$C Z$-GROUPS

Kristijan Tabak and Mario Osvin Pavčević
Rochester Institute of Technology and University of Zagreb, Croatia

Abstract

We describe some aspects of the structure of nonabelian p-groups G for which every nonabelian subgroup has a trivial centralizer in G, i.e. only it's center. We call such groups $C Z$-groups. The problem of describing the structure of all $C Z$-groups was posted as one of the first research problems in the open problems list in Yakov Berkovich's book 'Groups of prime power order' Vol 1 ([1]). Among other features of such groups, we prove that a minimal $C Z$-group must contain at least p^{5} elements. The structure of maximal abelian subgroups of these groups is described as well.

1. Introduction and definitions

Throughout the entire paper we will think of G as a finite p-group. We assume that every nontrivial nonabelian subgroup has a trivial centralizer in G, i.e. $C_{G}(H)=Z(H)$ for every nonabelian $H \leq G$.

We start by a formal definition of our main object to be investigated.
Definition 1.1. A finite p-group G is called a CZ-group if for every nonabelian subgroup $M<G$, the centralizer of M in G equals to $Z(M)$.

We will shortly write $G \in C Z_{p}$. We start our analysis with one quite trivial observation about the center of any $G \in C Z_{p}$.

Proposition 1.2. Let $G \in C Z_{p}$. Then $Z(G) \leq A$, for every nonabelian $A \leq G$.

[^0]Proof. Let's assume the opposite. Take some nonabelian group $A<G$. If $g \in Z(G) \backslash A$, then $g \in C_{G}(A) \neq Z(A)$. Thus, we have a contradiction with $G \in C Z_{p}$.

Now, we would like to describe the case when $Z(G)$ is not contained in some abelian subgroup. In that case we prove that such an abelian subgroup can't be a maximal subgroup of some nonabelian subgroup. To be more precise, we have:

Lemma 1.3. Let $G \in C Z_{p}$. Let $A \leq G$ be an abelian subgroup such that $Z(G) \not \leq A$. If $M>A$ is nonabelian, then $[M: A] \geq p^{2}$.

Proof. Take $g \in Z(G) \backslash A$, where A is an abelian subgroup of G. Let $M \leq G$ be a nonabelian group such that $[M: A]=p$. Then $A \unlhd M$. Notice that, from $Z(G) \leq M$ we conclude that there is a $g \in Z(G) \leq M$ such that $[\langle g, A\rangle: A] \geq p$ and $\langle g, A\rangle \leq M$, because of which, $M=\langle g, A\rangle$ is abelian. That is a contradiction, hence $[M: A] \geq p^{2}$.

In some sense, it is a natural question to ask could CZ structure be inherited from G to some smaller subgroup. The following result provides the answer.

Proposition 1.4. Let $G \in C Z_{p}$. If $N<M<G$, where N is nonabelian, then $M \in C Z_{p}$.

Proof. Since N is nonabelian, clearly $M^{\prime} \geq 1$. So $C_{G}(N)=Z(N)$ and $C_{G}(M)=Z(M)$. Assume that $C_{M}(N)>Z(N)$. Then there is some $g \in C_{M}(N) \backslash Z(N)$. Since $C_{M}(N) \leq C_{G}(N)$, we have $g \in C_{G}(N) \backslash Z(N)$. Thus, $C_{G}(N) \neq Z(N)$ which is a clear contradiction. Therefore, $C_{M}(N)=Z(N)$, thus $M \in C Z_{p}$.

2. Center of a nonabelian subgroup of a $C Z$-Group

Next topic that we cover is the question of the center of a $C Z$-group G. To be more specific, we will provide properties of the center of a maximal nonabelian subgroup of G and compare the center of G with centers of some of its subgroups.

Lemma 2.1. Let $G \in C Z_{p}$ and $M \leq G$ is nonabelian. Then $Z(G) \leq$ $Z(M)$.

Proof. Assume that $g \in Z(G) \backslash Z(M)$. Then $g \notin M$, otherwise $g \in$ $Z(M)$. Hence, $g \in C_{G}(M) \backslash Z(M)$. This is a contradiction with $C_{G}(M)=$ $Z(M)$.

Next result deals with the center of a maximal nonabelian subgroup.
Theorem 2.2. Let $G \in C Z_{p}$ and let $M<G$ be a maximal nonabelian subgroup. Then one of the following is true:

1. $Z(M)=Z(G)$,
2. $Z(M)>Z(G)$ and $[G: M]=p$.

Proof. Take $M<G$, where M is maximal nonabelian. If $Z(M)>$ $Z(G)$, take $g \in Z(M) \backslash Z(G)$. Then there is some $x \in G \backslash M$ such that $[x, g] \neq 1$ and $g \in M$. Notice that $\langle M, x\rangle$ is nonabelian. Assume that $x^{p} \notin M$. Then $x^{p} \notin Z(M)=C_{G}(M)$, so $\left\langle M, x^{p}\right\rangle$ is also nonabelian. If $\left\langle M, x^{p}\right\rangle=G$, then x^{p} is a generator. On the other hand $x^{p} \in \Phi(G)$. Therefore, x is not a generator. Hence, $M<\left\langle M, x^{p}\right\rangle<G$, which is a contradiction with the assumption that M is maximal nonabelian. So, $x^{p} \in M$ and herewith we have proved $[G: M]=p$.

Lemma 2.3. Let $G \in C Z_{p}$ and $A<G$ be abelian of index p. Then for every $x \in G \backslash A$, there is a nonabelian $M<G$, such that $x^{p} \in Z(M)$.

Proof. Take $x \in G \backslash A$. We know that $G / A=\langle x A\rangle$. Take $y \in A$, such that $[x, y] \neq 1$ (there is always such an y, otherwise G would be abelian). Take $M=\langle x, y\rangle$. Then $C_{G}(M)=Z(M)$. Notice that $x^{p} \in A$, so $\left[x^{p}, y\right]=1$. Now, it is clear that $x^{p} \in Z(M)$.

3. Minimal $C Z$-groups

In this section we deal with $C Z$-groups which don't possess any nontrivial $C Z$-subgroup. We shall name such groups minimal $C Z$-groups.

We start with a definition of a minimal $C Z$-group.
Definition 3.1. A group $G \in C Z_{p}$ is called a minimal $C Z$-group if it doesn't possess a nontrivial CZ-subgroup.

By Proposition 1.4, it is straightforward to see that if G is a minimal $C Z$-group, then every proper nonabelian subgroup is a minimal nonabelian group. For a $C Z$-group G which is determined to be minimal in this sense, we shall write $G \in C Z m_{p}$.

For the sake of completeness, we repeat here the known result that classifies minimal nonabelian p-groups.

