To simplify notation, we shall omit the
dependence on k of α.

We now consider the function fk(x) = (x− 1)/(2+ (k+1)(x− 2)), for an
integer k ≥ 2 and x > 2(1− 2−k). It is easy to see that the inequalities

(1.5) 1/2 < fk(α) < 3/4 and |fk(α
(i))| < 1, 2 ≤ i ≤ k

hold, where α := α(1), . . . , α(k) are all the zeros of Ψk(x). So, by computing
norms from Q(α) to Q, for example, we see that the number fk(α) is not an
algebraic integer. Proofs for this fact and (1.5) can be found in [5].

With the above notation, Dresden and Du showed in [7] that

(1.6) F (k)
n =

k
∑

i=1

fk(α
(i))α(i)n−1

and
∣

∣

∣
F (k)
n − fk(α)α

n−1
∣

∣

∣
<

1

2

hold for all n ≥ 1 and k ≥ 2.
In addition to this, Bravo and Luca proved in [2] that

(1.7) αn−2 ≤ F (k)
n ≤ αn−1 holds for all n ≥ 1 and k ≥ 2.

The observations in expressions (1.6) and (1.7) lead us to call α the dominant

zero of F (k).

2. Linear forms in logarithms

In order to prove our main result, we need to use a Baker type lower bound for
a nonzero linear form in logarithms of algebraic numbers, and such a bound,
which plays an important role in this paper, was given by Matveev ([14]). We
begin by recalling some basic notions from algebraic number theory.

Let η be an algebraic number of degree d with minimal primitive polyno-
mial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of
η. Then

h(η) =
1

d

(

log a0 +

d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

,
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is called the logarithmic height of η. In particular, if η = p/q is a rational
number with gcd(p, q) = 1 and q > 0, then h(η) = logmax{|p|, q}.

Matveev ([14]) proved the following deep theorem.

Theorem 2.1 (Matveev’s theorem). Let K be a number field of degree

D over Q, γ1, . . . , γt be positive real numbers of K, and b1, . . . , bt rational

integers. Put

Λ := γb1
1 · · · γbt

t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then,
assuming that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At).

To conclude this section, we give estimates for the logarithmic heights of
some algebraic numbers. Let K = Q(α). Knowing that Q(α) = Q(fk(α))
and that |fk(α(i))| ≤ 1 for all i = 1, . . . , k and k ≥ 2, we obtain that h(α) =
(logα)/k and h(fk(α)) = (log a0)/k, where a0 is the leading coefficient of
minimal primitive polynomial over the integers of fk(α). Put

gk(x) =
k
∏

i=1

(

x− fk(α
(i))
)

∈ Q[x] and N = NK/Q(2 + (k + 1)(α− 2)) ∈ Z.

We conclude that N gk(x) ∈ Z[x] vanishes at fk(α). Thus, a0 divides |N |.
But, for k ≥ 2

|N | =

∣

∣

∣

∣

∣

k
∏

i=1

(

2 + (k + 1)(α(i) − 2)
)

∣

∣

∣

∣

∣

= (k + 1)k

∣

∣

∣

∣

∣

k
∏

i=1

(

2−
2

k + 1
− α(i)

)

∣

∣

∣

∣

∣

= (k + 1)k
∣

∣

∣

∣

Ψk

(

2−
2

k + 1

)∣

∣

∣

∣

=
2k+1kk − (k + 1)k+1

k − 1
< 2kkk.

Hence, we will use the following inequalities

(2.1) h(α) < 0.7/k and h(fk(α)) < 2 log k, for all k ≥ 2.

