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Rochester Institute of Technology and University of Zagreb, Croatia

Abstract. We describe some aspects of the structure of nonabelian
p-groups G for which every nonabelian subgroup has a trivial centralizer
in G, i.e. only it’s center. We call such groups CZ-groups. The problem
of describing the structure of all CZ-groups was posted as one of the first
research problems in the open problems list in Yakov Berkovich’s book
’Groups of prime power order’ Vol 1 ([1]). Among other features of such
groups, we prove that a minimal CZ-group must contain at least p5 el-
ements. The structure of maximal abelian subgroups of these groups is
described as well.

1. Introduction and definitions

Throughout the entire paper we will think of G as a finite p-group. We
assume that every nontrivial nonabelian subgroup has a trivial centralizer in
G, i.e. CG(H) = Z(H) for every nonabelian H ≤ G.

We start by a formal definition of our main object to be investigated.

Definition 1.1. A finite p-group G is called a CZ-group if for every

nonabelian subgroup M < G, the centralizer of M in G equals to Z(M).

We will shortly write G ∈ CZp. We start our analysis with one quite
trivial observation about the center of any G ∈ CZp.

Proposition 1.2. Let G ∈ CZp. Then Z(G) ≤ A, for every nonabelian

A ≤ G.
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Proof. Let’s assume the opposite. Take some nonabelian group A < G.
If g ∈ Z(G) \A, then g ∈ CG(A) 6= Z(A). Thus, we have a contradiction with
G ∈ CZp.

Now, we would like to describe the case when Z(G) is not contained in
some abelian subgroup. In that case we prove that such an abelian subgroup
can’t be a maximal subgroup of some nonabelian subgroup. To be more
precise, we have:

Lemma 1.3. Let G ∈ CZp. Let A ≤ G be an abelian subgroup such that

Z(G) 6≤ A. If M > A is nonabelian, then [M : A] ≥ p2.

Proof. Take g ∈ Z(G) \ A, where A is an abelian subgroup of G. Let
M ≤ G be a nonabelian group such that [M : A] = p. Then A E M. Notice
that, from Z(G) ≤ M we conclude that there is a g ∈ Z(G) ≤ M such that
[〈g,A〉 : A] ≥ p and 〈g,A〉 ≤ M, because of which, M = 〈g,A〉 is abelian.
That is a contradiction, hence [M : A] ≥ p2.

In some sense, it is a natural question to ask could CZ structure be in-
herited from G to some smaller subgroup. The following result provides the
answer.

Proposition 1.4. Let G ∈ CZp. If N < M < G, where N is nonabelian,

then M ∈ CZp.

Proof. Since N is nonabelian, clearly M ′ ≥ 1. So CG(N) = Z(N)
and CG(M) = Z(M). Assume that CM (N) > Z(N). Then there is some
g ∈ CM (N)\Z(N). Since CM (N) ≤ CG(N), we have g ∈ CG(N)\Z(N). Thus,
CG(N) 6= Z(N) which is a clear contradiction. Therefore, CM (N) = Z(N),
thus M ∈ CZp.

2. Center of a nonabelian subgroup of a CZ-group

Next topic that we cover is the question of the center of a CZ-group G.
To be more specific, we will provide properties of the center of a maximal
nonabelian subgroup of G and compare the center of G with centers of some
of its subgroups.

Lemma 2.1. Let G ∈ CZp and M ≤ G is nonabelian. Then Z(G) ≤
Z(M).

Proof. Assume that g ∈ Z(G) \ Z(M). Then g 6∈ M, otherwise g ∈
Z(M). Hence, g ∈ CG(M) \ Z(M). This is a contradiction with CG(M) =
Z(M).

Next result deals with the center of a maximal nonabelian subgroup.

Theorem 2.2. Let G ∈ CZp and let M < G be a maximal nonabelian

subgroup. Then one of the following is true:
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1. Z(M) = Z(G),
2. Z(M) > Z(G) and [G : M ] = p.

Proof. Take M < G, where M is maximal nonabelian. If Z(M) >
Z(G), take g ∈ Z(M) \ Z(G). Then there is some x ∈ G \ M such that
[x, g] 6= 1 and g ∈ M. Notice that 〈M,x〉 is nonabelian. Assume that xp 6∈ M.
Then xp 6∈ Z(M) = CG(M), so 〈M,xp〉 is also nonabelian. If 〈M,xp〉 = G,
then xp is a generator. On the other hand xp ∈ Φ(G). Therefore, x is not
a generator. Hence, M < 〈M,xp〉 < G, which is a contradiction with the
assumption that M is maximal nonabelian. So, xp ∈ M and herewith we
have proved [G : M ] = p.

Lemma 2.3. Let G ∈ CZp and A < G be abelian of index p. Then for

every x ∈ G \A, there is a nonabelian M < G, such that xp ∈ Z(M).