THEOREM 3.2. Let G be a minimal nonabelian p-group. Then $\left|G^{\prime}\right|=p$ and G / G^{\prime} is abelian of rank 2. G is isomorphic to one of the following groups:

1. $G=\left\langle a, b \mid a^{p^{m}}=b^{p^{n}}=1, a^{b}=a^{1+p^{m-1}}\right\rangle, m \geq 2, n \geq 1$ and $|G|=p^{m+n}$,
2. $G=\left\langle a, b, \mid a^{p^{m}}=b^{p^{n}}=c^{p}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle$, where $|G|=p^{m+n+1}$, and if $p=2$, then $m+n>2$ and G^{\prime} is maximal cyclic normal subgroup,
3. $G \cong Q_{8}$.

Our next result answers the question on the number of generators of a given $G \in C Z m_{p}$.

Theorem 3.3. If $G \in C Z m_{p}$, then $[G: \Phi(G)] \leq p^{3}$.
Proof. Let $A<G$ be some maximal abelian subgroup (meaning that there is no abelian subgroup B such that $A<B<G)$. Then $A<\langle x, A\rangle \leq G$ for some $x \in G \backslash A$. It is clear that there is an $a \in A$ such that $[a, x] \neq 1$ (otherwise A wouldn't be maximal abelian). Take $M=\langle a, x\rangle$. Clearly $M^{\prime}>1$. If $M=G$, then $[G: \Phi(G)]=p^{2}$.

If $[G: M] \geq p^{2}$, then there is some $N<G$ such that $M<N<G$. Therefore $N \in C Z_{p}$ which contradicts to $G \in C Z m_{p}$. If $[G: M]=p$, then it is clear that $G=\langle a, x, y\rangle$, for some $y \in G \backslash M$. Hence $[G: \Phi(G)] \leq p^{3}$.

Notice that if $G \in C Z m_{p}$, then it is natural to assume $|G| \geq p^{4}$. Otherwise, any proper subgroup would be of order at most p^{2}, thus abelian. In order to deliver a description of a minimal $C Z$-group, we need to provide some information about automorphisms of minimal nonabelian groups, since such groups, as we have seen above, are main ingredients of minimal $C Z$-groups.

Thus, we will start our analysis with groups of order p^{4}. For that, we need some technical results regarding the modular group of order p^{3}, which may be a minimal nonabelian subgroup of a putative $C Z$-group G. Throughout this paper we will denote that modular group and its generators and relations by

$$
M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle
$$

Another option is that a nonabelian subgroup of order p^{3} is given by

$$
N=\left\langle a, b, \mid a^{p}=b^{p}=c^{p}=1,[a, b]=c,[a, c]=[b, c]=1\right\rangle
$$

and this notation of the group N will be kept throughout the paper as well.
It is easy to see that for $M_{p^{3}}$ the following holds: $b^{j} a^{i}=a^{i(1-p)^{j}} b^{j}$, and

$$
\left(a^{i} b^{j}\right)^{k}=a^{i\left[1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{(k-1) j}\right]} b^{k j}
$$

for $k \geq 2$. On the other hand, $o\left(a^{i} b^{j}\right)=p^{2}$ for any $i \neq 0, p$ and $i \in\left[p^{2}-1\right] \backslash$ $\{0, p\}$, while $o\left(a^{p} b^{j}\right)=p$. Finally, it is also easy to see that $\left(a^{i} b^{j}\right)^{b}=\left(a^{i} b^{j}\right)^{p+1}$. Also, because of $\langle a\rangle \unlhd M_{p^{3}}$ we may assume that any automorphism of $M_{p^{3}}$ is of the form $a^{\alpha} b^{\beta} \rightarrow a^{\alpha k}\left(a^{p i} b^{j}\right)^{\beta}$ for some integers k, i and j.

The next result gives a description of such automorphisms.
Lemma 3.4. Let $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. Let $\varphi_{i j}: M_{p^{3}} \rightarrow$ $M_{p^{3}}$ be maps defined by $\varphi_{i j}\left(a^{\alpha} b^{\beta}\right)=a^{\alpha}\left(a^{p i} b^{j}\right)^{\beta}$. Then

1. $\varphi_{i j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)=a^{\alpha+\gamma(1-p)^{\beta}+p i \frac{(1-p)(\beta+\delta) j}{(1-p)^{j}-1}} b^{j(\beta+\delta)}$,
2. $\varphi_{i j}\left(a^{\alpha} b^{\beta}\right) \varphi_{i j}\left(a^{\gamma} b^{\delta}\right)=a^{\alpha+p i \frac{(1-p)^{\beta j}-1}{(1-p)^{j}-1}+\gamma(1-p)^{j \beta}+p i(1-p)^{\beta j} \frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1}} b^{j(\beta+\delta)}$.

Proof. Notice that $a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}=a^{\alpha}\left(b^{\beta} a^{\gamma}\right) b^{\delta}=a^{\alpha} a^{\gamma(1-p)^{\beta}} b^{\beta} b^{\delta}$. Therefore, we have $\varphi_{i j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)=\varphi_{i j}\left(a^{\alpha+\gamma(1-p)^{\beta}} b^{\beta+\gamma}\right)=a^{\alpha+\gamma(1-p)^{\beta}}\left(a^{p i} b^{j}\right)^{\beta+\delta}$.

But, on the other hand

$$
\left(a^{p i} b^{j}\right)^{\beta+\delta}=a^{p i\left[1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{j(\beta+\delta-1) j}\right]} b^{j(\beta+\delta)},
$$

hence $\varphi_{i j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)=a^{\alpha+\gamma(1-p)^{\beta}+p i \frac{(1-p)(\beta+\delta) j-1}{(1-p)^{j}-1}} b^{j(\beta+\delta)}$. Furthermore, we have

$$
\begin{aligned}
\varphi_{i j}\left(a^{\alpha} b^{\beta}\right) \varphi_{i j}\left(a^{\gamma} b^{\delta}\right)= & a^{\alpha}\left(a^{p i} b^{j}\right)^{\beta} a^{\gamma}\left(a^{p i} b^{j}\right)^{\delta} \\
= & a^{\alpha} a^{p i\left[1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{j(\beta-1)}\right]} b^{j \beta} \\
& \cdot a^{\gamma} a^{p i\left[1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{j(\delta-1)}\right]} b^{j \delta} .
\end{aligned}
$$

Let us introduce shortcuts

$$
\begin{aligned}
& A=1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{j(\beta-1)}=\frac{(1-p)^{\beta j}-1}{(1-p)^{j}-1} \\
& B=1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{j(\delta-1)}=\frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1}
\end{aligned}
$$

We get

$$
\begin{aligned}
\varphi_{i j}\left(a^{\alpha} b^{\beta}\right) \varphi_{i j}\left(a^{\gamma} b^{\delta}\right) & =a^{\alpha} a^{p i A} b^{j \beta} a^{\gamma} a^{p i B} b^{j \delta} \\
& =a^{\alpha+p i A}\left(b^{j \beta} a^{\gamma+p i B}\right) b^{j \delta}=\left\{\text { since } b^{j} a^{i}=a^{i(1-p)^{j}} b^{j}\right\} \\
& =a^{\alpha+p i A} a^{(\gamma+p i B)(1-p)^{j \beta}} b^{j \beta} b^{j \delta} \\
& =a^{\alpha+p i \frac{(1-p)^{\beta j}-1}{(1-p)^{j}-1}+\gamma(1-p)^{j \beta}+p i(1-p)^{\beta j} \frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1}} b^{j(\beta+\delta)} .
\end{aligned}
$$

Throughout the coming results we will deal with the assumption that $M_{p^{3}}$ is a normal subgroup of G.