3. Proof of Theorem 1.2

Assume first that we have a nontrivial solution (n, k,m) of equation (1.3);
hence, n ≥ k + 3 and so n ≥ 5. To begin with, by (1.3) and inequalities (1.1)
and (1.7), we have

αn−2 ≤ F (k)
n = 2m − 1 < 2n−2,

getting

(3.1) (n− 2)
logα

log 2
< m ≤ n− 2,
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which is a relation between n and m. We shall have some use for it later.
Using now (1.3) once again and (1.6) we get that

∣

∣fk(α)α
n−1 − 2m

∣

∣ <
1

2
+ 1 =

3

2
,

giving

(3.2)
∣

∣

∣
1− 2mα−(n−1)(fk(α))

−1
∣

∣

∣
<

3

αn−1
,

where we used the fact that fk(α) > 1/2 as has already been mentioned (see
(1.5)). In order to use the result of Matveev Theorem 2.1, we take t := 3 and

γ1 := 2, γ2 := α, γ3 := fk(α).

We also take b1 := m, b2 := −(n−1) and b3 := −1. We begin by noticing that
the three numbers γ1, γ2, γ3 are positive real numbers and belong to K = Q(α),
so we can take D := [K : Q] = k. The left–hand size of (3.2) is not zero.
Indeed, if this were zero, we would then get that fk(α) = 2m · α−(n−1) and
so fk(α) would be an algebraic integer, contradicting something previously
mentioned.

Since h(γ1) = log 2, it follows that we can take A1 := k log 2. Further, in
view of (2.1), we can take A2 = 0.7 and A3 := 2k log k. Finally, by recalling
that m ≤ n− 2, we can take B := n− 1. Then, Matveev’s theorem together
with a straightforward calculation gives

(3.3)
∣

∣

∣
1− 2mα−(n−1)(fk(α))

−1
∣

∣

∣
> exp(−8.34× 1011k4 log2 k log(n− 1)),

where we used that 1 + log k ≤ 3 log k for all k ≥ 2 and 1 + log(n − 1) ≤
2 log(n− 1) for all n ≥ 4. Comparing (3.2) and (3.3), taking logarithms and
then performing the respective calculations, we get that

(3.4)
n− 1

log(n− 1)
< 1.76× 1012k4 log2 k.

We next use the fact that the inequality x/ logx < A implies x < 2A logA
whenever A ≥ 3 in order to get an upper bound for n depending on k. Indeed,
taking x := n−1 and A := 1.76×1012k4 log2 k, and performing the respective
calculations, inequality (3.4) yields n < 1.6 × 1014k4 log3 k. We record what
we have proved so far as a lemma.

Lemma 3.1. If (n,m, k) is a nontrivial solution in positive integers of

equation (1.3), then n ≥ k + 3 and

m+ 2 ≤ n < 1.6× 1014k4 log3 k.
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3.1. The case k > 180. In this case the following inequalities hold

(3.5) m+ 2 ≤ n < 1.6× 1014k4 log3 k < 20.49k.

By recalling that α > 2(1− 2−k) and using the inequality log(1 − x) > −2x,
which holds for all x ∈ (0, 1/2), we get

logα

log 2
> 1 +

log(1− 2−k)

log 2
> 1−

2

2k log 2
.

Thus, from (3.1) and (3.5) we obtain

n− 2 ≥ m > (n− 2)
logα

log 2
> n− 2−

2

log 2
·
n− 2

2k

> n− 2−
2

log 2
· 2−0.51k

> n− 2− 10−27,

where we used that k > 180 in the last inequality. That is, n − 2 − 10−27 <
m ≤ n− 2 implying that m = n− 2. Therefore, if k > 180, then all is reduced
in finding solutions of the equation

(3.6) F (k)
n = 2n−2 − 1

in positive integers n and k with n ≥ k + 3. We shall distinguish two cases,
namely, the cases when k + 3 ≤ n ≤ 2k + 2 or n > 2k + 2.

Case 1. k+3 ≤ n ≤ 2k+2. In this case, in view of (1.2), equation (3.6)
becomes

2n−2 − (n− k) · 2n−k−3 = 2n−2 − 1, or equivalently, (n− k) · 2n−k−3 = 1.

But the last equation clearly has no solutions because its left–hand side is
always ≥ 3 since n− k ≥ 3.