Proof. Take x ∈ G \ A. We know that G/A = 〈xA〉. Take y ∈ A, such
that [x, y] 6= 1 (there is always such an y, otherwise G would be abelian).
Take M = 〈x, y〉. Then CG(M) = Z(M). Notice that xp ∈ A, so [xp, y] = 1.
Now, it is clear that xp ∈ Z(M).

3. Minimal CZ-groups

In this section we deal with CZ-groups which don’t possess any nontrivial
CZ-subgroup. We shall name such groups minimal CZ-groups.

We start with a definition of a minimal CZ-group.

Definition 3.1. A group G ∈ CZp is called a minimal CZ-group if it

doesn’t possess a nontrivial CZ-subgroup.

By Proposition 1.4, it is straightforward to see that if G is a minimal
CZ-group, then every proper nonabelian subgroup is a minimal nonabelian
group. For a CZ-group G which is determined to be minimal in this sense,
we shall write G ∈ CZmp.

For the sake of completeness, we repeat here the known result that clas-
sifies minimal nonabelian p-groups.

Theorem 3.2. Let G be a minimal nonabelian p-group. Then |G′| = p
and G/G′ is abelian of rank 2. G is isomorphic to one of the following groups:

1. G = 〈a, b | ap
m

= bp
n

= 1, ab = a1+pm−1

〉, m ≥ 2, n ≥ 1 and

|G| = pm+n,
2. G = 〈a, b, | ap

m

= bp
n

= cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉, where
|G| = pm+n+1, and if p = 2, then m+ n > 2 and G′ is maximal cyclic

normal subgroup,

3. G ∼= Q8.

Our next result answers the question on the number of generators of a
given G ∈ CZmp.
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Theorem 3.3. If G ∈ CZmp, then [G : Φ(G)] ≤ p3.

Proof. Let A < G be some maximal abelian subgroup (meaning that
there is no abelian subgroup B such that A < B < G). Then A < 〈x,A〉 ≤ G
for some x ∈ G \ A. It is clear that there is an a ∈ A such that [a, x] 6= 1
(otherwiseA wouldn’t be maximal abelian). TakeM = 〈a, x〉. ClearlyM ′ > 1.
If M = G, then [G : Φ(G)] = p2.

If [G : M ] ≥ p2, then there is some N < G such that M < N < G.
Therefore N ∈ CZp which contradicts to G ∈ CZmp. If [G : M ] = p, then it
is clear that G = 〈a, x, y〉, for some y ∈ G \M. Hence [G : Φ(G)] ≤ p3.

Notice that if G ∈ CZmp, then it is natural to assume |G| ≥ p4. Oth-
erwise, any proper subgroup would be of order at most p2, thus abelian. In
order to deliver a description of a minimal CZ-group, we need to provide some
information about automorphisms of minimal nonabelian groups, since such
groups, as we have seen above, are main ingredients of minimal CZ-groups.

Thus, we will start our analysis with groups of order p4. For that, we need
some technical results regarding the modular group of order p3, which may be
a minimal nonabelian subgroup of a putative CZ-group G. Throughout this
paper we will denote that modular group and its generators and relations by

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉.

Another option is that a nonabelian subgroup of order p3 is given by

N = 〈a, b, | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉

and this notation of the group N will be kept throughout the paper as well.

It is easy to see that for Mp3 the following holds: bjai = ai(1−p)j bj, and

(aibj)k = ai[1+(1−p)j+(1−p)2j+···+(1−p)(k−1)j ]bkj

for k ≥ 2. On the other hand, o(aibj) = p2 for any i 6= 0, p and i ∈ [p2 − 1] \
{0, p}, while o(apbj) = p. Finally, it is also easy to see that (aibj)b = (aibj)p+1.
Also, because of 〈a〉EMp3 we may assume that any automorphism of Mp3 is

of the form aαbβ → aαk(apibj)β for some integers k, i and j.
The next result gives a description of such automorphisms.

Lemma 3.4. Let Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. Let ϕij : Mp3 →

Mp3 be maps defined by ϕij(a
αbβ) = aα(apibj)β . Then

1. ϕij(a
αbβaγbδ) = a

α+γ(1−p)β+pi
(1−p)(β+δ)j

−1

(1−p)j−1 bj(β+δ),

2. ϕij(a
αbβ)ϕij(a

γbδ) = a
α+pi

(1−p)βj
−1

(1−p)j−1
+γ(1−p)jβ+pi(1−p)βj (1−p)δj−1

(1−p)j−1 bj(β+δ).

Proof. Notice that aαbβaγbδ = aα(bβaγ)bδ = aαaγ(1−p)βbβbδ. There-

fore, we have ϕij(a
αbβaγbδ) = ϕij(a

α+γ(1−p)βbβ+γ) = aα+γ(1−p)β(apibj)β+δ.
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But, on the other hand

(apibj)β+δ = api[1+(1−p)j+(1−p)2j+···+(1−p)j(β+δ−1)j ]bj(β+δ),

hence ϕij(a
αbβaγbδ) = a

α+γ(1−p)β+pi
(1−p)(β+δ)j

−1

(1−p)j−1 bj(β+δ). Furthermore, we
have

ϕij(a
αbβ)ϕij(a

γbδ) = aα(apibj)βaγ(apibj)δ

= aαapi[1+(1−p)j+(1−p)2j+···+(1−p)j(β−1)]bjβ

· aγapi[1+(1−p)j+(1−p)2j+···+(1−p)j(δ−1) ]bjδ.