Proposition 3.5. Let G be a p-group and $M_{p^{3}}=\langle a, b\rangle \unlhd G$. Let $d \in G \backslash M$ be such that $a^{d}=a$ and $b^{d} \in\langle b\rangle$. Then $[b, d]=1$.

Proof. Since $M_{p^{3}} \unlhd G$, the action via conjugation is an inner automorphism of $M_{p^{3}}$. Let us use the notation $\left(a^{\alpha} b^{\beta}\right)^{d}=\varphi_{i j}\left(a^{\alpha} b^{\beta}\right)=a^{\alpha}\left(a^{p i} b^{j}\right)^{\beta}$. Then we would have $\varphi_{i j}\left(a^{\alpha}\right)=a^{\alpha}=\left(a^{\alpha}\right)^{d}, \varphi_{i j}\left(b^{\beta}\right)=\left(a^{p i} b^{j}\right)^{\beta}$. Let us assume that $b^{d}=b^{j}$. Then $\varphi_{i j}(b)=a^{p i} b^{j}=b^{d}$, so $p i \equiv 0 \bmod p^{2}$, hence $i \in\{0, p\}$. We proved that $\varphi_{i j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)=a^{\alpha+\gamma(1-p)^{\beta}} b^{j(\beta+\delta)}$. On the other hand

$$
\begin{aligned}
\varphi_{i j}\left(a^{\alpha} b^{\beta}\right) \varphi_{i j}\left(a^{\gamma} b^{\delta}\right) & =a^{\alpha} a^{0} b^{j \beta} a^{\gamma} a^{0} b^{j \delta}=a^{\alpha}\left(a^{j \beta} a^{\gamma}\right) b^{j \delta} \\
& =a^{\alpha} a^{\gamma(1-p)^{j \beta}} b^{j \beta} b^{j \delta}=a^{\alpha+\gamma(1-p)^{j \beta}} b^{j(\beta+\delta)} .
\end{aligned}
$$

Therefore, it is necessary that $a^{\gamma(1-p)^{\beta}}=a^{\gamma(1-p)^{j \beta}}$, so $\gamma(1-p)^{\beta} \equiv \gamma(1-p)^{j \beta}$ $\bmod p^{2}$. Now, we must have $\gamma\left[(1-p)^{j \beta}-(1-p)^{\beta}\right] \equiv 0 \bmod p^{2}$. From here
we get $\beta(1-j) \equiv 0 \bmod p$. Since this must be true for any β, we conclude that $1-j \equiv 0 \bmod p$, so $b^{d}=b$.

Proposition 3.6. Let G be a p-group and $M_{p^{3}} \unlhd G$. Let $g \in G \backslash M_{p^{3}}$ such that $a^{d}=a$ and $b^{d} \in a^{p}\langle b\rangle$. Then $b^{d}=a^{p} b$.

Proof. Notice that $\left(a^{\alpha} b^{\beta}\right)^{d}=a^{\alpha}\left(a^{p} b^{j}\right)^{\beta}=\varphi_{1 j}\left(a^{\alpha} b^{\beta}\right)$. It's necessary that $\varphi_{1 j}\left(a^{\alpha} b^{\beta}\right) \varphi_{1 j}\left(a^{\gamma} b^{\delta}\right)=\varphi_{1 j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)$. Using Lema 3.4 we get

$$
\varphi_{1 j}\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)=a^{\alpha+\gamma(1-p)^{\beta}+p \frac{(1-p)^{(\beta+\delta) j}-1}{(1-p)^{j}-1}} b^{j(\beta+\delta)} .
$$

On the other hand

$$
\varphi_{1 j}\left(a^{\alpha} b^{\beta}\right) \varphi_{1 j}\left(a^{\gamma} b^{\delta}\right)=a^{\alpha+p \frac{(1-p)^{\beta j}-1}{(1-p)^{j}-1}+\gamma(1-p)^{\beta j}+p(1-p)^{\beta j} \frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1}} b^{j(\beta+\delta)} .
$$

Let us use abbreviations

$$
\begin{aligned}
& \Lambda=\alpha+\gamma(1-p)^{\beta}+p \frac{(1-p)^{(\beta+\delta) j}-1}{(1-p)^{j}-1} \\
& \Pi=\alpha+p \frac{(1-p)^{\beta j}-1}{(1-p)^{j}-1}+\gamma(1-p)^{\beta j}+p(1-p)^{\beta j} \frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1}
\end{aligned}
$$

So, it is necessary that $\Lambda \equiv \Pi \bmod p^{2}$. We see that

$$
p\left[1+(1-p)^{j}+(1-p)^{2 j}+\cdots+(1-p)^{(\beta-1) j}\right] \equiv p \beta \quad \bmod p^{2}
$$

Similarly, we get

$$
p \frac{(1-p)^{(\beta+\delta) j}-1}{(1-p)^{j}-1} \equiv(\beta+\delta) p \quad \bmod p^{2}
$$

and

$$
p \frac{(1-p)^{\delta j}-1}{(1-p)^{j}-1} \equiv \delta p \quad \bmod p^{2}
$$

Hence,

$$
a^{\Lambda}=a^{\alpha+\gamma(1-p)^{\beta}+(\beta+\gamma) p}=a^{\Pi}=a^{\alpha+\beta p+\delta p+\gamma(1-p)^{j \beta}} .
$$

Then, $\gamma(1-p)^{\beta} \equiv \gamma(1-p)^{\beta j} \bmod p^{2}$. Thus we get only one possibility: $j \equiv 1$ $\bmod p$. Therefore, $b^{d}=a^{p} b$.

Now we will focus our analysis to groups of order p^{4}. The main goal is to determine all minimal $C Z$-groups of order p^{4}.

Proposition 3.7. Let $G=\langle a, b, c\rangle$ be a group of order $p^{4}, p \geq 2$, where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $[a, c]=1$ and $b^{c} \in\langle b\rangle$, then also $[b, c]=1$.

