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ABSTRACT. We describe some aspects of the structure of nonabelian
p-groups G for which every nonabelian subgroup has a trivial centralizer
in G, i.e. only it’s center. We call such groups C'Z-groups. The problem
of describing the structure of all C'Z-groups was posted as one of the first
research problems in the open problems list in Yakov Berkovich’s book
"Groups of prime power order’ Vol 1 ([1]). Among other features of such
groups, we prove that a minimal CZ-group must contain at least p® el-
ements. The structure of maximal abelian subgroups of these groups is
described as well.

1. INTRODUCTION AND DEFINITIONS

Throughout the entire paper we will think of G as a finite p-group. We
assume that every nontrivial nonabelian subgroup has a trivial centralizer in
G, i.e. Cqg(H) = Z(H) for every nonabelian H < G.

We start by a formal definition of our main object to be investigated.

DEFINITION 1.1. A finite p-group G is called a CZ-group if for every
nonabelian subgroup M < G, the centralizer of M in G equals to Z(M).

We will shortly write G € C'Z,. We start our analysis with one quite
trivial observation about the center of any G € CZ,.

PROPOSITION 1.2. Let G € CZ,. Then Z(G) < A, for every nonabelian
A<G.
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PROOF. Let’s assume the opposite. Take some nonabelian group A < G.
If g € Z(G)\ A, then g € Cg(A) # Z(A). Thus, we have a contradiction with
G e CZp,. O

Now, we would like to describe the case when Z(G) is not contained in
some abelian subgroup. In that case we prove that such an abelian subgroup
can’t be a maximal subgroup of some nonabelian subgroup. To be more
precise, we have:

LEMMA 1.3. Let G € CZ,. Let A < G be an abelian subgroup such that
Z(G) £ A. If M > A is nonabelian, then [M : A] > p?.

Proor. Take g € Z(G) \ A, where A is an abelian subgroup of G. Let
M < G be a nonabelian group such that [M : A] = p. Then A < M. Notice
that, from Z(G) < M we conclude that there is a g € Z(G) < M such that
[{g,A) : A] > p and (g, A) < M, because of which, M = (g, A) is abelian.
That is a contradiction, hence [M : A] > p*. O

In some sense, it is a natural question to ask could CZ structure be in-
herited from G to some smaller subgroup. The following result provides the
answer.

PROPOSITION 1.4. Let G € CZ,. If N < M < G, where N is nonabelian,
then M € CZ,.

PROOF. Since N is nonabelian, clearly M’ > 1. So Cg(N) = Z(N)
and Cg(M) = Z(M). Assume that Cp(N) > Z(N). Then there is some
g € Cyr(N)\Z(N). Since Cpr(N) < Cg(N), we have g € Cq(N)\Z(N). Thus,
Ca(N) # Z(N) which is a clear contradiction. Therefore, Cps(N) = Z(N),
thus M € CZ,. O

2. CENTER OF A NONABELIAN SUBGROUP OF A C'Z-GROUP

Next topic that we cover is the question of the center of a C'Z-group G.
To be more specific, we will provide properties of the center of a maximal
nonabelian subgroup of G and compare the center of G with centers of some
of its subgroups.

LEMMA 2.1. Let G € CZ, and M < G is nonabelian. Then Z(G) <
Z(M).

PROOF. Assume that g € Z(G) \ Z(M). Then g ¢ M, otherwise g €
Z(M). Hence, g € Ca(M) \ Z(M). This is a contradiction with Cq(M) =
Z(M). O

Next result deals with the center of a maximal nonabelian subgroup.

THEOREM 2.2. Let G € CZ, and let M < G be a mazimal nonabelian
subgroup. Then one of the following is true:
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1. Z(M) = Z(G),
2. Z(M) > Z(G) and |G : M] =p.

PROOF. Take M < G, where M is maximal nonabelian. If Z(M) >
Z(G), take g € Z(M) \ Z(G). Then there is some z € G\ M such that
[z,9] # 1 and g € M. Notice that (M, z) is nonabelian. Assume that 2” ¢ M.
Then 2P & Z(M) = Cg(M), so (M, zP) is also nonabelian. If (M,a?) = G,
then z?P is a generator. On the other hand 2P € ®(G). Therefore, x is not
a generator. Hence, M < (M,zP) < G, which is a contradiction with the
assumption that M is maximal nonabelian. So, 2P € M and herewith we
have proved [G : M] = p. O

LEMMA 2.3. Let G € CZ, and A < G be abelian of index p. Then for
every x € G\ A, there is a nonabelian M < G, such that 2P € Z(M).