To deal with the case n > 2k + 2, we will use the following result:

Lemma 3.2. If r < 2k, then the following estimate holds:

F (k)
r = 2r−2

(

1 +
k − r

2k+1
+ ζ(k, r)

)

,

where ζ = ζ(k, r) is a real number such that |ζ| < 4r2/22k+2.

Proof. From the Cooper and Howard’s formula Lemma 1.1, we get that

|ζ| ≤

⌊ r+k

k+1
⌋−1

∑

j=2

|Cr,j |

2(k+1)j
<
∑

j≥2

2rj

2(k+1)j(j − 2)!

<
2r2

22k+2

∑

j≥2

(r/2k+1)j−2

(j − 2)!
<

2r2

22k+2
er/2

k+1

.

Further, since r < 2k we have that er/2
k+1

< e1/2 < 2. Thus, |ζ| < 4r2/22k+2.
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Case 2. n > 2k + 2. Here, by Lemma 3.2, we see that equation (3.6) is
transformed into the expression

(k − n)2n−k−3 + ζ · 2n−2 = −1,

where ζ is a real number satisfying |ζ| < 4n2/22k+2. From this, it follows that
∣

∣(n− k)2n−k−3 − 1
∣

∣ < 2nn2/22k+2,

and dividing it across by (n− k)2n−k−3 and using the fact that n < 2k/2, we
get

∣

∣

∣

∣

1−
1

(n− k)2n−k−3

∣

∣

∣

∣

<
2

n− k
.

However, the above relation is not possible since its left–hand side exceeds
1/2, because (n− k)2n−k−3 > (k+2) · 2k−1 ≥ 183 · 2180, while its right–hand
side is smaller than 2/(k + 2) ≤ 2/183 < 1/2.

In conclusion, the Diophantine equation (1.3) has no solution with n ≥
k + 3 ≥ 184.

3.2. The case 2 ≤ k ≤ 180. For these values of k, we will use the following
lemma, which is an immediate variation of the result due to Dujella and Pethő
from [8], and will be the key tool used in this paper to reduce the upper bounds
on the variables of the Diophantine equation (1.3).

Lemma 3.3. Let A,B, γ, µ be positive real numbers and M a positive

integer. Suppose that p/q is a convergent of the continued fraction expansion

of the irrational γ such that q > 6M . Put ǫ = ||µq|| − M ||γq||, where || · ||
denotes the distance from the nearest integer. If ǫ > 0, then there is no positive

integer solution (u, v, w) to the inequality

0 < |uγ − v + µ| < AB−w,

subject to the restrictions that

u ≤ M and w ≥
log(Aq/ǫ)

logB
.

In order to apply this result, we let z := m log 2− (n− 1) logα− log fk(α)
and we observe that (3.2) can be rewritten as

(3.7) |ez − 1| <
3

αn−1
.

Note that z 6= 0; thus, we distinguish the following cases. If z > 0, then
ez − 1 > 0, so from (3.7) we obtain

0 < z <
3

αn−1
.

Suppose now that z < 0. Since the dominant zeros of F (k) are strictly increas-
ing as k increases, we deduce that 3/αn−1 ≤ 3/(α(2))n−1 < 1/2 for all n ≥ 5.
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Here, α(2) denotes the golden section as mentioned before. Then, from (3.7),
we have that |ez − 1| < 1/2 and therefore e|z| < 2. Since z < 0, we have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| <
6

αn−1
.

In any case, we have that the inequality

0 < |z| <
6

αn−1

holds for all k ≥ 2 and n ≥ 5. Replacing z in the above inequality by its
formula and dividing it across by logα, we conclude that

(3.8) 0 <

∣

∣

∣

∣

m

(

log 2

logα

)

− n+

(

1−
log fk(α)

logα

)∣

∣

∣

∣

< 13 · α−(n−1),

where we have used the fact that 1/ logα < 2.1. We put

γ̂ := γ̂(k) =
log 2

logα
, µ̂ := µ̂(k) = 1−

log fk(α)

logα
, A := 13 and B := α.