Proof. If $[a, c]=1$, then $a^{c}=a$. If $b^{c} \in\langle b\rangle$, then $b^{c}=b^{j}$ for some $j \in[p]$. Notice that $\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)^{c}=a^{\alpha+\gamma(1-p)^{\beta}} b^{(\beta+\delta) j}$, while on the other hand we have $\left(a^{\alpha} b^{\beta}\right)^{c}\left(a^{\gamma} b^{\delta}\right)^{c}=a^{\alpha} b^{j \beta} a^{\gamma} b^{j \delta}=a^{\alpha+\gamma(1-p)^{j \beta}} b^{j \beta+j \delta}$. This gives us $\alpha+\gamma(1-p)^{j \beta} \equiv \alpha+\gamma(1-p)^{\beta} \bmod p^{2}$. Since $\alpha, \gamma \in\left[p^{2}\right]$ and $\beta \in[p]$, we get $\gamma(1-p)^{j \beta} \equiv \gamma(1-p)^{\beta} \bmod p$. Now, it is easy to see that $j \equiv 1 \bmod p$, thus $b^{c}=b$.

Proposition 3.8. Let $G=\langle a, b, c\rangle$ be a group of order $p^{4}, p \geq 2$, where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $a^{c}=a$ and $b^{c} \in a^{p}\langle b\rangle$, then $b^{c}=a^{p} b$.

Proof. Put $b^{c}=a^{p} b^{j}$. We use an idea that is similar to the previous proof. Firstly, notice that because of $b^{j} a^{i}=a^{i(1-p)^{j}} b^{j}$ we get $\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)^{c}=$ $a^{\alpha+p \beta+p \delta} \cdot a^{\gamma(1-p)^{\beta j}} b^{\beta j+\delta j}$. On the other hand, after we use the automorphism property, we get $\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)^{c}=a^{\alpha+p \beta+p \delta} \cdot a^{\gamma(1-p)^{\beta}} b^{\beta j+\delta j}$. This gives us $j \equiv 1$ $\bmod p$.

Notice that if $G=\langle a, b, c\rangle$ is of order p^{4} and $p>2$, where $M_{p^{3}}=\langle a, b\rangle$, then from the assumption $G \in C Z$ we get $o(c) \leq p^{2}$. Otherwise, $o(c)=p^{3}$, implying $\langle c\rangle \unlhd G$ to be maximal abelian. Then G would be $M_{p^{4}}$, hence G is not a $C Z$-group. A contradiction.

It can be shown that if $G=\langle a, b, c\rangle \in C Z_{p}$ and $|G|=p^{4}, p>2$ and $M_{p^{3}}=\langle a, b\rangle$, then the assumption $[a, c]=1$ yields $b^{c}=a^{p} b$ and $o(c)=p^{2}$, with an additional property $a^{p}=c^{p}$. The alternative possibility is $o(c)=p$. But the next result shows that this is not possible.

Theorem 3.9. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be of order p^{4}, where $M_{p^{3}}=\langle a, b| a^{p^{2}}=$ $\left.b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $a^{c}=a, b^{c}=a^{p} b$ and $o(c)=p$, then $G \notin C Z_{p}$.

Proof. Let $A=\langle a, c\rangle \cong C_{p^{2}} \times C_{p}$. Then A is a maximal abelian subgroup. Take $\phi: A \rightarrow A$ where $\phi(x)=[x, b]$. We know that ϕ is a homomorphism and $\operatorname{Im}(\phi)=G^{\prime}=\left\langle a^{p}\right\rangle$. Since $a^{a c}=a, c^{a c}=c, b^{a c}=b$, then $a c \in Z(G)$. Notice that $o(a c)=p^{2}$ and $|G|=p^{4}=p \cdot|Z(G)| \cdot\left|G^{\prime}\right|$. Thus $|Z(G)|=p^{2}$, hence $Z(G)=\langle a c\rangle$. Clearly ac $\notin M_{p^{3}}$. Therefore $a c \in C_{G}\left(M_{p^{3}}\right) \backslash Z\left(M_{p^{3}}\right)$. So, $M_{p^{3}}$ doesn't have a trivial centralizer, hence $G \notin C Z_{p}$.

Lemma 3.10. Let $G=\left\langle M_{p^{3}}, c\right\rangle \in C Z_{p}$ be of order p^{4}, where $M_{p^{3}}=\langle a, b|$ $\left.a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $a^{c} \in\langle a\rangle$ and $b^{c} \in\langle b\rangle$, then $[b, c]=1$.

Proof. Take $a^{c}=a^{i}, b^{c}=b^{j}$ where $i \in\left[p^{2}-1\right], j \in[p-1]$. Then $\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)^{c}=\left(a^{\alpha} a^{\gamma(1-p)^{\beta}} b^{\beta+\delta}\right)^{c}=a^{\alpha i+\gamma(1-p)^{\beta} i} b^{(\beta+\delta) j}$. On the other hand we have $\left(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta}\right)^{c}=a^{\alpha i} b^{\beta j} a^{\gamma i} b^{\delta j}=a^{\alpha+\gamma i(1-p)^{\beta j}} b^{(\beta+\delta) j}$. This leads us to $\gamma i\left[(1-p)^{\beta j}-(1-p)^{\beta}\right] \equiv 0 \bmod p^{2}$. Since γ is any integer, we get $p \mid(1-$ $p)^{\beta j}-(1-p)^{\beta}$. Hence $j=1$.

THEOREM 3.11. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be a group of order p^{4}, $p>2$ where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $o(c)=p^{2}$, then $a^{c} \in M_{p^{3}} \backslash\langle a\rangle$ or $\langle a\rangle \cap\langle c\rangle>1$.

Proof. Assume $a^{c}=a^{i}$ and $\langle a\rangle \cap\langle c\rangle=1$. Then $G=\langle a, c\rangle$ and $c^{p} \in M \backslash$ $\langle a\rangle$. Therefore $c^{p}=a^{p i} b^{j}$ where $i \in\{1, p\}$ and $j \in[p-1]$. Notice that because of $Z\left(M_{p^{3}}\right)=\left\langle a^{p}\right\rangle$ we have $\left(c^{p}\right)^{k}=\left(a^{p i}\right)^{k} b^{j k}$. Furthermore, $a^{c^{p}}=a^{a^{p i} b^{j}}=$ $a^{b^{j}}=a^{(1+p)^{j}}=a^{1+p j}$. For every $k \in \mathbb{N}$ we have $a^{\left(a^{p i} b^{j}\right)^{k}}=a^{b^{j k}}=a^{(1+p j)^{k}}$. If we assume that $a^{(1+p j)^{k}}=a$, then $(1+p j)^{k}-1 \equiv 0 \bmod p^{2}$. Therefore, $p(k j-1) \equiv 0 \bmod p^{2}$ and $k j \equiv 1 \bmod p$. Notice that such k always exists (and is not divisible by p) since C_{p} is a field. Therefore, without losing generality we can take $c^{p}=b$. Take $\varphi \in \operatorname{Aut}(\langle a\rangle) \cong \operatorname{Aut}\left(C_{p^{2}}\right) \cong C_{p(p-1)}$ (here we need the assumption $p>2$). Put $\varphi(a)=a^{i}$. Then $\varphi^{p}(a)=a^{i^{p}}=$ $a^{c^{p}}=a^{b}=a^{1+p}$. On the other hand $\varphi^{p(p-1)}(a)=a$, hence $(p+1)^{p-1}-1 \equiv 0$ $\bmod p^{2}$. This gives us $-p \equiv 0 \bmod p^{2}$, which is an obvious contradiction. Therefore, $a^{c} \in M \backslash\langle a\rangle$ or $\langle a\rangle \cap\langle c\rangle>1$.

