CZ-GROUPS

KRISTIJAN TABAK AND MARIO OSVIN PAVČEVIĆ Rochester Institute of Technology and University of Zagreb, Croatia

ABSTRACT. We describe some aspects of the structure of nonabelian p-groups G for which every nonabelian subgroup has a trivial centralizer in G, i.e. only it's center. We call such groups CZ-groups. The problem of describing the structure of all CZ-groups was posted as one of the first research problems in the open problems list in Yakov Berkovich's book 'Groups of prime power order' Vol 1 ([1]). Among other features of such groups, we prove that a minimal CZ-group must contain at least p^5 elements. The structure of maximal abelian subgroups of these groups is described as well.

1. INTRODUCTION AND DEFINITIONS

Throughout the entire paper we will think of G as a finite *p*-group. We assume that every nontrivial nonabelian subgroup has a trivial centralizer in G, i.e. $C_G(H) = Z(H)$ for every nonabelian $H \leq G$.

We start by a formal definition of our main object to be investigated.

DEFINITION 1.1. A finite p-group G is called a CZ-group if for every nonabelian subgroup M < G, the centralizer of M in G equals to Z(M).

We will shortly write $G \in CZ_p$. We start our analysis with one quite trivial observation about the center of any $G \in CZ_p$.

PROPOSITION 1.2. Let $G \in CZ_p$. Then $Z(G) \leq A$, for every nonabelian $A \leq G$.

This work has been fully supported by Croatian Science Foundation under the project 1637.

²⁰¹⁰ Mathematics Subject Classification. 20D15, 20D25.

Key words and phrases. p-group, center, centralizer, Frattini subgroup, minimal non-abelian subgroup.

PROOF. Let's assume the opposite. Take some nonabelian group A < G. If $g \in Z(G) \setminus A$, then $g \in C_G(A) \neq Z(A)$. Thus, we have a contradiction with $G \in CZ_p$.

Now, we would like to describe the case when Z(G) is not contained in some abelian subgroup. In that case we prove that such an abelian subgroup can't be a maximal subgroup of some nonabelian subgroup. To be more precise, we have:

LEMMA 1.3. Let $G \in CZ_p$. Let $A \leq G$ be an abelian subgroup such that $Z(G) \leq A$. If M > A is nonabelian, then $[M : A] \geq p^2$.

PROOF. Take $g \in Z(G) \setminus A$, where A is an abelian subgroup of G. Let $M \leq G$ be a nonabelian group such that [M : A] = p. Then $A \leq M$. Notice that, from $Z(G) \leq M$ we conclude that there is a $g \in Z(G) \leq M$ such that $[\langle g, A \rangle : A] \geq p$ and $\langle g, A \rangle \leq M$, because of which, $M = \langle g, A \rangle$ is abelian. That is a contradiction, hence $[M : A] \geq p^2$.

In some sense, it is a natural question to ask could CZ structure be inherited from G to some smaller subgroup. The following result provides the answer.

PROPOSITION 1.4. Let $G \in CZ_p$. If N < M < G, where N is nonabelian, then $M \in CZ_p$.

PROOF. Since N is nonabelian, clearly $M' \geq 1$. So $C_G(N) = Z(N)$ and $C_G(M) = Z(M)$. Assume that $C_M(N) > Z(N)$. Then there is some $g \in C_M(N) \setminus Z(N)$. Since $C_M(N) \leq C_G(N)$, we have $g \in C_G(N) \setminus Z(N)$. Thus, $C_G(N) \neq Z(N)$ which is a clear contradiction. Therefore, $C_M(N) = Z(N)$, thus $M \in CZ_p$.

2. Center of a nonabelian subgroup of a CZ-group

Next topic that we cover is the question of the center of a CZ-group G. To be more specific, we will provide properties of the center of a maximal nonabelian subgroup of G and compare the center of G with centers of some of its subgroups.

LEMMA 2.1. Let $G \in CZ_p$ and $M \leq G$ is nonabelian. Then $Z(G) \leq Z(M)$.

PROOF. Assume that $g \in Z(G) \setminus Z(M)$. Then $g \notin M$, otherwise $g \in Z(M)$. Hence, $g \in C_G(M) \setminus Z(M)$. This is a contradiction with $C_G(M) = Z(M)$.

Next result deals with the center of a maximal nonabelian subgroup.

THEOREM 2.2. Let $G \in CZ_p$ and let M < G be a maximal nonabelian subgroup. Then one of the following is true:

1. Z(M) = Z(G),2. Z(M) > Z(G) and [G:M] = p.

PROOF. Take M < G, where M is maximal nonabelian. If Z(M) >Z(G), take $g \in Z(M) \setminus Z(G)$. Then there is some $x \in G \setminus M$ such that $[x,g] \neq 1$ and $g \in M$. Notice that $\langle M, x \rangle$ is nonabelian. Assume that $x^p \notin M$. Then $x^p \notin Z(M) = C_G(M)$, so $\langle M, x^p \rangle$ is also nonabelian. If $\langle M, x^p \rangle = G$, then x^p is a generator. On the other hand $x^p \in \Phi(G)$. Therefore, x is not a generator. Hence, $M < \langle M, x^p \rangle < G$, which is a contradiction with the assumption that M is maximal nonabelian. So, $x^p \in M$ and herewith we have proved [G:M] = p.

LEMMA 2.3. Let $G \in CZ_p$ and A < G be abelian of index p. Then for every $x \in G \setminus A$, there is a nonabelian M < G, such that $x^p \in Z(M)$.

PROOF. Take $x \in G \setminus A$. We know that $G/A = \langle xA \rangle$. Take $y \in A$, such that $[x, y] \neq 1$ (there is always such an y, otherwise G would be abelian). Take $M = \langle x, y \rangle$. Then $C_G(M) = Z(M)$. Notice that $x^p \in A$, so $[x^p, y] = 1$. Now, it is clear that $x^p \in Z(M)$.

3. MINIMAL CZ-GROUPS

In this section we deal with CZ-groups which don't possess any nontrivial CZ-subgroup. We shall name such groups minimal CZ-groups.

We start with a definition of a minimal CZ-group.

DEFINITION 3.1. A group $G \in CZ_p$ is called a minimal CZ-group if it doesn't possess a nontrivial CZ-subgroup.

By Proposition 1.4, it is straightforward to see that if G is a minimal CZ-group, then every proper nonabelian subgroup is a minimal nonabelian group. For a CZ-group G which is determined to be minimal in this sense, we shall write $G \in CZm_p$.