PRrROOF. Take z € G\ A. We know that G/A = (zA). Take y € A, such
that [x,y] # 1 (there is always such an y, otherwise G would be abelian).
Take M = (x,y). Then Cq(M) = Z(M). Notice that 2P € A, so [2P,y] = 1.
Now, it is clear that P € Z(M). O

3. MINIMAL CZ-GROUPS

In this section we deal with C'Z-groups which don’t possess any nontrivial
CZ-subgroup. We shall name such groups minimal C'Z-groups.
We start with a definition of a minimal C'Z-group.

DEFINITION 3.1. A group G € CZ, is called a minimal CZ-group if it
doesn’t possess a nontrivial C'Z-subgroup.

By Proposition 1.4, it is straightforward to see that if G is a minimal
CZ-group, then every proper nonabelian subgroup is a minimal nonabelian
group. For a C'Z-group G which is determined to be minimal in this sense,
we shall write G € CZm,,.

For the sake of completeness, we repeat here the known result that clas-
sifies minimal nonabelian p-groups.

THEOREM 3.2. Let G be a minimal nonabelian p-group. Then |G'| = p

and G /G’ is abelian of rank 2. G is isomorphic to one of the following groups:

1. G = {(a,b | a?" =b" =1, a® = a1+p7"71), m>2 n>1 and
|G| = pm-i-n,

2. G = {a,b,| a?" =" =c? =1, [a,b] = ¢, [a,c] = [b,c] = 1), where
|G| = p™ L and if p=2, then m +n > 2 and G’ is mazimal cyclic
normal subgroup,

3. G = Qs.

Our next result answers the question on the number of generators of a
given G € CZmy,.
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THEOREM 3.3. If G € CZmy, then [G : ®(G)] < p?.

PrROOF. Let A < G be some maximal abelian subgroup (meaning that
there is no abelian subgroup B such that A < B < G). Then A < (z,A) < G
for some z € G\ A. It is clear that there is an a € A such that [a,z] # 1
(otherwise A wouldn’t be maximal abelian). Take M = (a, z). Clearly M’ > 1.
If M = G, then [G : (GQ)] = p*.

If [G : M] > p? then there is some N < G such that M < N < G.
Therefore N € CZ, which contradicts to G € CZmy,. If [G : M| = p, then it
is clear that G = (a, z,y), for some y € G\ M. Hence [G : ®(G)] < p. O

Notice that if G € CZm,, then it is natural to assume |G| > p*. Oth-
erwise, any proper subgroup would be of order at most p?, thus abelian. In
order to deliver a description of a minimal C'Z-group, we need to provide some
information about automorphisms of minimal nonabelian groups, since such
groups, as we have seen above, are main ingredients of minimal C'Z-groups.

Thus, we will start our analysis with groups of order p*. For that, we need
some technical results regarding the modular group of order p?, which may be
a minimal nonabelian subgroup of a putative CZ-group G. Throughout this
paper we will denote that modular group and its generators and relations by

Mys = (a,b | a”’ =P = 1, a® = a'"P).

Another option is that a nonabelian subgroup of order p? is given by
N = {(a,b,|a? = =P =1, [a,b] =¢, [a,c] =[b,c] =1)

and this notation of the group N will be kept throughout the paper as well.
It is easy to see that for M,s the following holds: b/ a’ = a**=P)" b7, and

(@ib)k = g1+ A=p) +(1=p)? 4t (1=p) ™D i

for k > 2. On the other hand, o(a’t’) = p? for any i # 0,p and i € [p* — 1] \
{0, p}, while o(a?b’) = p. Finally, it is also easy to see that (a’b?)® = (a’b/)P*1.
Also, because of (a) I M, we may assume that any automorphism of M, is
of the form a®b? — a**(aP*b?)? for some integers k, i and j.

The next result gives a description of such automorphisms.