Let us introduce shortcuts

A = 1 + (1 − p)j + (1 − p)2j + · · ·+ (1 − p)j(β−1) =
(1− p)βj − 1

(1− p)j − 1
,

B = 1 + (1 − p)j + (1− p)2j + · · ·+ (1− p)j(δ−1) =
(1 − p)δj − 1

(1− p)j − 1
.

We get

ϕij(a
αbβ)ϕij(a

γbδ) = aαapiAbjβaγapiBbjδ

= aα+piA(bjβaγ+piB)bjδ = {since bjai = ai(1−p)j bj}

= aα+piAa(γ+piB)(1−p)jβ bjβbjδ

= a
α+pi

(1−p)βj
−1

(1−p)j−1
+γ(1−p)jβ+pi(1−p)βj (1−p)δj−1

(1−p)j−1 bj(β+δ).

Throughout the coming results we will deal with the assumption that Mp3

is a normal subgroup of G.

Proposition 3.5. Let G be a p-group and Mp3 = 〈a, b〉EG. Let d ∈ G\M

be such that ad = a and bd ∈ 〈b〉. Then [b, d] = 1.

Proof. Since Mp3 EG, the action via conjugation is an inner automor-

phism of Mp3 . Let us use the notation (aαbβ)d = ϕij(a
αbβ) = aα(apibj)β .

Then we would have ϕij(a
α) = aα = (aα)d, ϕij(b

β) = (apibj)β . Let us as-
sume that bd = bj. Then ϕij(b) = apibj = bd, so pi ≡ 0 mod p2, hence

i ∈ {0, p}. We proved that ϕij(a
αbβaγbδ) = aα+γ(1−p)βbj(β+δ). On the other

hand

ϕij(a
αbβ)ϕij(a

γbδ) = aαa0bjβaγa0bjδ = aα(ajβaγ)bjδ

= aαaγ(1−p)jβ bjβbjδ = aα+γ(1−p)jβbj(β+δ).

Therefore, it is necessary that aγ(1−p)β = aγ(1−p)jβ , so γ(1− p)β ≡ γ(1− p)jβ

mod p2. Now, we must have γ
[

(1− p)jβ − (1− p)β
]

≡ 0 mod p2. From here
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we get β(1 − j) ≡ 0 mod p. Since this must be true for any β, we conclude
that 1− j ≡ 0 mod p, so bd = b.

Proposition 3.6. Let G be a p-group and Mp3 E G. Let g ∈ G \ Mp3

such that ad = a and bd ∈ ap〈b〉. Then bd = apb.

Proof. Notice that (aαbβ)d = aα(apbj)β = ϕ1j(a
αbβ). It’s necessary

that ϕ1j(a
αbβ)ϕ1j(a

γbδ) = ϕ1j(a
αbβaγbδ). Using Lema 3.4 we get

ϕ1j(a
αbβaγbδ) = a

α+γ(1−p)β+p
(1−p)(β+δ)j

−1

(1−p)j−1 bj(β+δ).

On the other hand

ϕ1j(a
αbβ)ϕ1j(a

γbδ) = a
α+p

(1−p)βj
−1

(1−p)j−1
+γ(1−p)βj+p(1−p)βj (1−p)δj−1

(1−p)j−1 bj(β+δ).

Let us use abbreviations

Λ = α+ γ(1− p)β + p
(1− p)(β+δ)j − 1

(1− p)j − 1
,

Π = α+ p
(1− p)βj − 1

(1 − p)j − 1
+ γ(1− p)βj + p(1− p)βj

(1− p)δj − 1

(1 − p)j − 1
.

So, it is necessary that Λ ≡ Π mod p2. We see that

p
[

1 + (1− p)j + (1− p)2j + · · ·+ (1− p)(β−1)j
]

≡ pβ mod p2.

Similarly, we get

p
(1− p)(β+δ)j − 1

(1− p)j − 1
≡ (β + δ)p mod p2

and

p
(1− p)δj − 1

(1− p)j − 1
≡ δp mod p2.

Hence,

aΛ = aα+γ(1−p)β+(β+γ)p = aΠ = aα+βp+δp+γ(1−p)jβ .

Then, γ(1−p)β ≡ γ(1−p)βj mod p2. Thus we get only one possibility: j ≡ 1
mod p. Therefore, bd = apb.

Now we will focus our analysis to groups of order p4. The main goal is to
determine all minimal CZ-groups of order p4.