For the sake of completeness, we repeat here the known result that classifies minimal nonabelian *p*-groups.

THEOREM 3.2. Let G be a minimal nonabelian p-group. Then |G'| = pand G/G' is abelian of rank 2. G is isomorphic to one of the following groups:

- 1. $G = \langle a, b \mid a^{p^m} = b^{p^n} = 1, a^b = a^{1+p^{m-1}} \rangle, m \ge 2, n \ge 1$ and $|G| = p^{m+n},$
- 2. $G = \langle a, b, | a^{p^m} = b^{p^n} = c^p = 1, [a, b] = c, [a, c] = [b, c] = 1 \rangle$, where $|G| = p^{m+n+1}$, and if p = 2, then m + n > 2 and G' is maximal cyclic normal subgroup, 3

$$3. \ G \cong Q_8.$$

Our next result answers the question on the number of generators of a given $G \in CZm_p$.

THEOREM 3.3. If $G \in CZm_p$, then $[G : \Phi(G)] \leq p^3$.

PROOF. Let A < G be some maximal abelian subgroup (meaning that there is no abelian subgroup B such that A < B < G). Then $A < \langle x, A \rangle \leq G$ for some $x \in G \setminus A$. It is clear that there is an $a \in A$ such that $[a, x] \neq 1$ (otherwise A wouldn't be maximal abelian). Take $M = \langle a, x \rangle$. Clearly M' > 1. If M = G, then $[G : \Phi(G)] = p^2$.

If $[G:M] \ge p^2$, then there is some N < G such that M < N < G. Therefore $N \in CZ_p$ which contradicts to $G \in CZm_p$. If [G:M] = p, then it is clear that $G = \langle a, x, y \rangle$, for some $y \in G \setminus M$. Hence $[G:\Phi(G)] \le p^3$.

Notice that if $G \in CZm_p$, then it is natural to assume $|G| \ge p^4$. Otherwise, any proper subgroup would be of order at most p^2 , thus abelian. In order to deliver a description of a minimal CZ-group, we need to provide some information about automorphisms of minimal nonabelian groups, since such groups, as we have seen above, are main ingredients of minimal CZ-groups.

Thus, we will start our analysis with groups of order p^4 . For that, we need some technical results regarding the modular group of order p^3 , which may be a minimal nonabelian subgroup of a putative CZ-group G. Throughout this paper we will denote that modular group and its generators and relations by

$$M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1, \ a^b = a^{1+p} \rangle$$

Another option is that a nonabelian subgroup of order p^3 is given by

$$N = \langle a, b, | a^p = b^p = c^p = 1, \ [a, b] = c, \ [a, c] = [b, c] = 1 \rangle$$

and this notation of the group N will be kept throughout the paper as well. It is easy to see that for M_{p^3} the following holds: $b^j a^i = a^{i(1-p)^j} b^j$, and

$$(a^{i}b^{j})^{k} = a^{i[1+(1-p)^{j}+(1-p)^{2j}+\dots+(1-p)^{(k-1)j}]}b^{k}$$

for $k \geq 2$. On the other hand, $o(a^i b^j) = p^2$ for any $i \neq 0, p$ and $i \in [p^2 - 1] \setminus \{0, p\}$, while $o(a^p b^j) = p$. Finally, it is also easy to see that $(a^i b^j)^b = (a^i b^j)^{p+1}$. Also, because of $\langle a \rangle \leq M_{p^3}$ we may assume that any automorphism of M_{p^3} is of the form $a^{\alpha} b^{\beta} \to a^{\alpha k} (a^{pi} b^j)^{\beta}$ for some integers k, i and j.

The next result gives a description of such automorphisms.

LEMMA 3.4. Let $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1, \ a^b = a^{1+p} \rangle$. Let $\varphi_{ij} : M_{p^3} \to M_{p^3}$ be maps defined by $\varphi_{ij}(a^{\alpha}b^{\beta}) = a^{\alpha}(a^{pi}b^j)^{\beta}$. Then

1.
$$\varphi_{ij}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}) = a^{\alpha+\gamma(1-p)^{\beta}+pi\frac{(1-p)^{(\beta+\delta)j}-1}{(1-p)^{j-1}}}b^{j(\beta+\delta)},$$

2. $\varphi_{ij}(a^{\alpha}b^{\beta})\varphi_{ij}(a^{\gamma}b^{\delta}) = a^{\alpha+pi\frac{(1-p)^{\beta j}-1}{(1-p)^{j-1}}+\gamma(1-p)^{j\beta}+pi(1-p)^{\beta j}\frac{(1-p)^{\delta j}-1}{(1-p)^{j-1}}}b^{j(\beta+\delta)}$

PROOF. Notice that $a^{\alpha}b^{\beta}a^{\gamma}b^{\delta} = a^{\alpha}(b^{\beta}a^{\gamma})b^{\delta} = a^{\alpha}a^{\gamma(1-p)^{\beta}}b^{\beta}b^{\delta}$. Therefore, we have $\varphi_{ij}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}) = \varphi_{ij}(a^{\alpha+\gamma(1-p)^{\beta}}b^{\beta+\gamma}) = a^{\alpha+\gamma(1-p)^{\beta}}(a^{pi}b^{j})^{\beta+\delta}$. But, on the other hand

$$(a^{pi}b^j)^{\beta+\delta} = a^{pi[1+(1-p)^j+(1-p)^{2j}+\dots+(1-p)^{j(\beta+\delta-1)j}]}b^{j(\beta+\delta)},$$

hence $\varphi_{ij}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}) = a^{\alpha+\gamma(1-p)^{\beta}+pi\frac{(1-p)^{(\beta+\delta)j}-1}{(1-p)^{j}-1}}b^{j(\beta+\delta)}$. Furthermore, we have

$$\begin{split} \varphi_{ij}(a^{\alpha}b^{\beta})\varphi_{ij}(a^{\gamma}b^{\delta}) &= a^{\alpha}(a^{pi}b^{j})^{\beta}a^{\gamma}(a^{pi}b^{j})^{\delta} \\ &= a^{\alpha}a^{pi[1+(1-p)^{j}+(1-p)^{2j}+\dots+(1-p)^{j(\beta-1)}]}b^{j\beta} \\ &\cdot a^{\gamma}a^{pi[1+(1-p)^{j}+(1-p)^{2j}+\dots+(1-p)^{j(\delta-1)}]}b^{j\delta}. \end{split}$$