LEMMA 3.4. Let Mys = {(a,b | a?” =P =1, a® = a'*P). Let ¢ : Mps —
M, be maps defined by p;;(a*b®) = a®(a?’v’)P. Then
L (1—p)(B+8)I _ )
1. ©ij (aabﬁa'Ybé) _ aoé-l-’)’(l_il’)ﬂ‘i‘plﬁbj(ﬂJré),

(-p)Pi—1 VB (1 _p)B3 Q=2 —1
2. 0i;(ab)pi; (a7b%) = @ TP Tt PYUTPITAPI G i (40)

PROOF. Notice that a®b’a”b? = a®(bPa”)0° = a®a” P’ P There-
fore, we have ¢;;(a®b’a?b?) = gaij(aw”(l*p)ﬁbﬁ*”) = aO‘JW(l*p)ﬁ(apibj)BH.
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But, on the other hand
(aP'b)PT0 = a;m'[lJr(lfp)jJr(lfp)?j+---+(17p)j(/3+‘5’1)j]bj(BJré)’

_\8 ,(17p)(/3+‘f5)j,1 )
hence gaij(aabﬁavb‘s) — TIPS BB +), Furthermore, we
have

i (a0) i (a70°) = a®(a?'v?)P a7 (aP'b7)°

= qoqPillH (=) +(1=p) 4+ (1-p) O V] i

- a7 P A=) H(1=p) P o (1-p) O]

Let us introduce shortcuts

_ j j je-ny _ (L=p)¥ -1

A= T (L= p) o (L= p) e (L pp 70 = S E,
_ )i _

B:1+(1—p)j+(1—p)2j+"'+(1_p)j(é_l):%'

We get
©ij (aabﬁ)@ij (a’ybé) _ aaapiAbjBa'yapiBbjé
— aa+piA(bjﬂav+piB)bj6 = {since bat — ai(l—p)jbj}

— o tPiA (v piB)(1-p)?P B o

C(1—p)Pi—1 iB . Bi (1=p)% -1
= @OTP A PP AP P T (4 )

O

Throughout the coming results we will deal with the assumption that M,,s
is a normal subgroup of G.

PROPOSITION 3.5. Let G be a p-group and Mys = (a,b)<G. Letd € G\ M
be such that a® = a and b® € (b). Then [b,d] = 1.

PRroor. Since M,s < G, the action via conjugation is an inner automor-
phism of Mys. Let us use the notation (a®b’)? = ¢;;(a®b?) = a(a?'b7)P.
Then we would have @;;(a®) = a® = (a®)?, ¢;;(b?) = (aP’¥’)P. Let us as-
sume that b = b/. Then ;;(b) = aP'b? = b, so pi = 0 mod p?, hence
i € {0,p}. We proved that ¢;;(a®b?a?b’) = a®t7(1=p)"pi(B+) Op the other
hand

0ij (@b i (a76%) = a®a®P a7 a’b7° = a®(a?P a)b?

— g (A=Y P B Y6 _ qaty(1-p)7? pi(B+8)

Therefore, it is necessary that a"1-p)" = aV(lfp)jﬁ, 50 7(1—p)? =y(1—p)¥
mod p?. Now, we must have v [(1 — p)?® — (1 = p)’] =0 mod p*. From here
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we get S(1 — j) =0 mod p. Since this must be true for any 3, we conclude
that 1 —j =0 mod p, so b® = b. O

PROPOSITION 3.6. Let G be a p-group and Mys I G. Let g € G\ Mys
such that a = a and b® € aP(b). Then b® = aPb.
PrROOF. Notice that (a®b?)? = a®(aPb/)? = p1;(a“bP). It’s necessary
that ¢1;(a®b?)p1;(a?b°) = p1;(a®b’a7b%). Using Lema 3.4 we get
(1,;,)((3‘?'5)1'71

_p)B ] .
@U(aabﬁavb&) :aa-i-’v(l p)"+p a1 bj(ﬁJ”S).

On the other hand

(-p)Pi—1 B3 Bi (1=p)¥9 -1
+ L (1-p)P4p(1— .
015(a°bP) g1 (a7b0) = o TP ey Y UTPAPAR G T i (8 e)

Let us use abbreviations
(1—p)Ftoi 1
(I-py—1 "

+ (1= p)% +p(1—p)

A=a+~y(1-p)+p

1-p% -1
(I1-p)—1

So, it is necessary that A = II mod p?. We see that

5 (1= —1

II=a+p A—pi-1

pIl+(l=p +(1=p)¥ +- +(1-p)" | =ps modp”

Similarly, we get

(1—p)Ftoi 1

_ 2
O — =(B+d)p modp

and
1-p)% -1 2
Py o med?
Hence,
ad = o=+ (BHp _ I jatBptopty(1-p)P

Then, v(1—p)® =~v(1—p)* mod p?. Thus we get only one possibility: j = 1
mod p. Therefore, b% = aPb. O

Now we will focus our analysis to groups of order p*. The main goal is to
determine all minimal CZ-groups of order p*.