Proposition 3.12. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be a $C Z$-group of order p^{4}, $p>2$ where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $o(c)=p^{2}$ and $a^{c} \in\langle a\rangle$, then $[b, c] \neq 1$.

Proof. Assume that the claim is not true. That means $[b, c]=1$. Notice that $c \notin C_{G}\left(M_{p^{3}}\right) \backslash M_{p^{3}}$, otherwise G wouldn't be a $C Z$-group. Since $a^{c} \in\langle a\rangle$, then by the previous theorem $\langle a\rangle \cap\langle c\rangle>1$. Notice that $\langle a\rangle \cap\langle c\rangle=\left\langle a^{p}\right\rangle$. We can write $a^{p}=c^{p}$. Take $a^{c}=a^{1+i}$. Then $a \mapsto a^{1+i}$ is an automorphism of order p, thus $a^{c^{p}}=a^{(1+i)^{p}}=a^{1+p i}=a$, hence $p i \equiv 0 \bmod p^{2}$. So without losing generality we may write $a^{c}=a^{1+p}$. Now, look at the element $c b^{p-1}$. For it we have $\left[c, c b^{p-1}\right]=\left[b, c b^{p-1}\right]=1$. On the other hand $a^{c b^{p-1}}=\left(a^{1+p}\right)^{b^{p-1}}=$ $\left(a^{(p+1)^{p-1}}\right)^{p+1}=a^{(p+1)^{p}}=a^{1+p^{2}}=a$. Hence, $c b^{p-1} \in C_{G}\left(M_{p^{3}}\right) \backslash M_{p^{3}}$, which is a contradiction. Thus, $[b, c] \neq 1$.

Lemma 3.13. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be a $C Z$-group of order $p^{4}, p>2$ where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $a^{c}=a^{1+p}$, then $b^{c}=a^{p} b^{j}$ where $j \neq 0$.

Proof. Since $M_{p^{3}} \unlhd G$, then $b^{c} \in M_{p^{3}}$. If $b^{c} \in\langle a\rangle$, then $o(b)=p$ implies that we can write $b^{c}=a^{p}$. Therefore $b^{c} \in \Phi\left(M_{p^{3}}\right)$ char $M_{p^{3}}$, where $\Phi\left(M_{p^{3}}\right)$ stands for the Frattini subgroup, which is characteristic. Thus $b \in \Phi\left(M_{p^{3}}\right)$ and so not a generator of $M_{p^{3}}$, contradiction. Therefore $b^{c}=b^{j}$ or $b^{c}=a^{p} b^{j}$, where $j \neq 0$. If $b^{c}=b^{j}$, then $b^{c} \mapsto b^{j}$ is an automorphism of order $p-1$ (since $\left.\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}\right)$. Therefore, $b^{c^{p-1}}=b$, so $\left[b, c^{p-1}\right]=1$. On the other hand $a^{c^{p-1}} \in\langle a\rangle$ and c^{p-1} is clearly a generator for G. But this contradicts Proposition 3.12.

Theorem 3.14. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be a CZ-group of order p^{4}, $p>2$ where $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. If $o(c)=p^{2}$ and $a^{c}=a^{1+p}$, then $b^{c}=a^{p} b$.

Proof. Because of Theorem 3.11 we have $\langle a\rangle \cap\langle c\rangle>1$, thus without losing generality we may write $a^{p}=c^{p}$. Because of $M_{p^{3}} \unlhd G$, we have $b^{c} \in M_{p^{3}}$. As we have proved in the previous Lemma, we have $b^{c}=a^{p} b^{j} \neq a^{p}$. From Theorem 2.2 we have $Z\left(M_{p^{3}}\right)=\left\langle a^{p}\right\rangle \geq Z(G)>1$. Thus $Z(G)=\left\langle a^{p}\right\rangle$. Put $z=a^{p}$. Then $c^{-1} b c=z b^{j}$. From here we get $b c=c z b^{j}$ and $b^{-1} c b=$ $z b^{-2} c b^{j+1}=z b^{p-2} c b^{j+1}$. Using this, we get
$c^{b}=z b^{p-3}(b c) b^{j+1}=z b^{p-3}\left(c z b^{j}\right) b^{j+1}=z^{2} b^{p-3} c b^{2 j+1}=\cdots=z^{k} b^{p-k-1} c b^{k j+1}$.
Put $k=p-1$. Then $c^{b}=z^{p-1} c b^{j(p-1)+1}=z^{p-1} c b^{1-j}$.
Now, let us take a group $N=\langle c, b\rangle$. Since $\langle c\rangle \unlhd N$, we get $c^{b} \in\langle c\rangle$. From here we get $b^{1-j} \in\langle c\rangle$. If $b^{1-j} \neq b$, then $\left\langle b^{1-j}\right\rangle=\langle b\rangle \leq\langle c\rangle$, so $G=\langle a, c\rangle$ is of order p^{3}. Thus, the only option is $b^{1-j}=1$, hence $b^{j}=b$.

Proposition 3.15. Let $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle$. Let $G=\left\langle M_{p^{3}}, c\right\rangle$ be a CZ-group of order p^{4} where $o(c)=p^{2}$. Then $\langle a\rangle \unlhd G$.

Proof. Let us assume the opposite. Since $M_{p^{3}} \unlhd G$, then $a^{c}=a^{i} b^{j}$, where $o\left(a^{i}\right)=p^{2}$ and $b^{j} \neq 1$. Take $N=\langle a, c\rangle$. Because $|\langle a\rangle \cap\langle c\rangle| \leq p$ we have $|N|=p^{3}$, therefore $N \unlhd G$. So $a^{c} \in N$. This gives us $a^{c}=a^{i} b^{j} \in N$, hence $b^{j} \in N$. If $b^{j} \neq 1$, then $b \in N$ and $N=G$, which gives us a contradiction. So, the only case is $b^{j}=1$ and $a^{c} \in\langle a\rangle$, hence $\langle a\rangle \unlhd G$.

Now, we have only one candidate $G=\langle a, b, c| a^{p^{2}}=c^{p^{2}}=b^{p}=1, a^{b}=$ $\left.a^{c}=a z, b^{c}=b z, z=a^{p}\right\rangle$ for a $C Z$-group of order p^{4} that contains $M_{p^{3}}$. The next result will provide an answer regarding the status of such group.

THEOREM 3.16. The group $G=\langle a, b, c| a^{p^{2}}=c^{p^{2}}=b^{p}=1, a^{b}=a^{c}=$ $\left.a z, b^{c}=b z, z=a^{p}\right\rangle$ is not a CZ-group.