Let us introduce shortcuts

$$A = 1 + (1-p)^{j} + (1-p)^{2j} + \dots + (1-p)^{j(\beta-1)} = \frac{(1-p)^{\beta j} - 1}{(1-p)^{j} - 1},$$

$$B = 1 + (1-p)^{j} + (1-p)^{2j} + \dots + (1-p)^{j(\delta-1)} = \frac{(1-p)^{\delta j} - 1}{(1-p)^{j} - 1}.$$

We get

$$\begin{aligned} \varphi_{ij}(a^{\alpha}b^{\beta})\varphi_{ij}(a^{\gamma}b^{\delta}) &= a^{\alpha}a^{piA}b^{j\beta}a^{\gamma}a^{piB}b^{j\delta} \\ &= a^{\alpha+piA}(b^{j\beta}a^{\gamma+piB})b^{j\delta} = \{\text{since } b^{j}a^{i} = a^{i(1-p)^{j}}b^{j}\} \\ &= a^{\alpha+piA}a^{(\gamma+piB)(1-p)^{j\beta}}b^{j\beta}b^{j\delta} \\ &= a^{\alpha+pi\frac{(1-p)^{\beta_{j}-1}}{(1-p)^{j-1}}+\gamma(1-p)^{j\beta}+pi(1-p)^{\beta_{j}}\frac{(1-p)^{\delta_{j}-1}}{(1-p)^{j-1}}}b^{j(\beta+\delta)}. \end{aligned}$$

Throughout the coming results we will deal with the assumption that M_{p^3} is a normal subgroup of G.

PROPOSITION 3.5. Let G be a p-group and $M_{p^3} = \langle a, b \rangle \trianglelefteq G$. Let $d \in G \setminus M$ be such that $a^d = a$ and $b^d \in \langle b \rangle$. Then [b, d] = 1.

PROOF. Since $M_{p^3} \leq G$, the action via conjugation is an inner automorphism of M_{p^3} . Let us use the notation $(a^{\alpha}b^{\beta})^d = \varphi_{ij}(a^{\alpha}b^{\beta}) = a^{\alpha}(a^{pi}b^j)^{\beta}$. Then we would have $\varphi_{ij}(a^{\alpha}) = a^{\alpha} = (a^{\alpha})^d$, $\varphi_{ij}(b^{\beta}) = (a^{pi}b^j)^{\beta}$. Let us assume that $b^d = b^j$. Then $\varphi_{ij}(b) = a^{pi}b^j = b^d$, so $pi \equiv 0 \mod p^2$, hence $i \in \{0, p\}$. We proved that $\varphi_{ij}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}) = a^{\alpha+\gamma(1-p)^{\beta}}b^{j(\beta+\delta)}$. On the other hand

$$\begin{aligned} \varphi_{ij}(a^{\alpha}b^{\beta})\varphi_{ij}(a^{\gamma}b^{\delta}) &= a^{\alpha}a^{0}b^{j\beta}a^{\gamma}a^{0}b^{j\delta} = a^{\alpha}(a^{j\beta}a^{\gamma})b^{j\delta} \\ &= a^{\alpha}a^{\gamma(1-p)^{j\beta}}b^{j\beta}b^{j\delta} = a^{\alpha+\gamma(1-p)^{j\beta}}b^{j(\beta+\delta)}. \end{aligned}$$

Therefore, it is necessary that $a^{\gamma(1-p)^{\beta}} = a^{\gamma(1-p)^{j\beta}}$, so $\gamma(1-p)^{\beta} \equiv \gamma(1-p)^{j\beta}$ mod p^2 . Now, we must have $\gamma\left[(1-p)^{j\beta} - (1-p)^{\beta}\right] \equiv 0 \mod p^2$. From here we get $\beta(1-j) \equiv 0 \mod p$. Since this must be true for any β , we conclude that $1-j \equiv 0 \mod p$, so $b^d = b$.

PROPOSITION 3.6. Let G be a p-group and $M_{p^3} \leq G$. Let $g \in G \setminus M_{p^3}$ such that $a^d = a$ and $b^d \in a^p \langle b \rangle$. Then $b^d = a^p b$.

PROOF. Notice that $(a^{\alpha}b^{\beta})^d = a^{\alpha}(a^pb^j)^{\beta} = \varphi_{1j}(a^{\alpha}b^{\beta})$. It's necessary that $\varphi_{1j}(a^{\alpha}b^{\beta})\varphi_{1j}(a^{\gamma}b^{\delta}) = \varphi_{1j}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta})$. Using Lema 3.4 we get

$$\varphi_{1j}(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta}) = a^{\alpha+\gamma(1-p)^{\beta}+p\frac{(1-p)^{(\beta+\delta)j}-1}{(1-p)^{j}-1}}b^{j(\beta+\delta)}$$

On the other hand

$$\varphi_{1j}(a^{\alpha}b^{\beta})\varphi_{1j}(a^{\gamma}b^{\delta}) = a^{\alpha+p\frac{(1-p)^{\beta_j}-1}{(1-p)^{j}-1}+\gamma(1-p)^{\beta_j}+p(1-p)^{\beta_j}\frac{(1-p)^{\delta_j}-1}{(1-p)^{j}-1}}b^{j(\beta+\delta)}.$$

Let us use abbreviations

$$\begin{split} \Lambda &= \alpha + \gamma (1-p)^{\beta} + p \frac{(1-p)^{(\beta+\delta)j} - 1}{(1-p)^{j} - 1}, \\ \Pi &= \alpha + p \frac{(1-p)^{\beta j} - 1}{(1-p)^{j} - 1} + \gamma (1-p)^{\beta j} + p (1-p)^{\beta j} \frac{(1-p)^{\delta j} - 1}{(1-p)^{j} - 1}. \end{split}$$

So, it is necessary that $\Lambda \equiv \Pi \mod p^2$. We see that

$$p\left[1+(1-p)^{j}+(1-p)^{2j}+\dots+(1-p)^{(\beta-1)j}\right] \equiv p\beta \mod p^{2}.$$

Similarly, we get

$$p\frac{(1-p)^{(\beta+\delta)j}-1}{(1-p)^j-1} \equiv (\beta+\delta)p \mod p^2$$

and

$$p\frac{(1-p)^{\delta j}-1}{(1-p)^j-1} \equiv \delta p \mod p^2$$

Hence,

$$a^{\Lambda} = a^{\alpha + \gamma(1-p)^{\beta} + (\beta + \gamma)p} = a^{\Pi} = a^{\alpha + \beta p + \delta p + \gamma(1-p)^{j\beta}}$$

Then, $\gamma(1-p)^{\beta} \equiv \gamma(1-p)^{\beta j} \mod p^2$. Thus we get only one possibility: $j \equiv 1 \mod p$. Therefore, $b^d = a^p b$.