PROPOSITION 3.7. Let G = (a,b,c) be a group of order p*, p > 2, where
M,s = (a,b | a?’ = =1, ab = a'™Py. If [a,c] = 1 and b¢ € (b), then also
[b,c] = 1.



CZ-GROUPS 351

PROOF. If [a,c] = 1, then a¢ = a. If b¢ € (b), then b¢ = b’ for some
j € [p]. Notice that (a®ba°)¢ = aO‘JW(l*p)ﬁb(BH)j, while on the other
hand we have (a“b”)°(a70°)¢ = a“VPab° = a®tY(=pY piB+is  Thig gives
us a+9(1 —p)8 =a++(1 —p)? mod p?. Since a, v € [p?] and 3 € [p], we
get v(1 — p)?# = v(1 — p)® mod p. Now, it is easy to see that j =1 mod p,
thus b° = b. O

PROPOSITION 3.8. Let G = (a,b,c) be a group of order p*, p > 2, where
My = (a,b | a?’ = =1, ab = al*P). If a¢ = a and b° € aP(b), then
b¢ = aPb.

PROOF. Put b¢ = aPb?. We use an idea that is similar to the previous
proof. Firstly, notice that because of b/a’ = a**~P)' b we get (a®b?a7b%)¢ =
a®PB+pd . 7(1=P)* pBi+8i  On the other hand, after we use the automorphism
property, we get (a®bPa7b9)¢ = qotPB+pd . g 7(1-p)"Bi+0i This gives us j = 1
mod p. O

Notice that if G = (a,b,c) is of order p* and p > 2, where M,: = (a,b),
then from the assumption G € C'Z we get o(c) < p?. Otherwise, o(c) = p?,
implying (c¢) < G to be maximal abelian. Then G would be M4, hence G is
not a C'Z-group. A contradiction.

It can be shown that if G = (a,b,c) € CZ, and |G| = p*, p > 2 and
M,s = (a,b), then the assumption [a,c] = 1 yields b° = aPb and o(c) = p?,
with an additional property a” = ¢P. The alternative possibility is o(c) = p.
But the next result shows that this is not possible.

THEOREM 3.9. Let G = (M3, c) be of order p*, where M,s = (a,b | a?’ =
W =1, a® = a'*?). If a° = a, b° = aPb and o(c) = p, then G ¢ CZ,.

PRrROOF. Let A = (a,c) = Cp2 x C). Then A is a maximal abelian sub-
group. Take ¢ : A — A where ¢(x) = [x,b]. We know that ¢ is a ho-
momorphism and Im(¢) = G’ = (a?). Since a® = a, ¢*® = ¢, b* = b,
then ac € Z(G). Notice that o(ac) = p? and |G| = p* = p- |Z(G)| - |G'].
Thus |Z(G)| = p?, hence Z(G) = (ac). Clearly ac ¢ M,ys. Therefore
ac € Ca(Mys) \ Z(Mys). So, My,s doesn’t have a trivial centralizer, hence
G ¢ CZ,. O

LEMMA 3.10. Let G = (M, c) € CZ, be of order p*, where M,z = (a,b |
a?’ = b =1, a® = a'*P). If a® € (a) and b° € (b), then [b,c] = 1.

PrOOF. Take a¢ = a', b* = b where i € [p*> — 1], j € [p — 1]. Then
(a®bPab0)° = (a®a?(1-P) pBHo)e = qoitr(1-p)"ip(B+0)i On the other hand
we have (a®bPa’b%)¢ = a®bPigripi = qotril—p)” p(B+6)i This leads us to

yi[(1 = p)» — (1 — p)’] =0 mod p?. Since v is any integer, we get p | (1 —
p)?7 — (1 —p)P. Hence j = 1. O
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THEOREM 3.11. Let G = (M3, c) be a group of order p*, p > 2 where

M,s = (a,b | a?’ = b =1, ab = a'*P). If o(c) = p, then a® € Mys \ (a) or

(ay N{c) > 1.