Proposition 3.7. Let G = 〈a, b, c〉 be a group of order p4, p ≥ 2, where

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If [a, c] = 1 and bc ∈ 〈b〉, then also

[b, c] = 1.
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Proof. If [a, c] = 1, then ac = a. If bc ∈ 〈b〉, then bc = bj for some

j ∈ [p]. Notice that (aαbβaγbδ)c = aα+γ(1−p)βb(β+δ)j , while on the other

hand we have (aαbβ)c(aγbδ)c = aαbjβaγbjδ = aα+γ(1−p)jβ bjβ+jδ. This gives
us α+ γ(1− p)jβ ≡ α+ γ(1− p)β mod p2. Since α, γ ∈ [p2] and β ∈ [p], we
get γ(1 − p)jβ ≡ γ(1− p)β mod p. Now, it is easy to see that j ≡ 1 mod p,
thus bc = b.

Proposition 3.8. Let G = 〈a, b, c〉 be a group of order p4, p ≥ 2, where

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If ac = a and bc ∈ ap〈b〉, then
bc = apb.

Proof. Put bc = apbj . We use an idea that is similar to the previous

proof. Firstly, notice that because of bjai = ai(1−p)jbj we get (aαbβaγbδ)c =

aα+pβ+pδ ·aγ(1−p)βj

bβj+δj . On the other hand, after we use the automorphism

property, we get (aαbβaγbδ)c = aα+pβ+pδ · aγ(1−p)βbβj+δj . This gives us j ≡ 1
mod p.

Notice that if G = 〈a, b, c〉 is of order p4 and p > 2, where Mp3 = 〈a, b〉,
then from the assumption G ∈ CZ we get o(c) ≤ p2. Otherwise, o(c) = p3,
implying 〈c〉 E G to be maximal abelian. Then G would be Mp4 , hence G is
not a CZ-group. A contradiction.

It can be shown that if G = 〈a, b, c〉 ∈ CZp and |G| = p4, p > 2 and
Mp3 = 〈a, b〉, then the assumption [a, c] = 1 yields bc = apb and o(c) = p2,
with an additional property ap = cp. The alternative possibility is o(c) = p.
But the next result shows that this is not possible.

Theorem 3.9. Let G = 〈Mp3 , c〉 be of order p4, where Mp3 = 〈a, b | ap
2

=

bp = 1, ab = a1+p〉. If ac = a, bc = apb and o(c) = p, then G 6∈ CZp.

Proof. Let A = 〈a, c〉 ∼= Cp2 × Cp. Then A is a maximal abelian sub-
group. Take φ : A → A where φ(x) = [x, b]. We know that φ is a ho-
momorphism and Im(φ) = G′ = 〈ap〉. Since aac = a, cac = c, bac = b,
then ac ∈ Z(G). Notice that o(ac) = p2 and |G| = p4 = p · |Z(G)| · |G′|.
Thus |Z(G)| = p2, hence Z(G) = 〈ac〉. Clearly ac 6∈ Mp3 . Therefore
ac ∈ CG(Mp3) \ Z(Mp3). So, Mp3 doesn’t have a trivial centralizer, hence
G 6∈ CZp.

Lemma 3.10. Let G = 〈Mp3 , c〉 ∈ CZp be of order p4, where Mp3 = 〈a, b |

ap
2

= bp = 1, ab = a1+p〉. If ac ∈ 〈a〉 and bc ∈ 〈b〉, then [b, c] = 1.

Proof. Take ac = ai, bc = bj where i ∈ [p2 − 1], j ∈ [p − 1]. Then

(aαbβaγbδ)c = (aαaγ(1−p)βbβ+δ)c = aαi+γ(1−p)β ib(β+δ)j . On the other hand

we have (aαbβaγbδ)c = aαibβjaγibδj = aα+γi(1−p)βj

b(β+δ)j. This leads us to
γi[(1 − p)βj − (1 − p)β] ≡ 0 mod p2. Since γ is any integer, we get p | (1 −
p)βj − (1− p)β . Hence j = 1.
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Theorem 3.11. Let G = 〈Mp3 , c〉 be a group of order p4, p > 2 where

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If o(c) = p2, then ac ∈ Mp3 \ 〈a〉 or

〈a〉 ∩ 〈c〉 > 1.

Proof. Assume ac = ai and 〈a〉∩ 〈c〉 = 1. Then G = 〈a, c〉 and cp ∈ M \
〈a〉. Therefore cp = apibj where i ∈ {1, p} and j ∈ [p− 1]. Notice that because

of Z(Mp3) = 〈ap〉 we have (cp)k = (api)kbjk. Furthermore, ac
p

= aa
pibj =

ab
j

= a(1+p)j = a1+pj . For every k ∈ N we have a(a
pibj)k = ab

jk

= a(1+pj)k .

If we assume that a(1+pj)k = a, then (1 + pj)k − 1 ≡ 0 mod p2. Therefore,
p(kj − 1) ≡ 0 mod p2 and kj ≡ 1 mod p. Notice that such k always exists
(and is not divisible by p) since Cp is a field. Therefore, without losing
generality we can take cp = b. Take ϕ ∈ Aut(〈a〉) ∼= Aut(Cp2) ∼= Cp(p−1)

(here we need the assumption p > 2). Put ϕ(a) = ai. Then ϕp(a) = ai
p

=
ac

p

= ab = a1+p. On the other hand ϕp(p−1)(a) = a, hence (p+1)p−1 − 1 ≡ 0
mod p2. This gives us −p ≡ 0 mod p2, which is an obvious contradiction.
Therefore, ac ∈ M \ 〈a〉 or 〈a〉 ∩ 〈c〉 > 1.