Proof. Notice that $M_{p^{3}}=\left\langle a, b \mid a^{p^{2}}=b^{p}=1, a^{b}=a^{1+p}\right\rangle \unlhd G$. Let us assume that G is a $C Z$-group. Then, by previous results we have $Z(G)=$ $Z\left(M_{p^{3}}\right)=\left\langle a^{p}\right\rangle=\langle z\rangle$. Take $x=a b^{p-1} c$. Then $x \notin M_{p^{3}}$, otherwise $c \in M_{p^{3}}$ and $|G| \neq p^{4}$. Then

$$
\begin{aligned}
a^{x} & =a^{a b^{p-1} c}=a^{b^{p-1} c}=\left(a^{b}\right)^{b^{p-2} c}=(a z)^{b^{p-2} c} \\
& =z a^{b^{p-2} c}=z\left(a^{b}\right)^{b^{p-3} c}=z^{2} a^{b^{p-2} c}=\cdots=z^{p-1} a^{c}=z^{p-1} z a=a
\end{aligned}
$$

which gives us $x \in C_{G}(a)$. On the other hand it is clear that from $b^{-1} a b=$ $a z$ we get $a b=z b a$, thus $b a=z^{-1} a b$. Using this, we get $b^{a}=a^{-1} b a=$ $a^{-1}\left(z^{-1} a b\right)=z^{-1} b$. Therefore

$$
b^{x}=b^{a b^{p-1} c}=\left(z^{-1} b\right)^{b^{p-1} c}=\left(z^{-1} b\right)^{c}=z^{-1} b^{c}=z^{-1} b z=b
$$

thus $x \in C_{G}(b)$. So, $x \in C_{G}\left(M_{p^{3}}\right) \backslash Z\left(M_{p^{3}}\right)$, which is a contradiction with the assumption that G is a $C Z$-group.

In other words, we have proved the following result:
Theorem 3.17. If $G \in C Z m_{p}$ is of order $p^{4}, p>2$, then $M_{p^{3}} \not \leq G$.
It is easy to check the properties of an exponent of a minimal $C Z$-group of order p^{4}.

Lemma 3.18. Let $G \in C Z m_{p}$ and $|G|=p^{4}$. Then $\exp (G) \leq p^{2}$.
Proof. Let $\exp (G)>p^{2}$. If $\exp (G)=p^{4}$ then $G \cong C_{p^{4}} \notin C Z$. If $\exp (G)=p^{3}$, then there is some $d \in G$ such that $\langle d\rangle \unlhd G$. Hence $G \cong M_{p^{4}}$, which is not a $C Z$-group.

Theorem 3.2 motivates us to deal with the possible minimal $C Z$-group that contains minimal nonabelian subgroup different than modular.

Proposition 3.19. Let $G \in C Z m_{p}$ be of order p^{4}. Let $N=\langle a, b, c| a^{p}=$ $\left.b^{p}=c^{p}=1, a^{b}=a c,[a, c]=[b, c]=1\right\rangle \leq G$. Then there is a $T \leq N$, such that $T \cong C_{p} \times C_{p}$ and $T \unlhd G$.

Proof. We know that $|N|=p^{3}$ and N is minimal nonabelian group. Also $N^{\prime}=\langle c\rangle$ is maximal cyclic normal subgroup in N. Thus every maximal subgroup in N is isomorphic to $C_{p} \times C_{p}$. Take $\Gamma_{1}=\{T \leq N \mid[N: T]=p\}$. As we've seen, $T \cong C_{p} \times C_{p}$ for every $T \in \Gamma_{1}$. We also know that $\left|\Gamma_{1}\right| \equiv 1$ $\bmod p$. Take $d \in G \backslash N$ such that $G=\langle N, d\rangle$ (such d always exists). Since $d^{p} \in N$, we know that if d acts on Γ_{1} nontrivially (via conjugation), then the orbits are of order p or 1 . Therefore, there is some $T \in \Gamma_{1}$ which is fixed by conjugation with d. Hence $T^{d}=T$, therefore $T \unlhd G$.

Now, we will use the previous result to describe any minimal $C Z$-group of order p^{4} that contains a subgroup of order p^{3} isomorphic to N.

Proposition 3.20. Let $G \in C Z m_{p}$ be of order p^{4} and $N=\left\langle a_{1}, b_{1}, c_{1}\right|$ $\left.a_{1}^{p}=b_{1}^{p}=c_{1}^{p}=1, a_{1}^{b_{1}}=a_{1} c_{1},\left[a_{1}, c_{1}\right]=\left[b_{1}, c_{1}\right]=1\right\rangle \unlhd G$. Then there is a $T \leq N$ such that $T=\langle a, b\rangle \cong C_{p} \times C_{p}$ and $T \unlhd G$. Additionally, $N=\langle T, b\rangle$ and $[a, b]=c \in Z(N)$.

Proof. We know that $Z(N)=\left\langle c_{1}\right\rangle$. Then also $C_{p} \cong Z(N) \geq Z(G)>1$. Thus, $Z(N)=Z(G)$. Also, by previous result, we know that there is some $T=\left\langle a_{2}, c_{2}\right\rangle \cong C_{p} \times C_{p}$ that is normal in G. Take some $b_{2} \in N \backslash T$. Since $N=$ $\left\langle T, b_{2}\right\rangle$, we must have $a_{2}^{b_{2}} \neq a_{2}$. Otherwise, N would be abelian. Since $T \unlhd G$, then $a_{2}^{b_{2}}=a_{2}^{i} c_{2}^{j}$ for some i, j. Notice that if $c_{2}^{j} \neq 1$, then $\left\langle a_{2}, c_{2}\right\rangle=\left\langle a_{2}, c_{2}^{j}\right\rangle$. Therefore, we can write $a_{2}^{b_{2}}=a_{2}^{i} c_{2}$. Another option is $a_{2}^{b_{2}}=a_{2}^{i}$. Since $T \unlhd G$ we have $T \cap Z(G)>1$. If $a_{2}^{b_{2}}=a_{2}^{i}$, then we can write $\left\langle c_{2}\right\rangle=T \cap Z(N)$. Then $N \cong E_{p^{3}}$ (elementary abelian group) which is a contradiction. So, the only
option is $a_{2}^{b_{2}}=a_{2}^{i} c_{2}$. Thus, $\left[a_{2}, b_{2}\right]=a_{2}^{i-1} c_{2}$, thus $\left\langle a_{2}^{i-1} c_{2}\right\rangle=\left\langle c_{2}\right\rangle=Z(N)=$ N^{\prime}. Therefore $i=1$. Now, identify $a_{2}=a, b_{2}=b, c_{2}=c$.

Theorem 3.21. Let $G \in C Z m_{p}$ be of order p^{4}. Then G has no subgroup isomorphic to the minimal nonabelian group $N=\langle a, b, c| a^{p}=b^{p}=c^{p}=$ $\left.1, a^{b}=a c,[a, c]=[b, c]=1\right\rangle$.