PROOF. Assume a = a’ and (a) N {(c) = 1. Then G = (a,c) and c? € M \
(a). Therefore c? = aP’b? where i € {1,p} and j € [p— 1]. Notice that because
of Z(M,:) = (aP) we have (cP)* = (aP")*b/*. Furthermore, ¢ = a*’'?’ =
a¥’ = q(+P) = g1+Pi_ For every k € N we have a(@”'?)" = a’" = (e
If we assume that a(1+?)" = @, then (1+pj)¥ —1 =0 mod p?. Therefore,
p(kj —1) =0 mod p? and kj = 1 mod p. Notice that such k always exists
(and is not divisible by p) since C, is a field. Therefore, without losing
generality we can take ¢? = b. Take ¢ € Aut({a)) = Aut(Cp2) = Cppp—1)
(here we need the assumption p > 2). Put ¢(a) = a’. Then ¢P(a) = a” =
a®" = a® = a'*P. On the other hand ©?*~V)(a) = a, hence (p+1)P~1 =1 =0
mod p?. This gives us —p = 0 mod p?, which is an obvious contradiction.
Therefore, a® € M \ (a) or {a) N {c) > 1. O

PROPOSITION 3.12. Let G = (M,s,c) be a CZ-group of order p*, p > 2
where Mys = (a,b | a®* = b =1, a® = a**P). If o(c) = p* and a® € (a), then

[b, ] # 1.

PROOF. Assume that the claim is not true. That means [b, ¢] = 1. Notice
that ¢ € Cq(M,3)\ My, otherwise G wouldn’t be a C'Z-group. Since a® € (a),
then by the previous theorem (a) N (¢) > 1. Notice that (a) N {c) = (a?). We
can write a? = ¢P. Take a® = a'*?. Then a — a'** is an automorphism of
order p, thus a¢ = a(1t9" = 1P = @, hence pi = 0 mod p?. So without
losing generality we may write a® = a'T”. Now, look at the element cb?~!. For

it we have [¢,cb?~1] = [b, cb?~!] = 1. On the other hand a®?’ ' = (altP)?"" =
(aPHD" P+ = g(+1)” = 14P° = g Hence, cbP~! € Cq(M,y3) \ My, which
is a contradiction. Thus, [b,c] # 1. O

LEMMA 3.13. Let G = (M,s,c) be a CZ-group of order p*, p > 2 where
My = (a,b | a?’ = =1, ab = a*tP). If a® = a'*P, then b° = aPb’ where
J#0.

PROOF. Since M,z < G, then b € M,s. If b¢ € (a), then o(b) = p implies
that we can write b° = aP. Therefore b € ®(M,s)char M,s, where (M)
stands for the Frattini subgroup, which is characteristic. Thus b € ® (M)
and so not a generator of Ms, contradiction. Therefore b = &’ or b¢ = aP¥?,
where j # 0. If b¢ = b7, then b° — b’ is an automorphism of order p — 1
(since Aut(Cp) = C,_1). Therefore, b = b, so [b,c?~*] = 1. On the other
hand o’ € (a) and P71 is clearly a generator for G. But this contradicts
Proposition 3.12. O
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THEOREM 3.14. Let G = (M3, c) be a CZ-group of order p*, p > 2 where
My = (a,b | a’’ = =1, a® = at*P). If o(c) = p? and a® = a'*P, then
b¢ = aPb.

PRrROOF. Because of Theorem 3.11 we have (a) N (¢) > 1, thus without
losing generality we may write a? = cP. Because of M,s IG, we have b € M.
As we have proved in the previous Lemma, we have b° = a?b/ # aP. From
Theorem 2.2 we have Z(Mys) = (a?) > Z(G) > 1. Thus Z(G) = (aP).
Put z = aP. Then ¢ 'bc = zb/. From here we get bc = czb/ and b~ lch =
2b~2cbit! = 2bP~2cbi 1. Using this, we get

= 2bP73(be) b = 20P 3 (c2b )W T = 22pP T3 chP T = L = SRR ephi L

Put k= p — 1. Then ¢ = 2P~ 1epi(P—D+1 = -p—1cpl—i,

Now, let us take a group N = (c,b). Since (c) < N, we get ¢ € (c). From
here we get b'77 € (c). If b'=7 # b, then (b'~7) = (b) < (c), so G = {a, c) is of
order p®. Thus, the only option is b'~7 = 1, hence &’ = b. 0

PROPOSITION 3.15. Let Mys = (a,b | a”° = o = 1, a® = a'*?). Let
G = (M3, c) be a CZ-group of order p* where o(c) = p*. Then (a) < G.

PROOF. Let us assume the opposite. Since M,: < G, then a® = a'b’,
where o(a’) = p? and b’ # 1. Take N = (a, c). Because |(a) N {c)| < p we have
|N| = p3, therefore N < G. So a® € N. This gives us a® = a’b’ € N, hence
I € N.If b # 1, then b € N and N = G, which gives us a contradiction. So,
the only case is b = 1 and a® € (a), hence {(a) < G. O

Now, we have only one candidate G = (a, b, ¢ | aP’ =P =P = 1, a® =
a® = az, b° = bz, z = aP) for a CZ-group of order p* that contains My,s. The
next result will provide an answer regarding the status of such group.