Proposition 3.12. Let G = 〈Mp3 , c〉 be a CZ-group of order p4, p > 2

where Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If o(c) = p2 and ac ∈ 〈a〉, then
[b, c] 6= 1.

Proof. Assume that the claim is not true. That means [b, c] = 1. Notice
that c 6∈ CG(Mp3)\Mp3 , otherwise G wouldn’t be a CZ-group. Since ac ∈ 〈a〉,
then by the previous theorem 〈a〉 ∩ 〈c〉 > 1. Notice that 〈a〉 ∩ 〈c〉 = 〈ap〉. We
can write ap = cp. Take ac = a1+i. Then a 7→ a1+i is an automorphism of
order p, thus ac

p

= a(1+i)p = a1+pi = a, hence pi ≡ 0 mod p2. So without
losing generality we may write ac = a1+p. Now, look at the element cbp−1. For

it we have [c, cbp−1] = [b, cbp−1] = 1. On the other hand acb
p−1

= (a1+p)b
p−1

=

(a(p+1)p−1

)p+1 = a(p+1)p = a1+p2

= a. Hence, cbp−1 ∈ CG(Mp3) \Mp3 , which
is a contradiction. Thus, [b, c] 6= 1.

Lemma 3.13. Let G = 〈Mp3 , c〉 be a CZ-group of order p4, p > 2 where

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If ac = a1+p, then bc = apbj where

j 6= 0.

Proof. Since Mp3 E G, then bc ∈ Mp3 . If bc ∈ 〈a〉, then o(b) = p implies
that we can write bc = ap. Therefore bc ∈ Φ(Mp3)char Mp3 , where Φ(Mp3)
stands for the Frattini subgroup, which is characteristic. Thus b ∈ Φ(Mp3)
and so not a generator of Mp3 , contradiction. Therefore bc = bj or bc = apbj,
where j 6= 0. If bc = bj , then bc 7→ bj is an automorphism of order p − 1

(since Aut(Cp) ∼= Cp−1). Therefore, bc
p−1

= b, so [b, cp−1] = 1. On the other

hand ac
p−1

∈ 〈a〉 and cp−1 is clearly a generator for G. But this contradicts
Proposition 3.12.
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Theorem 3.14. Let G = 〈Mp3 , c〉 be a CZ-group of order p4, p > 2 where

Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. If o(c) = p2 and ac = a1+p, then
bc = apb.

Proof. Because of Theorem 3.11 we have 〈a〉 ∩ 〈c〉 > 1, thus without
losing generality we may write ap = cp. Because ofMp3EG, we have bc ∈ Mp3 .
As we have proved in the previous Lemma, we have bc = apbj 6= ap. From
Theorem 2.2 we have Z(Mp3) = 〈ap〉 ≥ Z(G) > 1. Thus Z(G) = 〈ap〉.
Put z = ap. Then c−1bc = zbj. From here we get bc = czbj and b−1cb =
zb−2cbj+1 = zbp−2cbj+1. Using this, we get

cb = zbp−3(bc)bj+1= zbp−3(czbj)bj+1= z2bp−3cb2j+1= · · · = zkbp−k−1cbkj+1.

Put k = p− 1. Then cb = zp−1cbj(p−1)+1 = zp−1cb1−j .
Now, let us take a group N = 〈c, b〉. Since 〈c〉EN, we get cb ∈ 〈c〉. From

here we get b1−j ∈ 〈c〉. If b1−j 6= b, then 〈b1−j〉 = 〈b〉 ≤ 〈c〉, so G = 〈a, c〉 is of
order p3. Thus, the only option is b1−j = 1, hence bj = b.

Proposition 3.15. Let Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉. Let

G = 〈Mp3 , c〉 be a CZ-group of order p4 where o(c) = p2. Then 〈a〉EG.

Proof. Let us assume the opposite. Since Mp3 E G, then ac = aibj,
where o(ai) = p2 and bj 6= 1. Take N = 〈a, c〉. Because |〈a〉 ∩ 〈c〉| ≤ p we have
|N | = p3, therefore N E G. So ac ∈ N. This gives us ac = aibj ∈ N, hence
bj ∈ N. If bj 6= 1, then b ∈ N and N = G, which gives us a contradiction. So,
the only case is bj = 1 and ac ∈ 〈a〉, hence 〈a〉EG.

Now, we have only one candidate G = 〈a, b, c | ap
2

= cp
2

= bp = 1, ab =
ac = az, bc = bz, z = ap〉 for a CZ-group of order p4 that contains Mp3 . The
next result will provide an answer regarding the status of such group.

Theorem 3.16. The group G = 〈a, b, c | ap
2

= cp
2

= bp = 1, ab = ac =
az, bc = bz, z = ap〉 is not a CZ-group.