We also put Mk :=
⌊

1.6× 1014k4 log3 k
⌋

, which is an upper bound on m
by Lemma 3.1. The fact that α is a unit in OK, the ring of integers of K,
ensures that γ̂ is an irrational number. Even more, γ̂ is transcendental by the
Gelfond-Schneider Theorem. Then, the above inequality (3.8) yields

(3.9) 0 < |mγ̂ − n+ µ̂| < A · B−(n−1).

It then follows from Lemma 3.3, applied to inequality (3.9), that

n− 1 <
log(Aq/ǫ)

logB
,

where q = q(k) > 6Mk is a denominator of a convergent of the continued
fraction of γ̂ such that ǫ = ǫ(k) = ||µ̂q|| −Mk||γ̂q|| > 0. A computer search
with Mathematica revealed that if k ∈ [2, 180], then the maximum value
of log(Aq/ǫ)/ logB is < 357. Hence, we deduce that the possible solutions
(n, k,m) of the equation (1.3) for which k is in the range [2, 180] all have
n < 360.

Finally, a brute force search with Mathematica in the range

2 ≤ k ≤ 180 and k + 3 ≤ n < 360

gives no solutions for the equation (1.3). This completes the analysis in the
case k ∈ [2, 180] and therefore the proof of Theorem 1.2.
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4. Related equations

As has already been mentioned, F. Luca ([11]) proved that F10 = 55 is the
largest repdigit in base 10 in the Fibonacci sequence. D. Marques ([13]) looked
for repdigits in base 10 in the Tribonacci sequence and proved that T8 = 44 is
the largest such. Moreover, Bravo and Luca showed that there are no repdigits
in base 10, with at least two digits, belonging to F (k), for k > 3, proving a
conjecture proposed by D. Marques ([13]).

Let b ≥ 2 an integer. A repdigit in base b (or b−repdigit) is an integer
whose digits in its base b−representation are all equal to d. In particular, such
number has the form d(bm − 1)/(b − 1) for some m ≥ 1 and 1 ≤ d ≤ b − 1.
One obvious question that arises is whether there are finitely or infinitely
many b−repdigits in F (k); that is, what can we say about solutions of the
Diophantine equation

(4.1) F (k)
n = d ·

bm − 1

b− 1

in positive integers n, k, d, b,m with k, b ≥ 2 and 1 ≤ d ≤ b− 1 ?
To make this question meaningful we want to assume that m ≥ 2 to avoid

trivial cases in which F
(k)
n could be a digit. Let us consider some cases.

Case 1. 2 ≤ n ≤ k+1. In this case we already know that F
(k)
n is a power

of 2 and therefore equation (4.1) is transformed into the equation

(4.2) 2n−2 = d ·
bm − 1

b− 1

to be solved in positive integers n, d, b,m with b ≥ 2 and 1 ≤ d ≤ b − 1.
However, it is not difficult to see that equation (4.2) has no solutions. In fact,
since (bm− 1)/(b− 1) is a power of 2 we deduce that b is odd and therefore m
must be even, say m = 2s for some s ∈ Z+. Consequently, (b2s − 1)/(b− 1) =
(bs + 1)(bs − 1)/(b − 1) is a power of 2 implying that bs + 1 is a power of
2 which is not possible. Indeed, if s is even then bs + 1 = (bs/2)2 + 1 ≡ 2
(mod 4), while if s is odd then (bs + 1)/(b+ 1) = bs−1 − bs−2 + · · ·+ 1 is odd
and larger than 1 so in either case bs + 1 is not a power of 2.

Case 2. n ≥ k+2. In this case we do not know much about the solutions
of the equation (4.1). By using similar arguments to those given in this paper,
one can prove that, if b is polynomially bounded in terms of k, then there exist
effectively computable constants c0 and k0 such that, if k > k0, then

n < c0k
4 log4 k < 2k/2.