THEOREM 3.16. The group G = {(a,b, c | a?’ =P =P = 1, a® =a° =
az, b®=bz, z =aP) is not a CZ-group.

PROOF. Notice that Mys = (a,b | a?* = b = 1, a® = ') < G. Let
us assume that G is a CZ-group. Then, by previous results we have Z(G) =
Z(Mys) = (aP) = (z). Take z = abP~'c. Then © & M, otherwise ¢ € M,
and |G| # p*. Then

a® — aabp’lc _ abp’lc _ (ab)b”’zc _ (az)bp’%

P—2. P—3. p—2
b c:Z(ab)b c:Z2ab c

= za = =P g = 2Pl g =g

which gives us € Cg(a). On the other hand it is clear that from b~'ab =
az we get ab = zba, thus ba = 2 'ab. Using this, we get b* = o 'ba =
a=t(z7tab) = z~'b. Therefore

b= b = ()Y e = (2 h) = 2 = 2 b = ),
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thus « € Cg(b). So, x € Cg(M,s)\ Z(M,s), which is a contradiction with the
assumption that G is a C'Z-group. O

In other words, we have proved the following result:
THEOREM 3.17. If G € CZm,, is of order p*, p > 2, then My £ G.

It is easy to check the properties of an exponent of a minimal C'Z-group
of order p*.

LEMMA 3.18. Let G € CZm,, and |G| = p*. Then exp(G) < p?.

PROOF. Let exp(G) > p?. If exp(G) = p* then G = Cpu ¢ CZ. If
exp(G) = p3, then there is some d € G such that (d) < G. Hence G = M,
which is not a C'Z-group. o

Theorem 3.2 motivates us to deal with the possible minimal C'Z-group
that contains minimal nonabelian subgroup different than modular.

PROPOSITION 3.19. Let G € CZm,, be of order p*. Let N = {(a,b,c | a? =
W =c =1, a®* = ac, [a,c] = [b,c] = 1) < G. Then there is a T < N, such
that T = Cp, x Cp, and T 4 G.

PROOF. We know that |N| = p? and N is minimal nonabelian group.
Also N’ = (¢) is maximal cyclic normal subgroup in N. Thus every maximal
subgroup in N is isomorphic to Cp, x Cp. Take I'y = {T'< N | [N : T] = p}.
As we've seen, T = Cp, x C), for every T € T';. We also know that |I'1| =1
mod p. Take d € G\ N such that G = (N,d) (such d always exists). Since
dP € N, we know that if d acts on I'y nontrivially (via conjugation), then the
orbits are of order p or 1. Therefore, there is some T € I'; which is fixed by
conjugation with d. Hence T¢ = T, therefore T < G. o

Now, we will use the previous result to describe any minimal C'Z-group
of order p* that contains a subgroup of order p? isomorphic to N.

PROPOSITION 3.20. Let G € CZm,, be of order p* and N = {(ay,b1,c1 |
al =b = =1, a?l = ajcy, la1,c1] = [b1,c1] = 1) <A G. Then there is a
T < N such that T = (a,b) = C, x C, and T I G. Additionally, N = (T, b)
and [a,b] = c € Z(N).

ProOF. We know that Z(N) = (¢1). Then also C, = Z(N) > Z(G) > 1.
Thus, Z(N) = Z(G). Also, by previous result, we know that there is some
T = (ag, c2) = Cp x Cp that is normal in G. Take some by € N\ T. Since N =
(T, ba), we must have ag2 # ag. Otherwise, N would be abelian. Since T'<4 G,
then a2 = aic) for some 4, j. Notice that if ¢ # 1, then (as,c2) = (as,c)).
Therefore, we can write a}? = abcy. Another option is a5? = aj. Since T <G
we have TN Z(G) > 1. If a}? = a}, then we can write (c;) = TN Z(N). Then
N = E,s (elementary abelian group) which is a contradiction. So, the only
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option is ay? = abcy. Thus, [ag, by] = ab ey, thus (a) leo) = (c2) = Z(N) =
N’. Therefore i = 1. Now, identify as = a, by = b, co = c. O

THEOREM 3.21. Let G € CZm,, be of order p*. Then G has no subgroup
isomorphic to the minimal nonabelian group N = {(a,b,c | a? = WP = P =
1, a® = ac, [a,c] = [b,c] =1).