Proof. Let us assume the opposite. Let $N \unlhd G$, where $N=\langle a, b, c|$ $\left.a^{p}=b^{p}=c^{p}=1, a^{b}=a c,[a, c]=[b, c]=1\right\rangle$. By our previous result, without losing generality, we can write $T=\langle a, c\rangle \unlhd G$. Since $|G / T|=p^{2}$, it is abelian, hence $T \leq G^{\prime}$. Thus $\left|G^{\prime}\right| \geq p^{2}$. Since $G^{\prime} \leq \Phi(G)$ then also $|\Phi(G)| \geq p^{2}$. If $|\Phi(G)|=p^{3}$, then $\operatorname{dim}(G)=1$ and $G \cong C_{p^{4}}$, which is clearly a contradiction. Hence, the only option is $|\Phi(G)|=p^{2}$ and $\Phi(G)=G^{\prime}=T$. Therefore, G has 2 generators. Put $G=\langle x, y\rangle$. Then it is clear that $G^{\prime}=\langle[x, y]\rangle \cong C_{p^{2}}$, which is a clear contradiction with $G^{\prime}=T \cong C_{p} \times C_{p}$.

Using Theorems 3.17 and 3.21 we have reached one of the main results of this paper. We establish now the lower bound for the order of minimal $C Z$-groups.

Theorem 3.22. Let $G \in C Z m_{p}$. Then $|G| \geq p^{5}$.
Proof. If $G \in C Z m_{p} \subseteq C Z$, then G has some nonabelian subgroup $S<G$ such that $C_{G}(S)=Z(S)$. It is clear that $|S|>p^{3}$, thus $|G| \geq p^{4}$. If $|G|=p^{4}$, then there is some minimal nonabelian $S<G$. So $S \cong M_{p^{3}}$ or N. Both cases were eliminated by Theorems 3.17 and 3.21.

4. Maximal normal abelian subgroup of $G \in C Z_{p}$

This section collects another type of results, it deals with $C Z$-groups and repercussions on its maximal abelian subgroups. First, we provide a slightly different proof of Lemma 57.1. from Berkovich's and Janko's book Groups of Prime Power Order, Vol. 2 ([2]).

We will use notation $A \leq_{p} B$ if A is a subgroup of B whose index is p. Similarly, we will write $A \unlhd_{p} B$ if $A \unlhd B$ and $[B: A]=p$.

Lemma 4.1. Let G be a p-group and $A \unlhd G$ its maximal abelian subgroup. Then for any $x \in G \backslash A$ there is some $a \in A$ such that $[x, a] \neq 1$ and $[x, a]^{p}=1$. Furthermore, $[a, x, x]=1$, thus $\langle x, a\rangle$ is minimal nonabelian, i.e. every p group is generated by minimal nonabelian subgroups.

Proof. Take $C_{A}(x)$ for some $x \in G \backslash A$. Clearly $C_{A}(x)<A$, since otherwise $\langle x, A\rangle$ would be abelian and would contain A, which is a contradiction. Take $\langle x\rangle C_{A}(x)$. It is a group because of $\langle x\rangle C_{A}(x)=C_{A}(x)\langle x\rangle$. One can see that $\langle x\rangle C_{A}(x)<\langle x\rangle A$. Take $B \leq\langle x\rangle A$ such that $\langle x\rangle C_{A}(x) \triangleleft_{p} B$. Notice that $\langle x\rangle C_{A}(x) \cap A \triangleleft_{p} A$. Clearly $\langle x\rangle C_{A}(x) \cap A=C_{A}(x)$. Therefore $C_{A}(x) \triangleleft_{p} A \cap B$.

On the other hand, take $b=x^{i} a \in B$ (where $a \in A$.) Take $g \in C_{A}(x)$. Then (because $g \in A$) we have $b^{g}=\left(x^{i} a\right)^{g}=\left(x^{g}\right)^{i} a^{g}=x^{i} a=b$. Thus $C_{A}(x) \leq Z(B)$.

Now take $a \in(A \cap B) \backslash C_{A}(x)$ such that $a^{p} \in C_{A}(x)$. Clearly $[a, x] \neq 1$. Since $[x, a] \in B^{\prime} \leq \Phi(B),[x, a] \in C_{A}(x)\langle x\rangle \triangleleft_{p} B$.

Let us assume that $[x, a] \notin C_{A}(x)$. Then $[x, a]=x^{i} a_{1}$ for some $a_{1} \in$ $C_{A}(x)$. Then $x^{-1} a^{-1} x a=x^{i} a_{1}$ and $x^{a}=x^{i+1} a_{1}$. On the other hand,

$$
x^{x^{a}}=x^{x^{i+1} a_{1}}=x^{a_{1}}=x
$$

thus $x^{a} \in C_{A}(x)$. Then $\left(x^{a}\right)^{a^{-1}} \in C_{A}(x)^{a^{-1}}=C_{A}(x)$, so $x \in C_{A}(x)-\mathrm{a}$ contradiction! Therefore, $[x, a] \in C_{A}(x)$, so $B^{\prime} \leq C_{A}(x)$.

Knowing that for any finite group it holds $[x, y z]=[x, z][x, y]^{z}$, we have $1=\left[x, a^{p}\right]=\left[x, a^{p-1} a\right]=[x, a]\left[x, a^{p-1}\right]^{a}$. Because of $\left[x, a^{p-1}\right] \in B^{\prime} \leq C_{A}(x)$, we get $\left[x, a^{p}\right]=[x, a]\left[x, a^{p-1}\right]$. This gives us $[x, a]^{p}=1$. Finally, because of $[x, a] \in C_{A}(x)$, we get $[a, x, x]=1$.

Now we want to characterize the centralizer of a maximal abelian subgroup of a $C Z$-group because it certainly could be used for further describing the structure of a $C Z$-group.

Lemma 4.2. Let $G \in C Z_{p}$ and let $A \unlhd G$ be a maximal abelian subgroup. Let $x \in G \backslash A$. Then $C_{A}(x) \leq Z(N)$ for every nonabelian $N \leq\langle x\rangle A$.

Proof. Take $x \in G \backslash A$. If $C_{A}(x)=A$, then $\langle x, A\rangle>A$ is abelian contradicting to the assumption for A being maximal. Thus, $C_{A}(x)<A$. Take $N \leq\langle x\rangle A$, where N is nonabelian. Then, $G \in C Z_{p}$ implies $C_{G}(N)=Z(N)$. Take $g \in C_{A}(x)$ and $y \in N$. Then $y=x^{j} a_{1}, a_{1} \in A$. Hence, $\left(x^{j} a_{1}\right)^{g}=$ $\left(x^{g}\right)^{j} a_{1}^{g}=x^{j} a_{1}$, because $[g, x]=1$. Also, $g \in A$, so $\left[g, a_{1}\right]=1$. Therefore, $g \in C_{G}(N)=Z(N)$, hence $C_{A}(x) \leq Z(N)$.