Now we will focus our analysis to groups of order p^4 . The main goal is to determine all minimal CZ-groups of order p^4 .

PROPOSITION 3.7. Let $G = \langle a, b, c \rangle$ be a group of order p^4 , $p \ge 2$, where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle$. If [a, c] = 1 and $b^c \in \langle b \rangle$, then also [b, c] = 1.

PROOF. If [a, c] = 1, then $a^c = a$. If $b^c \in \langle b \rangle$, then $b^c = b^j$ for some $j \in [p]$. Notice that $(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta})^c = a^{\alpha+\gamma(1-p)^{\beta}}b^{(\beta+\delta)j}$, while on the other hand we have $(a^{\alpha}b^{\beta})^c(a^{\gamma}b^{\delta})^c = a^{\alpha}b^{j\beta}a^{\gamma}b^{j\delta} = a^{\alpha+\gamma(1-p)^{j\beta}}b^{j\beta+j\delta}$. This gives us $\alpha + \gamma(1-p)^{j\beta} \equiv \alpha + \gamma(1-p)^{\beta} \mod p^2$. Since $\alpha, \gamma \in [p^2]$ and $\beta \in [p]$, we get $\gamma(1-p)^{j\beta} \equiv \gamma(1-p)^{\beta} \mod p$. Now, it is easy to see that $j \equiv 1 \mod p$, thus $b^c = b$.

PROPOSITION 3.8. Let $G = \langle a, b, c \rangle$ be a group of order p^4 , $p \ge 2$, where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle$. If $a^c = a$ and $b^c \in a^p \langle b \rangle$, then $b^c = a^p b$.

PROOF. Put $b^c = a^p b^j$. We use an idea that is similar to the previous proof. Firstly, notice that because of $b^j a^i = a^{i(1-p)^j} b^j$ we get $(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta})^c = a^{\alpha+p\beta+p\delta} \cdot a^{\gamma(1-p)^{\beta_j}} b^{\beta_j+\delta_j}$. On the other hand, after we use the automorphism property, we get $(a^{\alpha} b^{\beta} a^{\gamma} b^{\delta})^c = a^{\alpha+p\beta+p\delta} \cdot a^{\gamma(1-p)^{\beta}} b^{\beta_j+\delta_j}$. This gives us $j \equiv 1 \mod p$.

Notice that if $G = \langle a, b, c \rangle$ is of order p^4 and p > 2, where $M_{p^3} = \langle a, b \rangle$, then from the assumption $G \in CZ$ we get $o(c) \leq p^2$. Otherwise, $o(c) = p^3$, implying $\langle c \rangle \leq G$ to be maximal abelian. Then G would be M_{p^4} , hence G is not a CZ-group. A contradiction.

It can be shown that if $G = \langle a, b, c \rangle \in CZ_p$ and $|G| = p^4$, p > 2 and $M_{p^3} = \langle a, b \rangle$, then the assumption [a, c] = 1 yields $b^c = a^p b$ and $o(c) = p^2$, with an additional property $a^p = c^p$. The alternative possibility is o(c) = p. But the next result shows that this is not possible.

THEOREM 3.9. Let $G = \langle M_{p^3}, c \rangle$ be of order p^4 , where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$. If $a^c = a, b^c = a^p b$ and o(c) = p, then $G \notin CZ_p$.

PROOF. Let $A = \langle a, c \rangle \cong C_{p^2} \times C_p$. Then A is a maximal abelian subgroup. Take $\phi : A \to A$ where $\phi(x) = [x, b]$. We know that ϕ is a homomorphism and $Im(\phi) = G' = \langle a^p \rangle$. Since $a^{ac} = a$, $c^{ac} = c$, $b^{ac} = b$, then $ac \in Z(G)$. Notice that $o(ac) = p^2$ and $|G| = p^4 = p \cdot |Z(G)| \cdot |G'|$. Thus $|Z(G)| = p^2$, hence $Z(G) = \langle ac \rangle$. Clearly $ac \notin M_{p^3}$. Therefore $ac \in C_G(M_{p^3}) \setminus Z(M_{p^3})$. So, M_{p^3} doesn't have a trivial centralizer, hence $G \notin CZ_p$.

LEMMA 3.10. Let $G = \langle M_{p^3}, c \rangle \in CZ_p$ be of order p^4 , where $M_{p^3} = \langle a, b | a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$. If $a^c \in \langle a \rangle$ and $b^c \in \langle b \rangle$, then [b, c] = 1.

PROOF. Take $a^c = a^i$, $b^c = b^j$ where $i \in [p^2 - 1]$, $j \in [p - 1]$. Then $(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta})^c = (a^{\alpha}a^{\gamma(1-p)^{\beta}}b^{\beta+\delta})^c = a^{\alpha i+\gamma(1-p)^{\beta}i}b^{(\beta+\delta)j}$. On the other hand we have $(a^{\alpha}b^{\beta}a^{\gamma}b^{\delta})^c = a^{\alpha i}b^{\beta j}a^{\gamma i}b^{\delta j} = a^{\alpha+\gamma i(1-p)^{\beta j}}b^{(\beta+\delta)j}$. This leads us to $\gamma i[(1-p)^{\beta j} - (1-p)^{\beta}] \equiv 0 \mod p^2$. Since γ is any integer, we get $p \mid (1-p)^{\beta j} - (1-p)^{\beta}$. Hence j = 1.

THEOREM 3.11. Let $G = \langle M_{p^3}, c \rangle$ be a group of order p^4 , p > 2 where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle$. If $o(c) = p^2$, then $a^c \in M_{p^3} \setminus \langle a \rangle$ or $\langle a \rangle \cap \langle c \rangle > 1$.