PROOF. Let us assume the opposite. Let N < G, where N = (a,b,c |
aP = b =cP =1, a®* = ac, [a,c] = [b,c] = 1). By our previous result, without
losing generality, we can write T = (a, c) < G. Since |G/T| = p?, it is abelian,
hence T < G'. Thus |G’| > p?. Since G’ < ®(G) then also |®(G)| > p?. If
|®(G)| = p?, then dim(G) =1 and G = Cpa, which is clearly a contradiction.
Hence, the only option is |®(G)| = p? and ®(G) = G’ = T. Therefore, G has
2 generators. Put G = (z,y). Then it is clear that G’ = ([z,y]) = C)2, which
is a clear contradiction with G' =T = C}, x C. O

Using Theorems 3.17 and 3.21 we have reached one of the main results
of this paper. We establish now the lower bound for the order of minimal
CZ-groups.

THEOREM 3.22. Let G € CZmy,. Then |G| > p°.

Proor. If G € CZm, C CZ, then G has some nonabelian subgroup
S < @G such that Cg(S) = Z(S). It is clear that |S| > p?, thus |G| > p*. If
|G| = p*, then there is some minimal nonabelian S < G. So S = M, or N.
Both cases were eliminated by Theorems 3.17 and 3.21. O

4. MAXIMAL NORMAL ABELIAN SUBGROUP OF G € CZ,

This section collects another type of results, it deals with C'Z-groups and
repercussions on its maximal abelian subgroups. First, we provide a slightly
different proof of Lemma 57.1. from Berkovich’s and Janko’s book Groups of
Prime Power Order, Vol. 2 ([2]).

We will use notation A <, B if A is a subgroup of B whose index is p.
Similarly, we will write A <, Bif A< B and [B: A] = p.

LEMMA 4.1. Let G be a p-group and A< G its maximal abelian subgroup.
Then for any x € G\ A there is some a € A such that [z,a] # 1 and [z, a]P = 1.
Furthermore, [a,x,x] = 1, thus (x,a) is minimal nonabelian, i.e. every p-
group is generated by minimal nonabelian subgroups.

PROOF. Take C4(z) for some z € G\ A. Clearly Ca(z) < A, since other-
wise (z, A) would be abelian and would contain A, which is a contradiction.
Take (x)Ca(x). It is a group because of (x)Cx(xz) = Ca(z){x). One can see
that ()Ca(z) < (z)A. Take B < (x)A such that (x)Ca(x) <, B. Notice that
()Ca(z)NA<pA. Clearly (x)Ca(x)NA = Ca(x). Therefore Ca(x) <, ANB.
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On the other hand, take b = z’a € B (where a € A.) Take g € Ca(x).
Then (because g € A) we have b9 = (2'a)? = (29)'a? = z'a = b. Thus
Ca(a) < Z(B).

Now take a € (AN B) \ Ca(x) such that a? € Cy(x). Clearly [a, z] # 1.
Since [z,a] € B’ < ®(B), [z,a] € Ca(z)(x) <p B.

Let us assume that [v,a] ¢ Ca(z). Then [z,a] = z'ay for some a; €
Ca(z). Then 27 ta=lza = x%a; and 2% = z'T1a;. On the other hand,

T ”:xx+a1:xa1:$,
thus 29 € Ca(z). Then (z%)* € Ca(z)® = Ca(z), so z € Ca(z) - a
contradiction! Therefore, [z, a] € Cy(x), so B’ < Ca(x).

Knowing that for any finite group it holds [z, yz] = [z, z][x, y]?, we have
1 = [z,aP] = [x,aP"'a] = [z, a][z,aP~1]?. Because of [x,aP~ '] € B’ < Ca(x),
we get [z,aP] = [z,a][r,aP~1]. This gives us [z,a]’ = 1. Finally, because of
[z,a] € Ca(z), we get [a,x,x] = 1. O

Now we want to characterize the centralizer of a maximal abelian sub-
group of a C'Z-group because it certainly could be used for further describing
the structure of a CZ-group.

LEMMA 4.2. Let G € CZ, and let A< G be a mazimal abelian subgroup.
Let x € G\ A. Then Cy(x) < Z(N) for every nonabelian N < (x)A.