In this case, we use Lemma 3.2 to get

|F (k)
n − 2n−2| ≤

2n−2

2k+1
(n− k) + 2n−2|ζ|,
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where ζ is a real number satisfying |ζ| < 4n2/22k+2. From the above, (4.1)
and some elementary algebra, we obtain the inequality

(4.3)

∣

∣

∣

∣

(

d

b− 1

)

· bm · 2−(n−2) − 1

∣

∣

∣

∣

<
7

2k/2
,

which holds for all k > k0.
If the left–hand side of (4.3) is zero, then dbm = (b − 1) · 2n−2 and so

b = 2t for some integer t such that 1 ≤ t ≤ n− 2. Thus,

d · 2mt = (2t − 1) · 2n−2 with 1 ≤ d ≤ 2t − 1.

But the above relation is possible only when d = 2t − 1 and therefore mt =
n− 2. Consequently, our equation (4.1) now looks like

(4.4) F (k)
n = 2mt − 1

to be solved in positive integers n, k,m, t with n ≥ k + 2, m ≥ 2 and 1 ≤ t ≤
n − 2. However, as it has been discussed in previous sections of this paper,
all solutions of (4.4) have n = k + 2, so that mt = k.

We now conclude from above discussion that if n > k + 2 or b is not a
power of 2, then the left–hand side of (4.3) is not zero. In this case, we apply
the Matveev’s theorem to the left–hand side of inequality (4.3), in order to
find a lower bound of such expression, and after comparing this lower bound
with the upper bound of (4.3), we get an upper bound of k. If f(x) is a
polynomial function such that b < f(k), then it follows that there exists an
effectively computable constant c, depending only on f(x) and k0, such that

max{n, k, d, b,m} < c.

Suppose now that n = k+2 and b is a power of 2, say b = 2t for some t ∈ Z+.
In this case, from (4.1) we have that

(4.5) 2k − 1 = d ·
2mt − 1

2t − 1
with m ≥ 2 and 1 ≤ d ≤ 2t − 1.

Since

d ·
2mt − 1

2t − 1
≥

22t − 1

2t − 1
= 2t + 1

we deduce that k > t. In addition, since

(2k − 1)(2t − 1) = d(2mt − 1)

and k > t, it follows that d+ 1 ≡ 0 (mod 2t). But this is only possible when
d = 2t − 1 because 1 ≤ d ≤ 2t − 1. Combining this with (4.5), we conclude
that k = mt and therefore n = mt+ 2.

Finally, we see that the tuples

(4.6) (n, k, d, b,m) = (mt+ 2,mt, 2t − 1, 2t,m)

are all integer solutions of equation (4.1) for all m ≥ 2 and t such that mt = k.
Thus, we have the following theorem:
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Theorem 4.1. Consider the diophantine equation (4.1) with m ≥ 2.

(a) If 2 ≤ n ≤ k + 1, then (4.1) has no solutions.

(b) If n = k+2 and b is a power of 2, then the solutions of (4.1) are given

by (4.6).
(c) Let f(x) be a polynomial function and suppose that 2 ≤ b < f(k). If

n > k + 2 or b is not a power of 2, then (4.1) has only finitely many

solutions.

Finally, it is important to point out that, if we remove the restriction
b < f(k) in Theorem 4.1(c), then equation (4.1) could have infinitely many
solutions. Indeed, for m = 2 and k = 2 equation (4.1) becomes Fn = d(b+1).
It is well known that the largest square in the Fibonacci sequence is F12 = 144.
McDaniel in [15] showed that 2 is the largest Fibonnaci number of the form
x(x+ 1). So, if n > 12 and n not prime, then Fn is composite and neither of
the form x2 nor of the form x(x + 1). Thus, considering any factorization of
it of the form Fn = a(b + 1) with a ≤ b + 1, we actually have a ≤ b − 1, so
Fn = aa(b). Certainly, similar things could happen for larger k′s.
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