PROOF. Assume $a^c = a^i$ and $\langle a \rangle \cap \langle c \rangle = 1$. Then $G = \langle a, c \rangle$ and $c^p \in M \setminus \langle a \rangle$. Therefore $c^p = a^{pi}b^j$ where $i \in \{1, p\}$ and $j \in [p-1]$. Notice that because of $Z(M_{p^3}) = \langle a^p \rangle$ we have $(c^p)^k = (a^{pi})^k b^{jk}$. Furthermore, $a^{c^p} = a^{a^{pi}b^j} = a^{b^j} = a^{(1+p)^j} = a^{1+pj}$. For every $k \in \mathbb{N}$ we have $a^{(a^{pi}b^j)^k} = a^{b^j^k} = a^{(1+pj)^k}$. If we assume that $a^{(1+pj)^k} = a$, then $(1+pj)^k - 1 \equiv 0 \mod p^2$. Therefore, $p(kj-1) \equiv 0 \mod p^2$ and $kj \equiv 1 \mod p$. Notice that such k always exists (and is not divisible by p) since C_p is a field. Therefore, without losing generality we can take $c^p = b$. Take $\varphi \in Aut(\langle a \rangle) \cong Aut(C_{p^2}) \cong C_{p(p-1)}$ (here we need the assumption p > 2). Put $\varphi(a) = a^i$. Then $\varphi^p(a) = a^{i^p} = a^{c^p} = a^b = a^{1+p}$. On the other hand $\varphi^{p(p-1)}(a) = a$, hence $(p+1)^{p-1} - 1 \equiv 0 \mod p^2$. Therefore, $a^c \in M \setminus \langle a \rangle$ or $\langle a \rangle \cap \langle c \rangle > 1$.

PROPOSITION 3.12. Let $G = \langle M_{p^3}, c \rangle$ be a CZ-group of order p^4 , p > 2where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle$. If $o(c) = p^2$ and $a^c \in \langle a \rangle$, then $[b, c] \neq 1$.

PROOF. Assume that the claim is not true. That means [b, c] = 1. Notice that $c \notin C_G(M_{p^3}) \setminus M_{p^3}$, otherwise G wouldn't be a CZ-group. Since $a^c \in \langle a \rangle$, then by the previous theorem $\langle a \rangle \cap \langle c \rangle > 1$. Notice that $\langle a \rangle \cap \langle c \rangle = \langle a^p \rangle$. We can write $a^p = c^p$. Take $a^c = a^{1+i}$. Then $a \mapsto a^{1+i}$ is an automorphism of order p, thus $a^{c^p} = a^{(1+i)^p} = a^{1+pi} = a$, hence $pi \equiv 0 \mod p^2$. So without losing generality we may write $a^c = a^{1+p}$. Now, look at the element cb^{p-1} . For it we have $[c, cb^{p-1}] = [b, cb^{p-1}] = 1$. On the other hand $a^{cb^{p-1}} = (a^{1+p})^{b^{p-1}} = (a^{(p+1)^{p-1}})^{p+1} = a^{(p+1)^p} = a^{1+p^2} = a$. Hence, $cb^{p-1} \in C_G(M_{p^3}) \setminus M_{p^3}$, which is a contradiction. Thus, $[b, c] \neq 1$.

LEMMA 3.13. Let $G = \langle M_{p^3}, c \rangle$ be a CZ-group of order p^4 , p > 2 where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$. If $a^c = a^{1+p}$, then $b^c = a^p b^j$ where $j \neq 0$.

PROOF. Since $M_{p^3} \leq G$, then $b^c \in M_{p^3}$. If $b^c \in \langle a \rangle$, then o(b) = p implies that we can write $b^c = a^p$. Therefore $b^c \in \Phi(M_{p^3}) char M_{p^3}$, where $\Phi(M_{p^3})$ stands for the Frattini subgroup, which is characteristic. Thus $b \in \Phi(M_{p^3})$ and so not a generator of M_{p^3} , contradiction. Therefore $b^c = b^j$ or $b^c = a^p b^j$, where $j \neq 0$. If $b^c = b^j$, then $b^c \mapsto b^j$ is an automorphism of order p - 1(since $Aut(C_p) \cong C_{p-1}$). Therefore, $b^{c^{p-1}} = b$, so $[b, c^{p-1}] = 1$. On the other hand $a^{c^{p-1}} \in \langle a \rangle$ and c^{p-1} is clearly a generator for G. But this contradicts Proposition 3.12. THEOREM 3.14. Let $G = \langle M_{p^3}, c \rangle$ be a CZ-group of order p^4 , p > 2 where $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle$. If $o(c) = p^2$ and $a^c = a^{1+p}$, then $b^c = a^p b$.

PROOF. Because of Theorem 3.11 we have $\langle a \rangle \cap \langle c \rangle > 1$, thus without losing generality we may write $a^p = c^p$. Because of $M_{p^3} \leq G$, we have $b^c \in M_{p^3}$. As we have proved in the previous Lemma, we have $b^c = a^p b^j \neq a^p$. From Theorem 2.2 we have $Z(M_{p^3}) = \langle a^p \rangle \geq Z(G) > 1$. Thus $Z(G) = \langle a^p \rangle$. Put $z = a^p$. Then $c^{-1}bc = zb^j$. From here we get $bc = czb^j$ and $b^{-1}cb = zb^{-2}cb^{j+1} = zb^{p-2}cb^{j+1}$. Using this, we get

$$c^{b} = zb^{p-3}(bc)b^{j+1} = zb^{p-3}(czb^{j})b^{j+1} = z^{2}b^{p-3}cb^{2j+1} = \dots = z^{k}b^{p-k-1}cb^{kj+1}.$$

Put k = p - 1. Then $c^b = z^{p-1}cb^{j(p-1)+1} = z^{p-1}cb^{1-j}$.

Now, let us take a group $N = \langle c, b \rangle$. Since $\langle c \rangle \leq N$, we get $c^b \in \langle c \rangle$. From here we get $b^{1-j} \in \langle c \rangle$. If $b^{1-j} \neq b$, then $\langle b^{1-j} \rangle = \langle b \rangle \leq \langle c \rangle$, so $G = \langle a, c \rangle$ is of order p^3 . Thus, the only option is $b^{1-j} = 1$, hence $b^j = b$.

PROPOSITION 3.15. Let $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1, a^b = a^{1+p} \rangle$. Let $G = \langle M_{p^3}, c \rangle$ be a CZ-group of order p^4 where $o(c) = p^2$. Then $\langle a \rangle \leq G$.