PROOF. Take z € G\ A. If Ca(x) = A, then (x,A) > A is abelian
contradicting to the assumption for A being maximal. Thus, Ca(z) < A. Take
N < (x)A, where N is nonabelian. Then, G € C'Z, implies C¢(N) = Z(N).
Take g € Ca(z) and y € N. Then y = 27a1, a; € A. Hence, (v7a1)9 =
(x9) af = 27ay, because [g,z] = 1. Also, g € A, so [g,a1] = 1. Therefore,
g € Co(N) =Z(N), hence Cy(x) < Z(N). O

COROLLARY 4.3. Let G € CZ, and let A QG be a mazimal abelian
subgroup. Let x € G\ A. Then for every nonabelian N < (x)A, it holds
Z(N)\ Ca(z) € (2)Ca(x).

PROOF. We know that Ca(z) < Z(N) < N < (z)A. Take g = 2%a; €
Z(N) \ Ca(x). Then [g,2] = 1 and 29 = 2™ = g% = z which yields
a1 € Ca(x). Thus, Z(N) \ Ca(z) C (z)Ca(x). O

COROLLARY 4.4. Let G € CZ, and let A<G be mazimal abelian subgroup.
Let x € G\ A. Then for every nonabelian N < (x)A, it holds Cg(x) < Z(N) <

(2)Ca().
PROOF. Since Cx(z) < Z(N) and Z(N) \ Ca(z) C (x)Ca(z) we have
[Z(N)\ Ca(x)] U Ca(z) € (2)Ca(x) U Calz).
Because Cy(x) C (r)Ca(x), we have Z(N) C (z)Ca(x). Hence Z(N)
(x)Ca(x).

al

<
O
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THEOREM 4.5. Let G € C'Z,. and let ALG be a mazimal abelian subgroup.
Let x € G\ A such that 2P € A. Then Z({z)A) = Ca(x) = Ca({z)A).

PROOF. Take z € G\ A and 2 € A. Then, by previous result, we
have Ca(z) < Z({(z)A) < (2)AC4(x). Clearly [(z)Ca(z) : Ca(x)] = p. I
Z((x)A) = (z)Ca(z), then z € Z((x)A), hence [z, A] = 1. A contradiction
with maximality of A. Therefore Z({(x)A) = Ca(x) = Ca({x)A). Last equality
is true due to G € CZ,. O

COROLLARY 4.6. Let G € CZ, and let A QG be a mazimal abelian
subgroup. Then Co(T\ A) < Z(T) < A for any T < G such that A < T.

THEOREM 4.7. Let G € CZ, and let AJG be a mazimal abelian subgroup.

Then for any x € G \ A there is some a € A such that C' = (a,x) is minimal
nonabelian and Cy(x) = Z(C)N A < C.

PROOF. We already know that for any € G\ A, there is some a € A
such that C = (a,z) is minimal nonabelian. Take ¢ € Ca(z) \ C. Then
t € Aand [t,a] = [t,z] = 1. Hence t € Ce(C) = Z(C) (due to G € CZ),
which is an obvious contradiction. Therefore, t € C' and Ca(xz) < C. Now,
take g € Ca(z). Then [g,z] = [g,a] = 1,50 g € Z(C) N A. So far we have
Ca(x) < Z(C)N A. Now, take s € Z(C) N A but s € Ca(x). Then [s,z] =1,
so s € Ca(z). Again a contradiction. This gives us Z(C)N A < Ca(z). O

Finally, we present our second main result, the full description of the
centralizer of a generator that lies outside of a maximal abelian subgroup.

THEOREM 4.8. Let G € CZ, and let AJG be a mazimal abelian subgroup.
If v € G\ A such that 2P € A, then Z(B) = Ca(x) where B = (x,A) .
Furthermore, there is a minimal nonabelian group M = (x,a), where a € A
such that Z(M) = Ca(z) <A and MN A<, M.

PrROOF. Take z € G\ A such that 2? € A. Put B = (z, A). Clearly
A <, B. Take some g € Ca(x). Then g € Z(B) since [g,2] = [g,a1] = 1 for
any a1 € A. Hence Cy(x) < Z(B).

Now, take h € Z(B) \ Ca(x). If h € A, then h € C4(x). A contradiction.
If h ¢ A, then h € B\ A and [h, A] = 1. Therefore (A,h) > A is abelian,
contradiction with the choice of A. Thus, Z(B) < Cy4(x).

We know that there is some a € A such that M = (z,a) is minimal
nonabelian. We already know that Z(M)NA = C4(x). Additionally, we have

M]||A
B = MA. Then |B| = [M]IA] This gives us [B: A| = [M : M N A] = p.

M NAl
Thus M N A <, M.
Since M is minimal nonabelian, we have Z (M) <1, M N A <, M. O
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