Proof. Notice that Mp3 = 〈a, b | ap
2

= bp = 1, ab = a1+p〉 E G. Let
us assume that G is a CZ-group. Then, by previous results we have Z(G) =
Z(Mp3) = 〈ap〉 = 〈z〉. Take x = abp−1c. Then x 6∈ Mp3 , otherwise c ∈ Mp3

and |G| 6= p4. Then

ax = aab
p−1c = ab

p−1c = (ab)b
p−2c = (az)b

p−2c

= zab
p−2c = z(ab)b

p−3c = z2ab
p−2c = · · · = zp−1ac = zp−1za = a,

which gives us x ∈ CG(a). On the other hand it is clear that from b−1ab =
az we get ab = zba, thus ba = z−1ab. Using this, we get ba = a−1ba =
a−1(z−1ab) = z−1b. Therefore

bx = bab
p−1c = (z−1b)b

p−1c = (z−1b)c = z−1bc = z−1bz = b,
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thus x ∈ CG(b). So, x ∈ CG(Mp3) \Z(Mp3), which is a contradiction with the
assumption that G is a CZ-group.

In other words, we have proved the following result:

Theorem 3.17. If G ∈ CZmp is of order p4, p > 2, then Mp3 6≤ G.

It is easy to check the properties of an exponent of a minimal CZ-group
of order p4.

Lemma 3.18. Let G ∈ CZmp and |G| = p4. Then exp(G) ≤ p2.

Proof. Let exp(G) > p2. If exp(G) = p4 then G ∼= Cp4 6∈ CZ. If
exp(G) = p3, then there is some d ∈ G such that 〈d〉 E G. Hence G ∼= Mp4 ,
which is not a CZ-group.

Theorem 3.2 motivates us to deal with the possible minimal CZ-group
that contains minimal nonabelian subgroup different than modular.

Proposition 3.19. Let G ∈ CZmp be of order p4. Let N = 〈a, b, c | ap =
bp = cp = 1, ab = ac, [a, c] = [b, c] = 1〉 ≤ G. Then there is a T ≤ N, such
that T ∼= Cp × Cp and T EG.

Proof. We know that |N | = p3 and N is minimal nonabelian group.
Also N ′ = 〈c〉 is maximal cyclic normal subgroup in N. Thus every maximal
subgroup in N is isomorphic to Cp × Cp. Take Γ1 = {T ≤ N | [N : T ] = p}.
As we’ve seen, T ∼= Cp × Cp for every T ∈ Γ1. We also know that |Γ1| ≡ 1
mod p. Take d ∈ G \ N such that G = 〈N, d〉 (such d always exists). Since
dp ∈ N, we know that if d acts on Γ1 nontrivially (via conjugation), then the
orbits are of order p or 1. Therefore, there is some T ∈ Γ1 which is fixed by
conjugation with d. Hence T d = T, therefore T EG.

Now, we will use the previous result to describe any minimal CZ-group
of order p4 that contains a subgroup of order p3 isomorphic to N.

Proposition 3.20. Let G ∈ CZmp be of order p4 and N = 〈a1, b1, c1 |

ap1 = bp1 = cp1 = 1, ab11 = a1c1, [a1, c1] = [b1, c1] = 1〉 E G. Then there is a

T ≤ N such that T = 〈a, b〉 ∼= Cp × Cp and T EG. Additionally, N = 〈T, b〉
and [a, b] = c ∈ Z(N).

Proof. We know that Z(N) = 〈c1〉. Then also Cp
∼= Z(N) ≥ Z(G) > 1.

Thus, Z(N) = Z(G). Also, by previous result, we know that there is some
T = 〈a2, c2〉 ∼= Cp×Cp that is normal in G. Take some b2 ∈ N \T. Since N =

〈T, b2〉, we must have ab22 6= a2. Otherwise, N would be abelian. Since T EG,

then ab22 = ai2c
j
2 for some i, j. Notice that if cj2 6= 1, then 〈a2, c2〉 = 〈a2, c

j
2〉.

Therefore, we can write ab22 = ai2c2. Another option is ab22 = ai2. Since T EG

we have T ∩Z(G) > 1. If ab22 = ai2, then we can write 〈c2〉 = T ∩Z(N). Then
N ∼= Ep3 (elementary abelian group) which is a contradiction. So, the only
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option is ab22 = ai2c2. Thus, [a2, b2] = ai−1
2 c2, thus 〈a

i−1
2 c2〉 = 〈c2〉 = Z(N) =

N ′. Therefore i = 1. Now, identify a2 = a, b2 = b, c2 = c.

Theorem 3.21. Let G ∈ CZmp be of order p4. Then G has no subgroup

isomorphic to the minimal nonabelian group N = 〈a, b, c | ap = bp = cp =
1, ab = ac, [a, c] = [b, c] = 1〉.