PROOF. Let us assume the opposite. Since $M_{p^3} \trianglelefteq G$, then $a^c = a^i b^j$, where $o(a^i) = p^2$ and $b^j \neq 1$. Take $N = \langle a, c \rangle$. Because $|\langle a \rangle \cap \langle c \rangle| \le p$ we have $|N| = p^3$, therefore $N \trianglelefteq G$. So $a^c \in N$. This gives us $a^c = a^i b^j \in N$, hence $b^j \in N$. If $b^j \neq 1$, then $b \in N$ and N = G, which gives us a contradiction. So, the only case is $b^j = 1$ and $a^c \in \langle a \rangle$, hence $\langle a \rangle \trianglelefteq G$.

Now, we have only one candidate $G = \langle a, b, c | a^{p^2} = c^{p^2} = b^p = 1$, $a^b = a^c = az$, $b^c = bz$, $z = a^p \rangle$ for a CZ-group of order p^4 that contains M_{p^3} . The next result will provide an answer regarding the status of such group.

THEOREM 3.16. The group $G = \langle a, b, c \mid a^{p^2} = c^{p^2} = b^p = 1$, $a^b = a^c = az$, $b^c = bz$, $z = a^p \rangle$ is not a CZ-group.

PROOF. Notice that $M_{p^3} = \langle a, b \mid a^{p^2} = b^p = 1$, $a^b = a^{1+p} \rangle \trianglelefteq G$. Let us assume that G is a CZ-group. Then, by previous results we have $Z(G) = Z(M_{p^3}) = \langle a^p \rangle = \langle z \rangle$. Take $x = ab^{p-1}c$. Then $x \notin M_{p^3}$, otherwise $c \in M_{p^3}$ and $|G| \neq p^4$. Then

$$a^{x} = a^{ab^{p-1}c} = a^{b^{p-1}c} = (a^{b})^{b^{p-2}c} = (az)^{b^{p-2}c}$$
$$= za^{b^{p-2}c} = z(a^{b})^{b^{p-3}c} = z^{2}a^{b^{p-2}c} = \dots = z^{p-1}a^{c} = z^{p-1}za = a,$$

which gives us $x \in C_G(a)$. On the other hand it is clear that from $b^{-1}ab = az$ we get ab = zba, thus $ba = z^{-1}ab$. Using this, we get $b^a = a^{-1}ba = a^{-1}(z^{-1}ab) = z^{-1}b$. Therefore

$$b^{x} = b^{ab^{p-1}c} = (z^{-1}b)^{b^{p-1}c} = (z^{-1}b)^{c} = z^{-1}b^{c} = z^{-1}bz = b,$$

thus $x \in C_G(b)$. So, $x \in C_G(M_{p^3}) \setminus Z(M_{p^3})$, which is a contradiction with the assumption that G is a CZ-group.

In other words, we have proved the following result:

THEOREM 3.17. If $G \in CZm_p$ is of order p^4 , p > 2, then $M_{p^3} \leq G$.

It is easy to check the properties of an exponent of a minimal CZ-group of order p^4 .

LEMMA 3.18. Let $G \in CZm_p$ and $|G| = p^4$. Then $\exp(G) \le p^2$.

PROOF. Let $\exp(G) > p^2$. If $\exp(G) = p^4$ then $G \cong C_{p^4} \notin CZ$. If $\exp(G) = p^3$, then there is some $d \in G$ such that $\langle d \rangle \trianglelefteq G$. Hence $G \cong M_{p^4}$, which is not a CZ-group.

Theorem 3.2 motivates us to deal with the possible minimal CZ-group that contains minimal nonabelian subgroup different than modular.

PROPOSITION 3.19. Let $G \in CZm_p$ be of order p^4 . Let $N = \langle a, b, c \mid a^p = b^p = c^p = 1$, $a^b = ac$, $[a, c] = [b, c] = 1 \rangle \leq G$. Then there is a $T \leq N$, such that $T \cong C_p \times C_p$ and $T \leq G$.

PROOF. We know that $|N| = p^3$ and N is minimal nonabelian group. Also $N' = \langle c \rangle$ is maximal cyclic normal subgroup in N. Thus every maximal subgroup in N is isomorphic to $C_p \times C_p$. Take $\Gamma_1 = \{T \leq N \mid [N:T] = p\}$. As we've seen, $T \cong C_p \times C_p$ for every $T \in \Gamma_1$. We also know that $|\Gamma_1| \equiv 1$ mod p. Take $d \in G \setminus N$ such that $G = \langle N, d \rangle$ (such d always exists). Since $d^p \in N$, we know that if d acts on Γ_1 nontrivially (via conjugation), then the orbits are of order p or 1. Therefore, there is some $T \in \Gamma_1$ which is fixed by conjugation with d. Hence $T^d = T$, therefore $T \trianglelefteq G$.

Now, we will use the previous result to describe any minimal CZ-group of order p^4 that contains a subgroup of order p^3 isomorphic to N.

PROPOSITION 3.20. Let $G \in CZm_p$ be of order p^4 and $N = \langle a_1, b_1, c_1 | a_1^p = b_1^p = c_1^p = 1$, $a_1^{b_1} = a_1c_1$, $[a_1, c_1] = [b_1, c_1] = 1 \rangle \trianglelefteq G$. Then there is a $T \le N$ such that $T = \langle a, b \rangle \cong C_p \times C_p$ and $T \trianglelefteq G$. Additionally, $N = \langle T, b \rangle$ and $[a, b] = c \in Z(N)$.

PROOF. We know that $Z(N) = \langle c_1 \rangle$. Then also $C_p \cong Z(N) \ge Z(G) > 1$. Thus, Z(N) = Z(G). Also, by previous result, we know that there is some $T = \langle a_2, c_2 \rangle \cong C_p \times C_p$ that is normal in G. Take some $b_2 \in N \setminus T$. Since $N = \langle T, b_2 \rangle$, we must have $a_2^{b_2} \neq a_2$. Otherwise, N would be abelian. Since $T \trianglelefteq G$, then $a_2^{b_2} = a_2^i c_2^j$ for some i, j. Notice that if $c_2^j \neq 1$, then $\langle a_2, c_2 \rangle = \langle a_2, c_2^j \rangle$. Therefore, we can write $a_2^{b_2} = a_2^i c_2$. Another option is $a_2^{b_2} = a_2^i$. Since $T \trianglelefteq G$ we have $T \cap Z(G) > 1$. If $a_2^{b_2} = a_2^i$, then we can write $\langle c_2 \rangle = T \cap Z(N)$. Then $N \cong E_{p^3}$ (elementary abelian group) which is a contradiction. So, the only option is $a_2^{b_2} = a_2^i c_2$. Thus, $[a_2, b_2] = a_2^{i-1} c_2$, thus $\langle a_2^{i-1} c_2 \rangle = \langle c_2 \rangle = Z(N) = N'$. Therefore i = 1. Now, identify $a_2 = a$, $b_2 = b$, $c_2 = c$.