Corollary 4.3. Let $G \in C Z_{p}$ and let $A \unlhd G$ be a maximal abelian subgroup. Let $x \in G \backslash A$. Then for every nonabelian $N \leq\langle x\rangle A$, it holds $Z(N) \backslash C_{A}(x) \subseteq\langle x\rangle C_{A}(x)$.

Proof. We know that $C_{A}(x) \leq Z(N)<N \leq\langle x\rangle A$. Take $g=x^{j} a_{1} \in$ $Z(N) \backslash C_{A}(x)$. Then $[g, x]=1$ and $x^{g}=x^{x^{j} a_{1}}=x^{a_{1}}=x$ which yields $a_{1} \in C_{A}(x)$. Thus, $Z(N) \backslash C_{A}(x) \subseteq\langle x\rangle C_{A}(x)$.

Corollary 4.4. Let $G \in C Z_{p}$ and let $A \unlhd G$ be maximal abelian subgroup. Let $x \in G \backslash A$. Then for every nonabelian $N \leq\langle x\rangle A$, it holds $C_{A}(x) \leq Z(N) \leq$ $\langle x\rangle C_{A}(x)$.

Proof. Since $C_{A}(x) \leq Z(N)$ and $Z(N) \backslash C_{A}(x) \subseteq\langle x\rangle C_{A}(x)$ we have

$$
\left[Z(N) \backslash C_{A}(x)\right] \cup C_{A}(x) \subseteq\langle x\rangle C_{A}(x) \cup C_{A}(x)
$$

Because $C_{A}(x) \subseteq\langle x\rangle C_{A}(x)$, we have $Z(N) \subseteq\langle x\rangle C_{A}(x)$. Hence $Z(N) \leq$ $\langle x\rangle C_{A}(x)$.

Theorem 4.5. Let $G \in C Z_{p}$. and let $A \unlhd G$ be a maximal abelian subgroup. Let $x \in G \backslash A$ such that $x^{p} \in A$. Then $Z(\langle x\rangle A)=C_{A}(x)=C_{G}(\langle x\rangle A)$.

Proof. Take $x \in G \backslash A$ and $x^{p} \in A$. Then, by previous result, we have $C_{A}(x) \leq Z(\langle x\rangle A) \leq\langle x\rangle A C_{A}(x)$. Clearly $\left[\langle x\rangle C_{A}(x): C_{A}(x)\right]=p$. If $Z(\langle x\rangle A)=\langle x\rangle C_{A}(x)$, then $x \in Z(\langle x\rangle A)$, hence $[x, A]=1$. A contradiction with maximality of A. Therefore $Z(\langle x\rangle A)=C_{A}(x)=C_{G}(\langle x\rangle A)$. Last equality is true due to $G \in C Z_{p}$.

Corollary 4.6. Let $G \in C Z_{p}$ and let $A \unlhd G$ be a maximal abelian subgroup. Then $C_{A}(T \backslash A) \leq Z(T)<A$ for any $T \leq G$ such that $A<T$.

Theorem 4.7. Let $G \in C Z_{p}$ and let $A \unlhd G$ be a maximal abelian subgroup. Then for any $x \in G \backslash A$ there is some $a \in A$ such that $C=\langle a, x\rangle$ is minimal nonabelian and $C_{A}(x)=Z(C) \cap A \leq C$.

Proof. We already know that for any $x \in G \backslash A$, there is some $a \in A$ such that $C=\langle a, x\rangle$ is minimal nonabelian. Take $t \in C_{A}(x) \backslash C$. Then $t \in A$ and $[t, a]=[t, x]=1$. Hence $t \in C_{G}(C)=Z(C)$ (due to $G \in C Z$), which is an obvious contradiction. Therefore, $t \in C$ and $C_{A}(x) \leq C$. Now, take $g \in C_{A}(x)$. Then $[g, x]=[g, a]=1$, so $g \in Z(C) \cap A$. So far we have $C_{A}(x) \leq Z(C) \cap A$. Now, take $s \in Z(C) \cap A$ but $s \notin C_{A}(x)$. Then $[s, x]=1$, so $s \in C_{A}(x)$. Again a contradiction. This gives us $Z(C) \cap A \leq C_{A}(x)$.

Finally, we present our second main result, the full description of the centralizer of a generator that lies outside of a maximal abelian subgroup.

Theorem 4.8. Let $G \in C Z_{p}$ and let $A \unlhd G$ be a maximal abelian subgroup. If $x \in G \backslash A$ such that $x^{p} \in A$, then $Z(B)=C_{A}(x)$ where $B=\langle x, A\rangle$. Furthermore, there is a minimal nonabelian group $M=\langle x, a\rangle$, where $a \in A$ such that $Z(M)=C_{A}(x) \leq A$ and $M \cap A \triangleleft_{p} M$.

Proof. Take $x \in G \backslash A$ such that $x^{p} \in A$. Put $B=\langle x, A\rangle$. Clearly $A \triangleleft_{p} B$. Take some $g \in C_{A}(x)$. Then $g \in Z(B)$ since $[g, x]=\left[g, a_{1}\right]=1$ for any $a_{1} \in A$. Hence $C_{A}(x) \leq Z(B)$.

Now, take $h \in Z(B) \backslash C_{A}(x)$. If $h \in A$, then $h \in C_{A}(x)$. A contradiction. If $h \notin A$, then $h \in B \backslash A$ and $[h, A]=1$. Therefore $\langle A, h\rangle>A$ is abelian, contradiction with the choice of A. Thus, $Z(B) \leq C_{A}(x)$.

We know that there is some $a \in A$ such that $M=\langle x, a\rangle$ is minimal nonabelian. We already know that $Z(M) \cap A=C_{A}(x)$. Additionally, we have $B=M A$. Then $|B|=\frac{|M||A|}{|M \cap A|}$. This gives us $[B: A]=[M: M \cap A]=p$. Thus $M \cap A \triangleleft_{p} M$.

Since M is minimal nonabelian, we have $Z(M) \triangleleft_{p} M \cap A \triangleleft_{p} M$.

References

[1] Y. Berkovich Groups of Prime Power Order Vol. 1., Walter de Gruyter GmbH \& Co. KG, Berlin, 2008.
[2] Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol. 2., Walter de Gruyter GmbH \& Co. KG, Berlin, 2008.
[3] Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol. 3., Walter de Gruyter GmbH \& Co. KG, Berlin, 2011.
K. Tabak

Rochester Institute of Technology, Zagreb Campus
D.T. Gavrana 15, 10000 Zagreb

Croatia
E-mail: kxtcad@rit.edu
M.-O. Pavčević

Department of applied mathematics
Faculty of Electrical Engineering and Computing
University of Zagreb
10000 Zagreb
Croatia
E-mail: mario.pavcevic@fer.hr
Received: 9.10.2015.

[^0]: 2010 Mathematics Subject Classification. 20D15, 20D25.
 Key words and phrases. p-group, center, centralizer, Frattini subgroup, minimal nonabelian subgroup.

 This work has been fully supported by Croatian Science Foundation under the project 1637.