Proof. Let us assume the opposite. Let N E G, where N = 〈a, b, c |
ap = bp = cp = 1, ab = ac, [a, c] = [b, c] = 1〉. By our previous result, without
losing generality, we can write T = 〈a, c〉EG. Since |G/T | = p2, it is abelian,
hence T ≤ G′. Thus |G′| ≥ p2. Since G′ ≤ Φ(G) then also |Φ(G)| ≥ p2. If
|Φ(G)| = p3, then dim(G) = 1 and G ∼= Cp4 , which is clearly a contradiction.
Hence, the only option is |Φ(G)| = p2 and Φ(G) = G′ = T. Therefore, G has
2 generators. Put G = 〈x, y〉. Then it is clear that G′ = 〈[x, y]〉 ∼= Cp2 , which
is a clear contradiction with G′ = T ∼= Cp × Cp.

Using Theorems 3.17 and 3.21 we have reached one of the main results
of this paper. We establish now the lower bound for the order of minimal
CZ-groups.

Theorem 3.22. Let G ∈ CZmp. Then |G| ≥ p5.

Proof. If G ∈ CZmp ⊆ CZ, then G has some nonabelian subgroup
S < G such that CG(S) = Z(S). It is clear that |S| > p3, thus |G| ≥ p4. If
|G| = p4, then there is some minimal nonabelian S < G. So S ∼= Mp3 or N.
Both cases were eliminated by Theorems 3.17 and 3.21.

4. Maximal normal abelian subgroup of G ∈ CZp

This section collects another type of results, it deals with CZ-groups and
repercussions on its maximal abelian subgroups. First, we provide a slightly
different proof of Lemma 57.1. from Berkovich’s and Janko’s book Groups of

Prime Power Order, Vol. 2 ([2]).
We will use notation A ≤p B if A is a subgroup of B whose index is p.

Similarly, we will write AEp B if AEB and [B : A] = p.

Lemma 4.1. Let G be a p-group and AEG its maximal abelian subgroup.

Then for any x ∈ G\A there is some a ∈ A such that [x, a] 6= 1 and [x, a]p = 1.
Furthermore, [a, x, x] = 1, thus 〈x, a〉 is minimal nonabelian, i.e. every p-
group is generated by minimal nonabelian subgroups.

Proof. Take CA(x) for some x ∈ G\A. Clearly CA(x) < A, since other-
wise 〈x,A〉 would be abelian and would contain A, which is a contradiction.
Take 〈x〉CA(x). It is a group because of 〈x〉CA(x) = CA(x)〈x〉. One can see
that 〈x〉CA(x) < 〈x〉A. Take B ≤ 〈x〉A such that 〈x〉CA(x)⊳p B. Notice that
〈x〉CA(x)∩A⊳pA . Clearly 〈x〉CA(x)∩A = CA(x). Therefore CA(x)⊳pA∩B.



356 K. TABAK AND M.-O. PAVČEVIĆ

On the other hand, take b = xia ∈ B (where a ∈ A.) Take g ∈ CA(x).
Then (because g ∈ A) we have bg = (xia)g = (xg)iag = xia = b. Thus
CA(x) ≤ Z(B).

Now take a ∈ (A ∩ B) \ CA(x) such that ap ∈ CA(x). Clearly [a, x] 6= 1.
Since [x, a] ∈ B′ ≤ Φ(B), [x, a] ∈ CA(x)〈x〉 ⊳p B.

Let us assume that [x, a] 6∈ CA(x). Then [x, a] = xia1 for some a1 ∈
CA(x). Then x−1a−1xa = xia1 and xa = xi+1a1. On the other hand,

xxa

= xxi+1a1 = xa1 = x,

thus xa ∈ CA(x). Then (xa)a
−1

∈ CA(x)
a−1

= CA(x), so x ∈ CA(x) – a
contradiction! Therefore, [x, a] ∈ CA(x), so B′ ≤ CA(x).

Knowing that for any finite group it holds [x, yz] = [x, z][x, y]z, we have
1 = [x, ap] = [x, ap−1a] = [x, a][x, ap−1]a. Because of [x, ap−1] ∈ B′ ≤ CA(x),
we get [x, ap] = [x, a][x, ap−1]. This gives us [x, a]p = 1. Finally, because of
[x, a] ∈ CA(x), we get [a, x, x] = 1.

Now we want to characterize the centralizer of a maximal abelian sub-
group of a CZ-group because it certainly could be used for further describing
the structure of a CZ-group.

Lemma 4.2. Let G ∈ CZp and let AEG be a maximal abelian subgroup.

Let x ∈ G \A. Then CA(x) ≤ Z(N) for every nonabelian N ≤ 〈x〉A.

Proof. Take x ∈ G \ A. If CA(x) = A, then 〈x,A〉 > A is abelian
contradicting to the assumption for A being maximal. Thus, CA(x) < A. Take
N ≤ 〈x〉A, where N is nonabelian. Then, G ∈ CZp implies CG(N) = Z(N).
Take g ∈ CA(x) and y ∈ N. Then y = xja1, a1 ∈ A. Hence, (xja1)

g =
(xg)jag1 = xja1, because [g, x] = 1. Also, g ∈ A, so [g, a1] = 1. Therefore,
g ∈ CG(N) = Z(N), hence CA(x) ≤ Z(N).