THEOREM 3.21. Let $G \in CZm_p$ be of order p^4 . Then G has no subgroup isomorphic to the minimal nonabelian group $N = \langle a, b, c | a^p = b^p = c^p = 1, a^b = ac, [a, c] = [b, c] = 1 \rangle$.

PROOF. Let us assume the opposite. Let $N \leq G$, where $N = \langle a, b, c \mid a^p = b^p = c^p = 1$, $a^b = ac$, $[a, c] = [b, c] = 1 \rangle$. By our previous result, without losing generality, we can write $T = \langle a, c \rangle \leq G$. Since $|G/T| = p^2$, it is abelian, hence $T \leq G'$. Thus $|G'| \geq p^2$. Since $G' \leq \Phi(G)$ then also $|\Phi(G)| \geq p^2$. If $|\Phi(G)| = p^3$, then $\dim(G) = 1$ and $G \cong C_{p^4}$, which is clearly a contradiction. Hence, the only option is $|\Phi(G)| = p^2$ and $\Phi(G) = G' = T$. Therefore, G has 2 generators. Put $G = \langle x, y \rangle$. Then it is clear that $G' = \langle [x, y] \rangle \cong C_{p^2}$, which is a clear contradiction with $G' = T \cong C_p \times C_p$.

Using Theorems 3.17 and 3.21 we have reached one of the main results of this paper. We establish now the lower bound for the order of minimal CZ-groups.

THEOREM 3.22. Let $G \in CZm_p$. Then $|G| \ge p^5$.

PROOF. If $G \in CZm_p \subseteq CZ$, then G has some nonabelian subgroup S < G such that $C_G(S) = Z(S)$. It is clear that $|S| > p^3$, thus $|G| \ge p^4$. If $|G| = p^4$, then there is some minimal nonabelian S < G. So $S \cong M_{p^3}$ or N. Both cases were eliminated by Theorems 3.17 and 3.21.

4. Maximal normal abelian subgroup of $G \in CZ_p$

This section collects another type of results, it deals with CZ-groups and repercussions on its maximal abelian subgroups. First, we provide a slightly different proof of Lemma 57.1. from Berkovich's and Janko's book *Groups of Prime Power Order*, Vol. 2 ([2]).

We will use notation $A \leq_p B$ if A is a subgroup of B whose index is p. Similarly, we will write $A \leq_p B$ if $A \leq B$ and [B:A] = p.

LEMMA 4.1. Let G be a p-group and $A \leq G$ its maximal abelian subgroup. Then for any $x \in G \setminus A$ there is some $a \in A$ such that $[x, a] \neq 1$ and $[x, a]^p = 1$. Furthermore, [a, x, x] = 1, thus $\langle x, a \rangle$ is minimal nonabelian, i.e. every pgroup is generated by minimal nonabelian subgroups.

PROOF. Take $C_A(x)$ for some $x \in G \setminus A$. Clearly $C_A(x) < A$, since otherwise $\langle x, A \rangle$ would be abelian and would contain A, which is a contradiction. Take $\langle x \rangle C_A(x)$. It is a group because of $\langle x \rangle C_A(x) = C_A(x) \langle x \rangle$. One can see that $\langle x \rangle C_A(x) < \langle x \rangle A$. Take $B \leq \langle x \rangle A$ such that $\langle x \rangle C_A(x) \triangleleft_p B$. Notice that $\langle x \rangle C_A(x) \cap A \triangleleft_p A$. Clearly $\langle x \rangle C_A(x) \cap A = C_A(x)$. Therefore $C_A(x) \triangleleft_p A \cap B$. On the other hand, take $b = x^i a \in B$ (where $a \in A$.) Take $g \in C_A(x)$. Then (because $g \in A$) we have $b^g = (x^i a)^g = (x^g)^i a^g = x^i a = b$. Thus $C_A(x) \leq Z(B)$.

Now take $a \in (A \cap B) \setminus C_A(x)$ such that $a^p \in C_A(x)$. Clearly $[a, x] \neq 1$. Since $[x, a] \in B' \leq \Phi(B), [x, a] \in C_A(x) \langle x \rangle \triangleleft_p B$.

Let us assume that $[x, a] \notin C_A(x)$. Then $[x, a] = x^i a_1$ for some $a_1 \in C_A(x)$. Then $x^{-1}a^{-1}xa = x^i a_1$ and $x^a = x^{i+1}a_1$. On the other hand,

$$x^{x^a} = x^{x^{i+1}a_1} = x^{a_1} = x,$$

thus $x^a \in C_A(x)$. Then $(x^a)^{a^{-1}} \in C_A(x)^{a^{-1}} = C_A(x)$, so $x \in C_A(x)$ – a contradiction! Therefore, $[x, a] \in C_A(x)$, so $B' \leq C_A(x)$.

Knowing that for any finite group it holds $[x, yz] = [x, z][x, y]^z$, we have $1 = [x, a^p] = [x, a^{p-1}a] = [x, a][x, a^{p-1}]^a$. Because of $[x, a^{p-1}] \in B' \leq C_A(x)$, we get $[x, a^p] = [x, a][x, a^{p-1}]$. This gives us $[x, a]^p = 1$. Finally, because of $[x, a] \in C_A(x)$, we get [a, x, x] = 1.

Now we want to characterize the centralizer of a maximal abelian subgroup of a CZ-group because it certainly could be used for further describing the structure of a CZ-group.

LEMMA 4.2. Let $G \in CZ_p$ and let $A \trianglelefteq G$ be a maximal abelian subgroup. Let $x \in G \setminus A$. Then $C_A(x) \le Z(N)$ for every nonabelian $N \le \langle x \rangle A$.

PROOF. Take $x \in G \setminus A$. If $C_A(x) = A$, then $\langle x, A \rangle > A$ is abelian contradicting to the assumption for A being maximal. Thus, $C_A(x) < A$. Take $N \leq \langle x \rangle A$, where N is nonabelian. Then, $G \in CZ_p$ implies $C_G(N) = Z(N)$. Take $g \in C_A(x)$ and $y \in N$. Then $y = x^j a_1$, $a_1 \in A$. Hence, $(x^j a_1)^g =$ $(x^g)^j a_1^g = x^j a_1$, because [g, x] = 1. Also, $g \in A$, so $[g, a_1] = 1$. Therefore, $g \in C_G(N) = Z(N)$, hence $C_A(x) \leq Z(N)$.

COROLLARY 4.3. Let $G \in CZ_p$ and let $A \leq G$ be a maximal abelian subgroup. Let $x \in G \setminus A$. Then for every nonabelian $N \leq \langle x \rangle A$, it holds $Z(N) \setminus C_A(x) \subseteq \langle x \rangle C_A(x)$.

PROOF. We know that $C_A(x) \leq Z(N) < N \leq \langle x \rangle A$. Take $g = x^j a_1 \in Z(N) \setminus C_A(x)$. Then [g, x] = 1 and $x^g = x^{x^j a_1} = x^{a_1} = x$ which yields $a_1 \in C_A(x)$. Thus, $Z(N) \setminus C_A(x) \subseteq \langle x \rangle C_A(x)$.

COROLLARY 4.4. Let $G \in CZ_p$ and let $A \leq G$ be maximal abelian subgroup. Let $x \in G \setminus A$. Then for every nonabelian $N \leq \langle x \rangle A$, it holds $C_A(x) \leq Z(N) \leq \langle x \rangle C_A(x)$.

PROOF. Since $C_A(x) \leq Z(N)$ and $Z(N) \setminus C_A(x) \subseteq \langle x \rangle C_A(x)$ we have $[Z(N) \setminus C_A(x)] \cup C_A(x) \subseteq \langle x \rangle C_A(x) \cup C_A(x).$

Because $C_A(x) \subseteq \langle x \rangle C_A(x)$, we have $Z(N) \subseteq \langle x \rangle C_A(x)$. Hence $Z(N) \leq \langle x \rangle C_A(x)$.

THEOREM 4.5. Let $G \in CZ_p$. and let $A \trianglelefteq G$ be a maximal abelian subgroup. Let $x \in G \setminus A$ such that $x^p \in A$. Then $Z(\langle x \rangle A) = C_A(x) = C_G(\langle x \rangle A)$.

PROOF. Take $x \in G \setminus A$ and $x^p \in A$. Then, by previous result, we have $C_A(x) \leq Z(\langle x \rangle A) \leq \langle x \rangle A C_A(x)$. Clearly $[\langle x \rangle C_A(x) : C_A(x)] = p$. If $Z(\langle x \rangle A) = \langle x \rangle C_A(x)$, then $x \in Z(\langle x \rangle A)$, hence [x, A] = 1. A contradiction with maximality of A. Therefore $Z(\langle x \rangle A) = C_A(x) = C_G(\langle x \rangle A)$. Last equality is true due to $G \in CZ_p$.

COROLLARY 4.6. Let $G \in CZ_p$ and let $A \leq G$ be a maximal abelian subgroup. Then $C_A(T \setminus A) \leq Z(T) < A$ for any $T \leq G$ such that A < T.

THEOREM 4.7. Let $G \in CZ_p$ and let $A \trianglelefteq G$ be a maximal abelian subgroup. Then for any $x \in G \setminus A$ there is some $a \in A$ such that $C = \langle a, x \rangle$ is minimal nonabelian and $C_A(x) = Z(C) \cap A \le C$.

PROOF. We already know that for any $x \in G \setminus A$, there is some $a \in A$ such that $C = \langle a, x \rangle$ is minimal nonabelian. Take $t \in C_A(x) \setminus C$. Then $t \in A$ and [t, a] = [t, x] = 1. Hence $t \in C_G(C) = Z(C)$ (due to $G \in CZ$), which is an obvious contradiction. Therefore, $t \in C$ and $C_A(x) \leq C$. Now, take $g \in C_A(x)$. Then [g, x] = [g, a] = 1, so $g \in Z(C) \cap A$. So far we have $C_A(x) \leq Z(C) \cap A$. Now, take $s \in Z(C) \cap A$ but $s \notin C_A(x)$. Then [s, x] = 1, so $s \in C_A(x)$. Again a contradiction. This gives us $Z(C) \cap A \leq C_A(x)$.

Finally, we present our second main result, the full description of the centralizer of a generator that lies outside of a maximal abelian subgroup.

THEOREM 4.8. Let $G \in CZ_p$ and let $A \trianglelefteq G$ be a maximal abelian subgroup. If $x \in G \setminus A$ such that $x^p \in A$, then $Z(B) = C_A(x)$ where $B = \langle x, A \rangle$. Furthermore, there is a minimal nonabelian group $M = \langle x, a \rangle$, where $a \in A$ such that $Z(M) = C_A(x) \le A$ and $M \cap A \triangleleft_p M$.

PROOF. Take $x \in G \setminus A$ such that $x^p \in A$. Put $B = \langle x, A \rangle$. Clearly $A \triangleleft_p B$. Take some $g \in C_A(x)$. Then $g \in Z(B)$ since $[g, x] = [g, a_1] = 1$ for any $a_1 \in A$. Hence $C_A(x) \leq Z(B)$.

Now, take $h \in Z(B) \setminus C_A(x)$. If $h \in A$, then $h \in C_A(x)$. A contradiction. If $h \notin A$, then $h \in B \setminus A$ and [h, A] = 1. Therefore $\langle A, h \rangle > A$ is abelian, contradiction with the choice of A. Thus, $Z(B) \leq C_A(x)$.

We know that there is some $a \in A$ such that $M = \langle x, a \rangle$ is minimal nonabelian. We already know that $Z(M) \cap A = C_A(x)$. Additionally, we have B = MA. Then $|B| = \frac{|M||A|}{|M \cap A|}$. This gives us $[B : A] = [M : M \cap A] = p$. Thus $M \cap A \triangleleft_p M$.

Since M is minimal nonabelian, we have $Z(M) \triangleleft_p M \cap A \triangleleft_p M$.

References

- [1] Y. Berkovich Groups of Prime Power Order Vol. 1., Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
- [2] Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol. 2., Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
- [3] Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol. 3., Walter de Gruyter GmbH & Co. KG, Berlin, 2011.

K. Tabak

Rochester Institute of Technology, Zagreb Campus D.T. Gavrana 15, 10000 Zagreb Croatia *E-mail:* kxtcad@rit.edu

M.-O. Pavčević Department of applied mathematics Faculty of Electrical Engineering and Computing University of Zagreb 10 000 Zagreb Croatia *E-mail*: mario.pavcevic@fer.hr

Received: 9.10.2015.