Corollary 4.3. Let G ∈ CZp and let A E G be a maximal abelian

subgroup. Let x ∈ G \ A. Then for every nonabelian N ≤ 〈x〉A, it holds

Z(N) \ CA(x) ⊆ 〈x〉CA(x).

Proof. We know that CA(x) ≤ Z(N) < N ≤ 〈x〉A. Take g = xja1 ∈

Z(N) \ CA(x). Then [g, x] = 1 and xg = xxja1 = xa1 = x which yields
a1 ∈ CA(x). Thus, Z(N) \ CA(x) ⊆ 〈x〉CA(x).

Corollary 4.4. Let G ∈ CZp and let AEG be maximal abelian subgroup.

Let x ∈ G\A. Then for every nonabelian N ≤ 〈x〉A, it holds CA(x) ≤ Z(N) ≤
〈x〉CA(x).

Proof. Since CA(x) ≤ Z(N) and Z(N) \ CA(x) ⊆ 〈x〉CA(x) we have

[Z(N) \ CA(x)] ∪ CA(x) ⊆ 〈x〉CA(x) ∪ CA(x).

Because CA(x) ⊆ 〈x〉CA(x), we have Z(N) ⊆ 〈x〉CA(x). Hence Z(N) ≤
〈x〉CA(x).
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Theorem 4.5. Let G ∈ CZp. and let AEG be a maximal abelian subgroup.

Let x ∈ G \A such that xp ∈ A. Then Z(〈x〉A) = CA(x) = CG(〈x〉A).

Proof. Take x ∈ G \ A and xp ∈ A. Then, by previous result, we
have CA(x) ≤ Z(〈x〉A) ≤ 〈x〉ACA(x). Clearly [〈x〉CA(x) : CA(x)] = p. If
Z(〈x〉A) = 〈x〉CA(x), then x ∈ Z(〈x〉A), hence [x,A] = 1. A contradiction
with maximality of A. Therefore Z(〈x〉A) = CA(x) = CG(〈x〉A). Last equality
is true due to G ∈ CZp.

Corollary 4.6. Let G ∈ CZp and let A E G be a maximal abelian

subgroup. Then CA(T \A) ≤ Z(T ) < A for any T ≤ G such that A < T.

Theorem 4.7. Let G ∈ CZp and let AEG be a maximal abelian subgroup.

Then for any x ∈ G \A there is some a ∈ A such that C = 〈a, x〉 is minimal

nonabelian and CA(x) = Z(C) ∩ A ≤ C.

Proof. We already know that for any x ∈ G \ A, there is some a ∈ A
such that C = 〈a, x〉 is minimal nonabelian. Take t ∈ CA(x) \ C. Then
t ∈ A and [t, a] = [t, x] = 1. Hence t ∈ CG(C) = Z(C) (due to G ∈ CZ),
which is an obvious contradiction. Therefore, t ∈ C and CA(x) ≤ C. Now,
take g ∈ CA(x). Then [g, x] = [g, a] = 1, so g ∈ Z(C) ∩ A. So far we have
CA(x) ≤ Z(C) ∩ A. Now, take s ∈ Z(C) ∩ A but s 6∈ CA(x). Then [s, x] = 1,
so s ∈ CA(x). Again a contradiction. This gives us Z(C) ∩ A ≤ CA(x).

Finally, we present our second main result, the full description of the
centralizer of a generator that lies outside of a maximal abelian subgroup.

Theorem 4.8. Let G ∈ CZp and let AEG be a maximal abelian subgroup.

If x ∈ G \ A such that xp ∈ A, then Z(B) = CA(x) where B = 〈x,A〉 .

Furthermore, there is a minimal nonabelian group M = 〈x, a〉, where a ∈ A
such that Z(M) = CA(x) ≤ A and M ∩ A⊳p M.

Proof. Take x ∈ G \ A such that xp ∈ A. Put B = 〈x,A〉. Clearly
A ⊳p B. Take some g ∈ CA(x). Then g ∈ Z(B) since [g, x] = [g, a1] = 1 for
any a1 ∈ A. Hence CA(x) ≤ Z(B).

Now, take h ∈ Z(B) \CA(x). If h ∈ A, then h ∈ CA(x). A contradiction.
If h 6∈ A, then h ∈ B \ A and [h,A] = 1. Therefore 〈A, h〉 > A is abelian,
contradiction with the choice of A. Thus, Z(B) ≤ CA(x).

We know that there is some a ∈ A such that M = 〈x, a〉 is minimal
nonabelian. We already know that Z(M)∩A = CA(x). Additionally, we have

B = MA. Then |B| =
|M ||A|

|M ∩ A|
. This gives us [B : A] = [M : M ∩ A] = p.

Thus M ∩ A⊳p M.
Since M is minimal nonabelian, we have Z(M)⊳p M ∩ A⊳p M.
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